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Abstract

Like many urban areas around the world, Durham and Orange counties in North Carolina, USA 

are experiencing population growth and sprawl that is putting stress on the transportation system. 

Light rail and denser transit-oriented development are being considered as possible solutions. 

However, local agencies and stakeholders are concerned the light rail may worsen housing 

affordability and have questioned whether investment in both light rail and dense redevelopment 

are necessary to achieve community goals. We developed an integrated system dynamics model to 

quantitatively explore the outcomes of these land use and transportation options across multiple 

societal dimensions. The model incorporates feedbacks among the land, transportation, economic, 

equity, and energy sectors. This paper uses the results of four model scenarios, run between 2000 

and 2040, to address two main questions: (1) what role does redevelopment play in capturing the 

socioeconomic benefits of transit infrastructure investment? And (2) how do redevelopment and 

light-rail transit interact to affect housing and transportation affordability? We find that transit 

investment and dense redevelopment combine synergistically to better achieve the goals of the 

light-rail line, including economic development, mobility, and compact growth. However, housing 

affordability does worsen in the combined scenario, as transportation-cost savings are not 

sufficient to offset the rise in housing costs. We emphasize that model users may input their own 

assumptions to explore the dynamics of alternative scenarios. We demonstrate how spatially-

aggregated systems models can complement traditional land use and transportation models in the 

regional planning process.
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1. Introduction

The Triangle region of North Carolina, USA is a rapidly growing area currently facing a 

common challenge among cities around the world: a sprawling pattern of growth, leading to 
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a growing separation between people’s homes and their workplaces, putting added stress on 

the transportation system.

To address this issue, a light-rail transit system has been proposed to connect the town of 

Chapel Hill and city of Durham along a heavily-used commuting corridor (Fig. 1). In 

conjunction with this proposal, planners are considering rezoning for denser redevelopment 

around the proposed transit stations in order to concentrate growth and limit sprawl 

(Triangle Transit, 2012). The stated goals of the light-rail project include promoting 

economic development, improving mobility, and increasing compact, mixed-use 

development (Triangle Transit, 2012). However, local agencies and stakeholders are 

concerned that the light-rail line and associated economic and land development may worsen 

housing affordability and displace transit-dependent populations (Triangle Transit and 

TJCOG, 2013).

Local and regional planning organizations have jointly developed detailed land-use 

allocation and transportation demand models to forecast the impact of alternative 

transportation and land use scenarios (TJCOG, 2014; TRM Service Bureau and TRM Team, 

2012). These are essential for long-range planning. However, because the existing models 

rely on static land-use, economic, and demographic projections, they do not address 

feedbacks and synergies caused by complementary policy options, and were not designed to 

address affordability and environmental impacts.

The Durham-Orange Light Rail Project System Dynamics (D-O LRP SD) model can both 

help fill this gap locally and demonstrates how spatially aggregated SD models generally can 

complement current land use and transportation-planning models. It identifies the mutually 

reinforcing relationships between compact development and transit investments and their 

social, economic, and environmental benefits and tradeoffs, and provides a prototype for 

how similar models could be constructed to suit other cases around the world. In this paper, 

we use results from four scenarios in the D-O LRP SD model to address two main questions: 

(1) what role does redevelopment play in capturing the socioeconomic benefits of transit-

infrastructure investment? and (2) how do redevelopment and light-rail transit interact to 

affect housing and transportation affordability?

2. Literature review

Scenarios have been used to explore alternative futures in the land-use planning literature 

since the 1960s (Doxiades, 1966; Wallace-McHarg Associates, 1964). Though computer 

modeling has enabled scenarios to become more detailed, complex, and validated, the 

functions remain the same. Rather than forecast the future, scenario sets serve as a bridge 

between modelers and stakeholders and stretch users’ thinking and perspectives, integrating 

knowledge to facilitate comprehension of a ‘bigger picture’ (Xiang & Clarke, 2003). More 

than just the outputs of computer models, scenario sets are curated from among the 

thousands possible, and interpreted to provide vivid narratives (Schoemaker, 1995; Xiang & 

Clarke, 2003). In this way, good scenario sets help to overcome cognitive biases and serve as 

a platform for consensus-building (Godet, 2000; Schoemaker, 1995; Xiang & Clarke, 2003).
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In the 1990s, urban scenario planning began to use models that merged land use and 

transportation (Bartholomew & Ewing, 2009). Initially, these were treated using separate 

models, where the outputs of a land use model were used as inputs into a transportation-

demand model (Aljoufie, Zuidgeest, Brussel, van Vliet, & van Maarseveen, 2013). However, 

that approach was limited in its ability to capture the dynamics of land use and 

transportation systems; relationships were traditionally unidirectional, and therefore did not 

allow transportation changes to affect land use, and their sequential processing did not allow 

for internal feedbacks (Haghani, Lee, & Byun, 2003). Increasingly, integrated models that 

allow bidirectional impacts are being developed, creating a class of tools called land use and 

transport interaction (LUTI) models (Waddell, 2011; Wegener, 2004).

A review of the literature shows there is growing interest in expanding LUTI models to 

address their implications for urban sustainability, as indicated by Geurs and Van Wee 

(2004). They reviewed LUTI models that incorporate sustainability indicators to some 

degree.

However, this approach has challenges. Because LUTI models require more data from a 

diversity of fields, it is challenging to quantify several social, economic, and environmental 

indicators with confidence. Conventional econometric and optimization models excel at 

simulating spatial and temporal development patterns on the basis of historical data (Santé, 

García, Miranda, & Crecente, 2010), and are less focused on how socioeconomic factors 

drive local land use and development (Han, Hayashi, Cao, & Imura, 2009). Geurs and Van 

Wee, 2004 (2004) concluded that contemporary LUTI models did not address macro-

economic impacts of land use and transportation, nor many social or health effects. Finally, 

conventional models are not designed to address delays among urban activities, as 

optimization approaches primarily provide information on the optimal state of the system, 

rather than on transitions. This means that the models assume that urban systems are in a 

state of equilibrium, which is rarely the case (Haghani et al., 2003; Vina-Arias, 2013).

System Dynamics (SD) models complement traditional LUTI models by providing a simpler 

framework to capture the dynamic properties of systems through the explicit representation 

of feedback loops. By focusing on causal relations and simulating “what if” scenarios, they 

can more easily incorporate a variety of sustainability indicators (Sterman, 2000), and are 

therefore useful for evaluating responses to policy scenarios on transit investment and 

development (Han et al., 2009). In addition, their relative simplicity and low data-intensity 

make it easier to examine demographics, land use, transportation, water, and energy use in 

an integrated fashion (Rickwood et al., 2007). On the other hand, SD models are not 

spatially explicit and lack the detail that other models can provide. Therefore, the core 

contribution of SD models is the provision of a more comprehensive view of the urban 

system by integrating processes at different time scales (Abbas & Bell, 1994).

One of the first applications of SD was as a method to simulate urban growth and change 

(Forrester, 1969). More recently, SD models have been used to address a variety of issues in 

urban land use, transportation, and sustainability all around the world. Land use models have 

addressed housing supply and demand and urban renewal in the Netherlands (Eskinasi, 

Rouwette, & Vennix, 2009) and the limits of growth under different urban development 
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schemes in Hong Kong (Shen et al., 2009). Transportation-focused models have addressed 

policies to manage congestion in China (Wang, Lu, & Peng, 2008) and policies to impact 

bicycling in New Zealand (Macmillan et al., 2014). A few have focused on land use and 

transportation interactions. Haghani et al. (2003) developed a model to project the impacts 

of highway expansion on land usage and transportation performance measures in Maryland, 

USA. Several groundbreaking models have combined elements of cellular-automata models 

and SD to capture complex dynamics at a granular scale (Han et al., 2009; Lauf, Haase, 

Hostert, Lakes, & Kleinschmit, 2012; Pfaffenbichler, 2011).

However, there remains a need to integrate social, economic, and environmental dynamics. 

Few models incorporate land use and transportation interaction with macroeconomic, 

environmental, and health indicators, allowing for feedbacks among them (Haghani et al., 

2003; Wegener, 2004). We take a step towards such an integrated urban-systems model with 

a model structure that emphasizes feedbacks, integrates multiple urban systems, and allows 

users to test complementary policies and their benefits and tradeoffs.

3. Methodology

3.1. System dynamics approach

System Dynamics (SD) is a policy-oriented technique that provides a framework for the 

design of policies and management of systems to achieve improved system behavior 

(Sterman, 2000). They do not provide predictions of the future, nor are they designed to 

optimize a system. Instead, SD models allow users to test the direct, indirect, and induced 

effects of interventions in “what if” scenarios. SD models are characterized by four key 

properties: limiting factors, delays, nonlinearities, and a feedback-loop structure built on the 

basis of stocks and flows (Forrester, 1969; Meadows & Wright, 2008; Sterman, 2000).

3.2. Study area and data

The D-O LRP SD model was constructed based on a conceptual model developed in 

collaboration with stakeholders, including representatives from the regional transit authority 

and city and county departments of health, stormwater management, land use planning, and 

transportation planning. The model consists of 7 interdependent sectors: land use, 

transportation, energy, economy, equity, water, and health.

The model operates at two geographic scales: Tier 2 – defined by the boundary of the 

Durham-Chapel Hill-Carrboro Metropolitan Planning Organization; and Tier 1 – the 

combined area of ½-mile-radius zones surrounding each of the proposed light-rail stations 

(Fig. 1). Tier 2 was chosen due to the high availability of data at this scale, while Tier 1 was 

chosen as the area likely to show the largest impacts in response to the rail. Model variable 

outputs are reported for each Tier on an annual basis between 2000 and 2040, with a model 

time-step of 0.0625 years, though, in this paper, outputs are only discussed for Tier 1. Model 

scenarios run in only a few seconds on a typical desktop computer.

Partly as a result of the planned light-rail line, there are an abundance of data and projections 

available for the area through the regional land use and transportation comprehensive 

planning efforts. In order to make the D-O LRP SD model complementary to these efforts 
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and to ensure consistency across model results, we aligned many assumptions with those 

used by the regional land-use allocation model (TJCOG, 2014) and the transportation-

demand model used for the 2040 Metropolitan Transportation Plans (MTP) (DCHC MPO, 

2013; TRM Service Bureau and TRM Team, 2012).

Table 1 includes a selection of the key data sources, both historical and projected, used to 

initialize, calibrate, and validate the model (BEA, 2014; Chatham County Tax 

Administration Office, 2014; Durham County Tax Administration, 2000–2014; Orange 

County Tax Administration, 2014; U.S. Census Bureau, 2000, 2014, 2015). Historical data 

and local projections were aggregated for the model’s two geographic boundaries.

3.3. Model structure and specifications

A causal loop diagram depicting the interconnections among key variables is shown in Fig. 

2. Plus (+) signs indicate a positive association between variables, and minus (−) signs 

indicate a negative association between variables (an increase in A produces a decrease in 

B). This paper focuses on outcomes in Tier 1 most strongly impacted by changes in the land 

use sector, however Procter et al. (2017) discusses the energy sector, and forthcoming papers 

will discuss other model outcomes impacted by changes in the transportation and economy 

sectors in more depth.

In Fig. 2, the primary cross-sectoral feedback loop involving land use can be seen: 

employment growth drives growth in nonresidential floor space (measured in square feet (sq 

ft)), which increases gross operating surplus (GOS, the portion of GRP due to production, 

not earnings), which raises the gross regional product (GRP), which contributes to an 

increase in total employment, completing the loop. The limit on total available land in Tier 1 

provides a balancing effect, preventing unlimited growth. There are numerous such 

reinforcing and balancing loops throughout the model. For brevity, we present only the key 

variables used to estimate land use and affordability in the model.

The Land Use sector comprises three types of stocks: (1) acres of land, (2) dwelling units, 

and (3) developed nonresidential sq ft of floor space. The Equity sector outputs three key 

indicators: (1) property values, (2) renter costs, and (3) transportation costs. The categories 

of disaggregation, as well as driving factors of these key variables, are summarized in Table 

2.

Beyond the main drivers of change listed, additional variables mediate the calculation of the 

key variables. Below, we present equations for those variables crucial to understanding how 

the key indicators in the land and equity sectors are calculated. Table 3 lists which of the 

variables used in the calculation of the land use and equity sectors described below are 

exogenous.

3.3.1. Land sector—The demand for nonresidential floor space (DNFS) is calculated 

independently for each land use category, following the general equation that is standard in 

land use planning (Durham City-County Planning Department, 2012):

DNFS = E ÷ ESR
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Where E is employment, and ESR is the employee space ratio (the average number of 

employees per sq ft), with values for each of the four categories of nonresidential land use 

(Table 2). This is converted to acres using floor area ratios (FARs) for each nonresidential 

land use category, Tier, and scenario.

Demand for single family and multifamily dwelling units (DDU) is calculated separately, 

using distinct values for each factor in the following equation:

DDU = EH + ((PG × PPH) ÷ HS) × (1 + (year ÷ HL)) × (1 + SH) × EV

Where EH is the equilibrium households (calculated by the population in households divided 

by household size), PG is the projected annual population growth over the next 5 years, PPH 
is the percent of people in households, HS is the household size, HL is the average lifetime 

of dwelling units, SH is the percent of second homes (applied only to the calculation of 

single family dwelling units), and EV is the effect of vacancy on the demand for dwelling 

units. This final variable is an L-shaped curve with a long tail, indicating that very high 

vacancy decreases demand for dwelling units, but this effect diminishes with lower vacancy 

rates. These elements ensure there is always some degree of endogenous vacancy in the 

model; the vacancy rate subsequently affects renter costs in the Equity sector. Demand for 

dwelling units is converted to demand for residential acres using the average single family or 

multifamily density for the Tier and scenario, and, in conjunction with demand for 

nonresidential acres, drives land conversion.

The gap between demand for acres and the actual developed acres, for each land use 

category, feeds the land conversion flows. The total time for land conversion and 

construction results in a two-year delay between demand and realization. If the supplies of 

both agricultural and vacant land are depleted, land conversion and construction cease, 

constituting a cap on total developed acres, nonresidential floor space, and dwelling units. 

While there is ample available land in Tier 2 for years to come, this cap on land does come 

into play in Tier 1, contributing to nonlinearities in the model results.

Redevelopment operates by allowing users to set a target percent of land that is redeveloped 

to a target density, achieved gradually, between 2020 and 2040. Acres redeveloped at a 

higher density in turn reduce desired acres, all else equal, by satisfying more demand for 

floor space or dwelling units on less land. If desired acres drop below the actual, impervious 

developed land may become vacant and pervious. The initial conversion of a portion of land 

to a higher density modestly increases nonresidential floor space in Tier 1, which is then 

amplified through feedbacks.

Redevelopment can only occur in Tier 1. However, because Tier 1 is part of Tier 2, the 

proportional reduction in acres and the proportional increase in nonresidential floor space 

and dwelling units are reflected in Tier 2 outputs. Due to feedbacks in the model, the 

increase in nonresidential floor space in Tier 1 caused by redevelopment, once added to Tier 

2, spurs more growth in GRP, eventually leading to higher demand for floor space in Tier 2, 

developed at the default density. Densities calculated in the land sector, including 

nonresidential density per acre, retail density per capita, population density, and intersection 
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density, subsequently affect outcomes in other sectors of the model, including property 

values, energy use, and transportation mode shares.

3.3.2. Equity sector—The Equity sector has few feedbacks to other sectors of the model; 

however, it responds to many other sectors and the feedbacks inherent in them. Here, we 

present the equations for the primary indicators in this sector: property values, renter costs, 

and transportation costs. Property values are driven by several other variables in the model, 

which is evident in the equation for multifamily property value per dwelling unit (MV):

MV = MVi × (rvlevl × (rinceinc) × (rjdejd) × (rrderd) × (rctect) × (rfarefar)

Where MVi is the average multifamily (MF) property value per dwelling unit (DU) in the 

initial year (2000). We then include six drivers (relative to their initial values in 2000, r) and 

their respective elasticities (e): vacant land, an indicator of land scarcity (rvl), resident per 

capita net earnings (rinc), job density (rjd), retail density (rrd), commute time (rct), and 

nonresidential FAR (rfar). Many of these relative values are calculated in other sectors of the 

model; for example, commute time is calculated in the transportation sector.

Single family (SF) property value per DU and nonresidential property value per sq ft are 

calculated similarly, although the drivers for each vary somewhat, according to relationships 

found in the literature. SF property value responds to SF densities rather than nonresidential 

density. Nonresidential property value only responds to relative employment, nonresidential 

density per acre, and retail density per capita.

Renter costs per household (RC) are derived primarily from multifamily housing costs, 

because most renters in the area are in apartments:

RC = RCi × (rmvremvr) × (rmvemv) × (Egrprgrp)

RCi is the initial renter costs per household. Three drivers are included with their respective 

elasticities (e) and effect tables (E): relative MF vacancy rate (rmvr), relative MF property 

value (rmv), and annual change in the grp growth rate (rgrp).

Calibration of property values and renter costs was accomplished through a combination of a 

diverse set of elasticities obtained from the literature (Capozza, Hendershott, Mack, & 

Mayer, 2002; Dobson & Goddard, 1992; Heikkila, Gordon, Kim, Peiser, & Richarson, 1989; 

Jud & Winkler, 2002; Kain & Quigley, 1970; Kockelman, 1997; Srour, Kockelman, & Dunn, 

2002; Vina-Arias, 2013). In a several cases, these elasticities had to be modified to fit the 

study area, as many studies provide elasticities for either one metro area or an average for 

the nation, and none were found that were specific to the study area. For example, while an 

elasticity of +1.09 between population growth and single family property values from a 

study at the metropolitan level (Jud & Winkler, 2002) worked well for Tier 2, that was too 

strong of a relationship for Tier 1, where it had to be adjusted down to +0.5. Details of the 

calibration and validation can be found in EPA et al. (2016).
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Finally, transportation costs are a sum of parking costs, vehicle fuel costs, vehicle ownership 

and maintenance costs, and transit fares.

3.4. Model validation and sensitivity testing

BAU scenario results for more than 20 key variables were validated against historical and 

projected data at both Tiers, both visually (by plotting results and data in a graph) and 

statistically. Table 1 shows the R2 value and average absolute percent deviation for a 

selection of variables at Tier 1. Several variables, including population and VMT, were also 

validated under the LRRD scenario against local projections under a comparable growth 

scenario. Fig. 3 shows a data series comparing multifamily property value, one of the 

variables with a lower R2 value, against historical data. This is a key contributor to renter 

costs in the model and demonstrates the degree of uncertainty in this output.

Extensive sensitivity testing was also performed to further evaluate the validity of the model 

results. Twenty structural and extreme-condition tests were performed on central variables 

and elements in the model, where variables were either removed or set to extreme values to 

determine which best reproduced historical trends. Elements from the land and equity 

sectors tested include land development, the effect of vacancy on the demand for dwelling 

units, property value elasticities, and an extreme population test. Fifteen behavioral and 

policy sensitivity tests were performed on variables that either were uncertain due to limited 

historical data or that were key policy interventions, such as the effect of the LRT on the 

demand for nonresidential sq ft, the percent of net migration to Tier 1 due to the LRT that is 

external to Tier 2, the effect of vacant land on property value, the elasticity of MF property 

value to building size, and the effect of jobs per commercial acre on parking costs. The 

results of these last three tests are described below in the Discussion section. See EPA et al. 

(2016) for the full model description, validation, and sensitivity testing.

4. Results

4.1. Scenarios

Four main scenarios were run in the D-O LRP SD model to simulate the most likely 

transportation and land use options for Tier 1 between 2020 and 2040, the impacts of which 

are also reflected at Tier 2. First, the Business As Usual (BAU) scenario simulates what 

would happen if current demographic, land use, and transportation trends were to continue 

and serves as a baseline scenario for comparison. Nonresidential and residential densities 

remain constant at their average values in 2014.

Second, the Light Rail (LR) scenario simulates the construction of the proposed 17-mile 

light rail transit (LRT) line between Durham and Chapel Hill beginning in 2020 and 

completed by 2026, and assumes that the LRT line (1) motivates more people to use public 

transit than would an equal number of bus service miles, (2) causes a 10% increase in 

demand for nonresidential (excluding industrial) floor space, (3) increases the share of new 

jobs that goes to unemployed residents of Tier 1 rather than to commuters, from 5% to 10%, 

and (4) increases net migration in Tier 2 by 1.5 times the increase in Tier 1, on the 

assumption that additional growth will happen just outside Tier 1. An increase in demand for 
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nonresidential floor space within a ½-mile range of station areas, demonstrated through 

higher property values, is supported in the literature (Cervero & Duncan, 2002; Debrezion, 

Pels, & Rietveld, 2007; Fogarty, Austin, & Center for Transit-Oriented Development, 2011; 

Garrett, 2004), as is an increase in the desirability of living near transit stations (Billings, 

2011; Yan, Delmelle, & Duncan, 2012), although the magnitude varies widely and depends 

on local conditions.

Third, the Redevelopment (RD) scenario simulates the implementation of zoning to 

encourage land redevelopment and higher density in the ½-mile areas that may become 

station areas. It assumes (1) that, starting in 2020, 20% of developed land is aimed to be 

redeveloped to almost three times its existing density by 2040, and (2) that the share of the 

population living in single family dwelling units declines over time in Tier 1, to 25% by 

2040, as opposed to remaining stable at 30.9%, as it does in the BAU scenario. The assumed 

redevelopment density and decline in the share of single family dwelling units aligns with 

the assumptions used in the regional land-use allocation model (Green, 2015).

Fourth, the Light Rail + Redevelopment (LRRD) scenario includes the assumptions tied to 

both the LR and the RD scenarios, and is the scenario that most closely aligns with the 2040 

MTP.

4.2. Effects of redevelopment and light rail

The LR scenario forecasts improvements in economic indicators, particularly in Tier 1, the 

immediate station areas (results are only presented for Tier 1). The assumed increase in 

demand for nonresidential floor space acts through a positive feedback loop with GOS and 

GRP to increase employment (Fig. 2). By 2040, employment is 15% higher in the LR 

scenario than in BAU (Fig. 4). Employment growth in turn feeds back to increase 

nonresidential floor space above the original 10% increase to 13% in 2040. Employment 

growth also spurs immigration, leading to growth in dwelling units. However, because this 

development takes place at current densities, developed land grows quickly and soon 

consumes all available land in the Tier, leading to a plateau in development (Fig. 5). In 

contrast, the RD scenario, in the absence of the rail, does not assume an increase in 

nonresidential floor space and therefore leads to limited growth relative to BAU. In fact, the 

RD scenario causes a decline in developed land between 2020 and 2040 (Fig. 5), as the 

increase in density is sufficient to return some developed land to vacant land. Land is used 

more efficiently in the RD scenario, however, with GRP per acre increasing 33% over BAU 

by 2040. In contrast, the combination of the increase in demand for nonresidential floor 

space due to the LRT and the gradual redevelopment of 20% of developed land by 2040 to 

nearly triple the current density in the LRRD scenario allows for the increase in demand to 

be met while avoiding the consumption of all land in Tier 1. As a result, in the LRRD 

scenario, by 2040, nonresidential floor space is 35% higher than in BAU, compared to only 

13% higher in LR and 4% higher in RD (Fig. 4). Acres of developed nonresidential land are 

only 4% higher than in the BAU case, relative to 13% higher in LR and 20% lower in RD. 

Employment is 23% higher than in the BAU case, relative to only 15% higher in LR and 3% 

higher in RD (Fig. 4). In the short term, growth in developed land slows in response to 
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densification. However, due to the feedbacks described above, developed land in the LRRD 

scenario surpasses BAU by 2040, though GRP per acre is 28% higher than BAU (Fig. 5).

Increased economic activity in the model leads to an increase in property values, particularly 

nonresidential property value per sq ft. It is 87% higher than BAU in 2040 in the combined 

LRRD scenario, in contrast to 15% higher in LR and 38% higher in RD (Fig. 4). In addition, 

increased employment drives down the unemployment rate and stimulates new migration to 

the area. The resulting population increase leads to the construction of dwelling units in 

excess of the increase in employment, positively affecting the jobs-housing balance, a 

common metric of mixed-uses. The jobs-housing balance declines by 2% in the BAU case 

between 2020 and 2040 (making it more imbalanced), and the balance changes little in the 

LR and RD scenarios alone. However, in the LRRD scenario, by 2040, the balance is 3.7% 

higher than BAU, reflecting a more balanced state (Fig. 4).

The LRRD scenario forecasts large increases in transit and nonmotorized travel, relative to 

BAU. Public transit travel by residents per capita (which includes bus transit) increases 

172% between 2020 and 2040 in the LR scenario, and 176% in the LRRD scenario (Fig. 6). 

The light rail shifts mode share away from driving; between 2020 and 2040 vehicle travel by 

residents per capita declines 2% in the LR scenario and 1% in the LRRD scenario, relative 

to a 5% increase in BAU. While the introduction of the light rail has the largest effect on 

transit ridership and nonmotorized travel, due in part to the assumption that each public 

transit trip includes a ½ mile of nonmotorized travel, the RD scenario also contributes. 

Whereas in BAU public transit travel per capita declines 13% between 2020 and 2040, it 

only declines 11% in the RD scenario (Fig. 6). Similarly, nonmotorized travel per capita 

declines 9% in the BAU scenario, relative to only a 5% decline in the RD scenario and a 3% 

decline in the LRRD scenario.

4.3. Effects on housing and transportation affordability

With increases in jobs, business revenues, density, and accessibility the station areas become 

more desirable, causing property values to increase, in turn driving an increase in renter and 

owner housing costs. Multifamily property value per DU is 13% higher in the LRRD 

scenario than BAU by 2040, compared to 1% higher in the LR scenario and 4.6% lower in 

the RD scenario (Fig. 4). Single family property value per DU is more stable, at only 2.2% 

higher in the LRRD scenario by 2040.

Multifamily property value per dwelling unit is the primary contributor to the estimation of 

renter housing costs. Cumulatively, over the 2020–2040 period, the average renter is 

forecasted to pay $8956 more than BAU under the LR scenario, $4504 less in the RD 

scenario, and $13,608 more in the combined scenario (or, $648 more, on average, annually) 

(Fig. 7). Average transportation costs also rise in the RD and LRRD scenarios, primarily due 

to a rise in parking costs. Cumulatively, between 2020 and 2040, the average multifamily 

household is expected to spend $871 less on transportation costs in the LR scenario than in 

the BAU, $2027 more in RD, and $643 more in the combined LRRD scenario (or, $31 more, 

on average, annually).
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Determining affordability, however, requires more than just costs; it is a function of costs 

relative to income. Therefore, we calculate an affordability index for lower-income earners 

in multifamily households by dividing a per-capita retail earnings indicator by a per-capita 

housing and transportation costs indicator. Because the exogenous projection for per-capita 

retail earnings rises over time in all scenarios, the affordability index improves in all 

scenarios. However, in the LRRD scenario, it increases only 2% during 2020–2040, relative 

to a 4% increase in the BAU case (Fig. 8).

The rising employment rate in the LRRD scenario causes a corresponding drop in the 

poverty rate. This dynamic represents two possible phenomena: rising employment may 

employ some previously unemployed residents, but increasing economic prosperity may also 

displace poorer residents. The lower poverty rate causes a smaller share of households with 

zero cars in the model, a proxy for transit-dependent households. By 2040, the percent of 

households with zero cars is 11% in LRRD, compared to 14% in BAU, both down from 16% 

in 2020.

5. Discussion

5.1. What role does redevelopment play in capturing the socioeconomic benefits of transit 
infrastructure investment?

5.1.1. Light rail alone—Local communities sometimes resist the densification planned to 

occur in conjunction with transit projects. However, our model shows that without the 

density increase that redevelopment brings, the light rail has reduced potential to stimulate 

economic development, a stated goal of the project. Our default assumption is that 

investment in the light-rail line spurs 10% more demand for nonresidential development in 

the ½-mile-radius station areas. Were this additional development to take place at the current 

average density and no redevelopment of existing parcels took place, as the LR scenario 

simulates, available land within the ½-mile walking distance of the transit stations would be 

depleted long before all the demand is met. When this limit on land expansion is met, in 

2033, employment growth slows and net migration declines (Fig. 5).

5.1.2. Redevelopment alone—There are benefits from developing compactly in the 

absence of transit; however, our model results confirm what local planners highlight: 

compact development is most effective in achieving economic development and improved 

mobility when pursued in conjunction with transit (Durham City-County Planning 

Department, 2016). Our model forecasts that redevelopment without light rail fails to 

stimulate employment and population growth. Without some stimulus to demand for 

nonresidential floor space, whether through light rail investment or otherwise, employment, 

GRP, and other economic development indicators in the RD scenario remain similar to BAU 

throughout the simulation.

5.1.3. Combined effects—When combined, the RD and the LR scenarios unlock larger 

changes in key indicators than either does in isolation. First, the untapped economic 

potential in the final 7 years of the LR scenario is realized. This leads to greater than 

additive impacts in the LRRD scenario. By 2040, nonresidential floor space in Tier 1 is 

greater than BAU, by more than the sum of the increase over BAU in the LR scenario and in 
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the RD scenario (Fig. 4). This higher square footage, made possible by the increased density 

in the RD scenario assumptions, in turn produces higher economic development, leading to 

higher employment. By 2040, employment and nonresidential property value per sq ft are 

also higher, relative to BAU, than in the LR and the RD scenarios summed.

Second, the LRRD scenario improves mobility by alternative modes disproportionately, with 

a more than additive increase in transit use and nonmotorized travel per capita. While the 

opening of the light rail causes most of the increase to both indicators, the RD scenario also 

contributes (Fig. 6). In the BAU scenario, transit travel per capita and nonmotorized travel 

per capita both decline because fuel efficiency is projected to increase, which lowers the cost 

of automobile travel and increases driving relative to transit use. However, both the LR and 

RD scenarios blunt this decline. Because the RD scenario increases both population density 

and the density of pedestrian-friendly intersections, it leads to an increase in the mode shares 

of transit and walking.

Finally, the LRRD scenario develops more land compactly and decreases the separation 

between jobs and housing in more than an additive fashion. In the station areas, there are 

currently far more jobs than dwelling units, causing an imbalance in the numbers of people 

living and working there. The jobs-housing balance is a metric used in the planning 

literature as an indicator of mixed uses (Ewing & Cervero, 2010). This balance increases, 

reflecting more mixed uses, under the LRRD scenario relative to BAU due to the 

relationship in the model between employment growth and immigration. The nonresidential 

demand stimulated by the light rail, combined with the expansion in capacity allowed by 

redevelopment, generates a sufficient employment gap to bring in higher numbers of 

residents. In addition, the unemployment rate drops, making the area more desirable and 

increasing net migration. With more people come more dwelling units. Neither the LR nor 

the RD scenario in isolation can achieve this effect. Although the jobs-housing balance 

increases slightly in the short-term in the LR scenario, it reverses course by 2035 as the land 

cap is reached and employment and population growth slows. In the RD scenario, the jobs-

housing balance declines between 2020 and 2040 because there is little more economic 

growth than in the BAU scenario; unemployment remains about the same as in BAU, and 

there is little new incentive for immigration. However, when the immigration of the LR 

scenario is combined with the higher allowable density of the RD scenario, sufficient 

numbers of new residents increase the jobs-housing balance, representing an increase in 

mixed uses.

Therefore, the interaction of the economic growth and transportation effects of a fixed light-

rail line combined with dense redevelopment better accomplishes the goals of the project. 

Without a light-rail investment, redevelopment is unlikely to succeed in achieving the project 

goals, such as economic growth, increased mobility, or compact, mixed-use development 

(Triangle Transit, 2012). This synergy between the two complementary scenarios is a 

finding that would not have been possible in a traditional sequential land use and 

transportation model setting without feedbacks among the land use, economy, and 

transportation sectors.
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5.2. How do redevelopment and light-rail transit interact to affect housing and 
transportation affordability?

The forecasted rise in housing costs following the construction of LRT confirms a main 

community concern – that with the benefits of light rail will come a reduction in 

affordability, potentially displacing longtime residents and those groups most likely to ride 

the rail – the less affluent and the transit-dependent (Horsch, 2015; Triangle Transit and 

TJCOG, 2013). In our model, one of the most significant factors affecting residential 

property values is land scarcity (Capozza et al., 2002), which in the LR scenario, drives up 

the cost of housing. Therefore, policy interventions that relieve pressure on land scarcity 

may have the largest mitigating impact on housing costs. The RD scenario achieves this in 

two ways: first, dense redevelopment, and second, a higher proportion of multifamily 

dwellings. This effect is obvious in the RD scenario, but in the LRRD scenario the 

mitigating effect of dense redevelopment is outweighed by (1) additional development 

sufficient to make land similarly scarce as in BAU, (2) the positive effect of rising incomes 

on property values, and (3) the relationship between higher average building sizes (FAR) and 

property values.

There is great interest in the potential for transit to lower transportation costs sufficiently to 

offset higher housing costs in transit-oriented developments (Center for Neighborhood 

Technology, 2010). In this case, our model projects that does not occur. In the LR scenario, 

transportation costs do drop relative to BAU, as residents are expected to drive less after the 

introduction of rail service. However, transportation costs make up only about 30% of total 

housing and transportation costs, so this drop cannot significantly offset the rise in housing 

costs. Furthermore, in the RD and LRRD scenarios, given our assumptions, transportation 

costs rise. Higher density is associated with higher parking costs, driving up average 

transportation costs per household by more than the savings produced by those choosing to 

take the light rail line instead. In the LRRD scenario, transportation-cost changes have 

relatively little impact on overall housing and transportation costs. Over the 20-year period 

between 2020 and 2040, cumulatively, including both renter housing and transportation 

costs, the average multifamily household in Tier 1 is projected to spend $14,250 more in the 

LRRD scenario than in BAU, or $713 more on average annually (Fig. 7).

There is some uncertainty in this result. Due to a lack of historical or projected data for 

renter and transportation costs, we validated model results for these variables indirectly by 

validating key inputs. Multifamily property value, the primary contributor to renter costs, 

was validated against historical data and had an R2 of 0.59 and an average absolute deviation 

of 3% (Table 1). We also ran sensitivity tests on three of the key contributors to renter 

housing and transportation costs: the effects of land scarcity and of building size on 

multifamily property value, and the effect of jobs per commercial acre on parking costs (Fig. 

9). The effects were varied along the estimated range of uncertainty, plus and minus 50%. 

Outputs are shown for renter costs, transportation costs, and the two combined. Though the 

magnitude varied, all tests found the same result: transportation costs were never lower than 

BAU, and therefore were not sufficient to offset housing cost increases.

Note, however, that these figures apply only to the average household. As the Center for 

Neighborhood Technologies has demonstrated with their Housing + Transportation Index 
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(2010), whether transit reduces transportation costs sufficiently to outweigh housing cost 

increases heavily depends on the characteristics of the household, including car ownership, 

location of residence, income bracket, and more. Because, in our model, transportation costs 

rise in the redevelopment scenarios primarily due to parking costs, the costs for households 

without a car would be much lower. To comprehensively address the effects of the rail on 

housing and transportation costs, disaggregation of households by car ownership and income 

brackets would be necessary.

While affordability still improves between 2020 and 2040 in the LRRD scenario, it suffers 

relative to BAU. Local employment and average incomes are projected to rise relative to 

BAU (Fig. 8). However, not only do household costs also rise, but they rise more than 

average incomes, relative to BAU. This finding confirms community concerns regarding 

affordability and corroborates the need for an emphasis on expanding subsidized and 

workforce housing in the station areas. Not only is this an issue of equity, but also one of 

ridership. Lower income populations are more likely to be transit-dependent and therefore to 

become regular riders of the light rail line. Economic growth attracts wealthier residents and 

worsening affordability may force a disproportionate number of transit-dependent residents 

to leave, decreasing ridership. In our model, by 2040, the percent of households with zero 

cars is 3 percentage points lower in LRRD than in BAU. While local governments’ ability to 

control the affordability of housing is limited, policies to encourage density and the 

construction of multifamily housing may help keep housing costs down, not only by 

providing more affordably sized homes, but also by relieving the pressure of land scarcity on 

property values. Conversely, raising the minimum wage would improve affordability in the 

face of rising costs. Our model approach provides an opportunity to test the impact of such 

changes, and view the new equilibriums achieved.

5.3. Limitations of the model and research gaps

The D-O LRP SD model has several limitations. First, the model is not spatially explicit 

beyond the two urban-scale tiers discussed. Therefore, redevelopment is portrayed only as 

densification; we cannot determine the extent to which land use patterns such as clustering 

may impact outcomes. Second, density in our model is a policy input. WHILE this is 

intentional, to allow planners and stakeholders to test the impact of varying levels of 

compact development, it means density is not driven by internal mechanisms. Therefore, the 

model cannot be used to determine how concentration of development in the city center 

affects development at the periphery. Finally, relationships in the model are governed by the 

best available literature, but, in many cases, such as elasticities governing property values, 

uncertainty is high. In these cases, sensitivity analyses of the key relationships help address 

this problem by evaluating the impact of the uncertainty and providing a range of results. 

Nonetheless, model results present the best available estimate of magnitude and direction of 

change, but should not be considered predictive.

There is a need for further research to disaggregate population subgroups, such as by vehicle 

ownership and income brackets, to make it possible to model household costs and 

displacement more accurately. In addition, more localized and verified elasticities with 

respect to property values and transportation costs would improve model accuracy and 
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confidence. Finally, there is a need for research to determine transferability of the model 

structure to other cases.

6. Conclusions

The D-O LRP SD model can help identify the mutually reinforcing relationships between 

compact development and transit investments and their socio-economic benefits and 

tradeoffs. Our results strongly indicate that transit investment and compact development 

combine synergistically to better achieve many of the goals of the LRT project, including 

economic development, improved mobility, and compact, mixed-use development. 

Nonetheless, the combined scenario does increase housing costs the most, suggesting a need 

for an effort to address affordability if both the light rail line and dense redevelopment are 

pursued.

The D-O LRP SD model fills a gap in integrated modeling for urban planning and provides 

an example of how spatially aggregated SD models can complement current land use and 

transportation model used in the urban planning process. Traditional models, while essential, 

are very data- and time-intensive, and therefore make it more difficult to connect land use 

and transportation decisions to economic, social, or environmental endpoints, much less 

allow those impacts to feed back and affect land use and transportation indicators, as occurs 

in this model. Furthermore, while traditional methods of stakeholder interaction tend to be 

more qualitative, our approach provides a quantitative tool for planners to assess the social, 

economic, and environmental outcomes of a range of possible policy and demographic 

scenarios. Feedbacks ensure that economic and social indicators are not only outcomes, but 

also impact land use and transportation. Outputs for each year of the model run allow users 

to calculate cumulative impacts and assess nonlinear responses. Because the inputs and 

assumptions are quickly and easily modified on the fly, the model can be used as a tool for 

education and consensus-building with stakeholders and the public. Finally, the model 

provides a prototype for how similar models could be constructed to suit other cases around 

the world.
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Fig. 1. 
Map of study area.
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Fig. 2. 
Simplified CLD of the D-O LRP SD Model with core sectors (blue) and output-oriented 

sectors (yellow).
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Fig. 3. 
Multifamily property value per DU in BAU scenario compared to historical data 2000–2014 

in Tier 1. R2 of 0.59 and average absolute percent deviation of 3%.
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Fig. 4. 
Percent difference from BAU in 2040 at Tier 1 for Light Rail, Redevelopment, and Light 

Rail + Redevelopment scenarios.
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Fig. 5. 
Developed land as a percent of available land 2000–2040 in Tier 1 for BAU, RD, LR, and 

LRRD scenarios.
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Fig. 6. 
Percent change in person miles by mode 2020–2040 in Tier 1 for BAU, Redevelopment, and 

Light Rail + Redevelopment scenarios.
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Fig. 7. 
Cumulative costs (2010 dollars) 2020–2040 relative to BAU in Tier 1 per multifamily 

household for LR, RD, and LRRD scenarios.
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Fig. 8. 
Percent change in affordability measures 2020–2040 in Tier 1 for BAU and LRRD 

scenarios.
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Fig. 9. 
Sensitivity of housing and transportation costs to key assumptions.
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Table 2

Summary of Primary Variables in the Land Use and Equity Sectors.

Variables Categories of disaggregation Main variables driving changes

Land (in acres) Vacant, Agricultural, Protected Open Space, 
Right of Way, Retail, Office, Service, Industrial, 
Single Family, Multifamily

Dwelling Units and Developed Nonresidential Floor Area (in 
square feet)

Dwelling Units Single Family, Multifamily Population, Vacancy rate

Developed Nonresidential 
Floor Space (in sq ft)

Retail, Office, Service, Industrial Employment (disaggregated by the same categories)

Property value Single Family Lot size, available land, income growth, commute time, retail 
density, population growth, job density

Multifamily Building size, available land, income growth, commute time, 
retail density, population growth, job density

Nonresidential Building size, retail density, employment growth

Renter costs n/a MF property value per DU, MF vacancy rate, GRP growth 
rate

Transportation costs Fuel cost per VMT, Vehicle ownership and 
maintenance costs, Parking costs, Transit costs

Price of gasoline, MPG, Vehicle stock, Parking price, Public 
transit fare price
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Table 3

List of Exogenous Variables in the Land Use and Equity Sectors.

Exogenous variables

Numerical inputs Policy interventions and demographic shifts

Birth and death rates Redevelopment of developed land to higher densities

Effect of developed portion of residential land on migration Light rail line construction

Effect of unemployment on net migration (Tier 1 only) Residential densities (for new construction)

Employee space ratios (by employment category) Floor area ratios (by land use type, for new construction)

Percent of people in households Public transit fare price

Average lifetime of dwelling units Parking cost of average trip

Percent second homes Price of gasoline

Effect of vacancy on the demand for dwelling units Miles per gallon without congestion

Impervious surface coefficients Earning per employee (by employment category)

Elasticities governing property values Subsidized dwelling units

Elasticities governing renter costs Percent of people in single family dwelling units

Percent of MF dwelling units below 75 percent of median renter costs Household sizes

Poverty threshold
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