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Abstract

Spatial data are playing an increasingly important role in watershed science and management. 

Large investments have been made by government agencies to provide nationally-available spatial 

databases; however, their relevance and suitability for local watershed applications is largely 

unscrutinized. We investigated how goodness of fit and predictive accuracy of total phosphorus 

(TP) concentration models developed from nationally-available spatial data could be improved by 

including local watershed-specific data in the East Fork of the Little Miami River, Ohio, a 1290 

km2 watershed. We also determined whether a spatial stream network (SSN) modeling approach 

improved on multiple linear regression (nonspatial) models. Goodness of fit and predictive 

accuracy were highest for the SSN model that included local covariates, and lowest for the 

nonspatial model developed from national data. Septic systems and point source TP loads were 

significant covariates in the local models. These local data not only improved the models but 

enabled a more explicit interpretation of the processes affecting TP concentrations than more 

generic national covariates. The results suggest that SSN modeling greatly improves prediction 

and should be applied when using national covariates. Including local covariates further increases 

the accuracy of TP predictions throughout the studied watershed; such variables should be 

included in future national databases, particularly the locations of septic systems.
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INTRODUCTION

Spatial data and analyses are playing an increasingly important role in natural resource 

management, particularly in a watershed context. Spatial analysis of watersheds is 

continually being developed and implemented to identify impacts on water quality or 

ecosystem health (Strayer et al., 2003), prioritize conservation and restoration (Flotemersch 

et al., 2015), and predict the potential impacts of climate change and disturbance on 

watersheds (Isaak et al., 2010). Such studies are often supported by data in geographic 

information systems (GIS) produced by government natural resource or environmental 

agencies at the national or international level. Examples of such databases include the 

National Hydrography Dataset Version 2 (NHDPlus v2), a geospatial framework of 

streamlines, waterbodies, catchments, and associated attributes throughout the United States 

(McKay et al., 2012); the equivalent Australian Hydrologic Geospatial Fabric, or Geofabric 

(Bureau of Meteorology, 2015); and the National Land Cover Database (NLCD), which 

provides descriptive gridded spatial data in thematic classes such as urban, forest, and 

agriculture throughout the United States (Homer and Fry, 2012). Some of these data have 

been further refined and summarized to increase their compatibility with other analysis tools 

or packages; for example, the National Stream Internet (NSI; Nagel et al., 2015) and the 

StreamCat database (Hill et al., 2015). The large investment in these national and 

international spatial databases is aimed at providing standardized, readily available data 

coverages across large spatial extents. Spatial data and GIS are often used in watershed 

analyses for three broad types of studies: description of the watershed; estimation of 

relationships between a sampled response variable and land cover or land use covariates; and 

spatial prediction of a response variable at unsampled locations along the stream network. 

Within each of these types of studies numerous watershed aspects have been described and 

mapped, such as hydrogeomorphic patches (Williams et al., 2013) or watershed integrity 

(Flotemersch et al., 2015); and equally numerous response variables have been modeled and 

predicted, such as water chemistry (Johnson et al., 1997; Peterson et al., 2006; Zampella et 
al., 2007), temperature (Isaak et al., 2010), or biotic condition (Frieden et al., 2014). Such 

studies often require intensive geoprocessing and statistical analyses; thus, having 

nationally- or internationally-available spatial data ready to use in these endeavors can save 

considerable time and money. Additionally, standardization of spatial data across databases 

and custodians enables valid comparisons among such studies to be made. However, national 

and international spatial databases often contain relatively general sets of variables (e.g., 

land use, elevation, soil type), and local watershed applications, such as nutrient modeling, 

can be improved by including additional covariates specifically available within that 

watershed (e.g., septic systems and other point source nutrient loads; Sferratore et al., 2005).

With nationally- and internationally-available spatial databases being used for an 

increasingly broad range of objectives, their relevance and effectiveness for specific 

applications requires some scrutiny. While readily available spatial data coverages empower 

users across all levels of research and governance, they must be used with some caution in 

specific applications. In studies of lakes throughout the United States, for example, lake-

specific variables are known to produce significantly improved predictive models of water 

quality and trophic state than models based on nationally-available spatial covariates alone 
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(Read et al., 2015; Hollister et al., 2016). Thus, while national databases enable prediction of 

response variables in lakes lacking in situ data, these predictions can be greatly improved 

with additional data not currently available nationally. In a watershed context, however, the 

effectiveness of nationally-available spatial databases for nutrient modeling in stream 

networks remains largely unscrutinized.

Improvements to traditional statistical modeling and prediction of response variables in 

watersheds have recently been reported through the use of spatial stream network (SSN) 

models (Frieden et al., 2014; Isaak et al., 2014). SSN models incorporate covariates along 

with spatial autocovariance in the response variable to potentially improve upon multiple 

linear regression in stream networks (Ver Hoef et al., 2006). SSN models can also reduce 

prediction errors at unsampled locations by incorporating nearby, correlated observations 

into the prediction (Ver Hoef and Peterson, 2010). SSN modeling has been applied to a 

variety of response variables observed through monitoring programs. Examples of biological 

response variables used in SSN modeling have included proportion of native fish expected 

and macroinvertebrate indices (Peterson and Ver Hoef, 2010; Frieden et al., 2014). Stream 

water temperature and stream chemistry, such as pH, conductivity, concentrations of nitrate, 

sulfate, and dissolved organic carbon have also been modeled (Peterson et al., 2006; Garreta 

et al., 2010; Isaak et al., 2010; Ver Hoef and Peterson, 2010). Spatial autocorrelation has 

been shown to exist in in-stream phosphorus concentration (Dent and Grimm, 1999; 

McGuire et al., 2014), suggesting that SSN modeling would also be useful in this context 

(Hagy, 2015).

Several variables in nationally-available spatial databases have proved to be significant 

covariates or predictor variables in SSN models. For example, the covariates used by 

Peterson et al. (2006) included watershed area and percentages of high intensity urban, low 

intensity urban, row crop, and coalmine, with those percentages of land cover derived from 

Multi-Resolution Land Characterization (Mercurio et al., 1999). Besides land cover, other 

covariates from nationally-developed databases used in SSN models have included 

percentages of particular rock types in a watershed, mean slope, and categorization of sites 

based on Ecosystem Health Monitoring Program regions or ecoregions (Peterson et al., 
2006; Peterson and Ver Hoef, 2010; Ver Hoef and Peterson, 2010). However, the relevance 

and effectiveness as model covariates of spatial data from national and international 

databases largely depends upon the specific response variable of interest. While nationally-

available covariates have proved effective for modeling certain physical parameters and 

biotic indices, national databases do not currently contain complete data on point source 

covariates (e.g., septic systems and waste water treatment plants) known to affect stream 

nutrient concentrations, particularly phosphorus (Sferratore et al., 2005; Withers and Jarvie, 

2008). Although, summaries of reported pollutant discharges from some permitted facilities 

are publicly available throughout the United States (e.g., the U.S. EPA’s Discharge 

Monitoring Report Pollutant Loading Tool; U.S. EPA, 2016a).

Along with increasingly available spatial data coverages and a push for more spatially 

explicit modeling in watersheds, more and more observed response data from a broad range 

of monitoring programs are also becoming available. The response data can come from 

existing monitoring programs (Peterson et al., 2006; Isaak et al., 2010) or studies 
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specifically designed for SSN modeling (Frieden et al., 2014; Som et al., 2014). Because of 

the spatial dependencies among monitoring sites inherently necessary for SSN modeling, the 

sampling design of such studies influences the statistical analysis approaches that can be 

adopted (McDonnell et al., 2015) and possibly the validity of the inferences made from their 

results. Using or combining data from probabilistic and targeted (non-probabilistic) surveys 

can further complicate analyses and inferences (Maas-Hebner et al., 2015). Thus, careful 

exploratory data analysis and study design are imperative in SSN modeling applications.

The convergence of national spatial data sets, emerging analytical tools, and increasing 

amounts of monitoring data is at the forefront of widespread spatial investigations of 

watersheds. While these developments afford novel research avenues to scientists, 

uncertainty exists around their effectiveness for watershed-specific applications, and the 

implications of using national spatial data sets and new techniques for stream nutrient 

modeling should be examined. Our objective is to determine whether improvements to a 

predictive model of in-stream phosphorus concentration using nationally-available spatial 

covariates can be achieved by including additional locally-derived covariates and adopting 

an SSN modeling approach. We examine natural and anthropogenic influences on our 

response variable of median total phosphorus (TP) concentration in streams, and develop 

models using covariate coverages that are nationally-available throughout the United States 

and free of charge, as well as using additional covariate coverages that are highly specific to 

our study area and were costly to assemble. In particular, we ask two research questions: 1) 

Do models derived from national covariate coverages predict TP concentrations as well as 

those that include additional local coverages? 2) Do models derived using the SSN approach 

predict TP concentrations better than those based on a more traditional multiple linear 

regression approach? We also discuss approaches to SSN study design and validation of 

SSN models, as well as their effect on inferences gleaned from the results. Finally, we make 

a brief comparison to SPAtially Referenced Regression On Watershed attributes 

(SPARROW) that has also been used to make predictions of TP concentration in this 

watershed.

STUDY AREA

This study was conducted using data obtained from streams in the East Fork of the Little 

Miami River watershed in southwestern Ohio, USA. The East Fork is a major tributary of 

the Little Miami River, which in turn discharges into the Ohio River approximately 6 km 

east of downtown Cincinnati (Fig 1). The East Fork watershed is approximately 1,290 km2 

in area and the river has a mean annual discharge of 16.3 m3/s at its mouth. The highest 

elevation in the East Fork watershed is 365 meters above sea level (m.a.s.l.), while the river’s 

confluence with the Little Miami is at 149 m.a.s.l. The East Fork watershed is comprised of 

two Level IV Ecoregions (U.S. EPA, 2016b): the Loamy High Lime Till Plain and the Pre-

Wisconsonian Drift Plain. Soils in the till plain, in the uppermost part of the watershed (Fig 

1), are more permeable and less erodible than those in the drift plain, which is known to 

affect stream nutrient concentrations in this area (Daniel et al., 2010). Till plain soil types 

are abundant in the till plain itself but also extend into the drift plain, mainly along valley 

bottoms (Fig 1). Land use in the East Fork watershed is dominated by row crop agriculture, 

which occupies 55% of the total area, primarily in the upper two-thirds of the watershed. 
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Deciduous forest occupies 32% of the watershed area, mainly in a transition zone between 

the agriculturally-dominated upper part and the urban-dominated lower part. Urban 

development occupies 12% of the watershed. Approximately 17,400 septic systems are also 

known in the East Fork watershed. One major reservoir exists along the main stem of the 

East Fork—Harsha Lake—with a surface area of 8.7 km2 and maximum depth of 34 m. 

Harsha Lake is used for recreation and as a water source for a Clermont County-operated 

drinking water treatment plant (Karcher et al., 2013). Two smaller reservoirs—Stonelick 

Lake and Lake Lorelei—also occur on tributaries of the East Fork. There are 28 pollutant 

discharge permits authorized under the National Pollutant Discharge Elimination System 

(NPDES) permit program in the East Fork watershed (Fig 1). NPDES permits are distributed 

to industrial, municipal, and other facilities that are permitted to discharge pollutants from 

discrete point sources directly into surface waters.

Methods

Study design and geoprocessing

Median total phosphorus concentration (TP) was calculated at 105 monitoring sites 

throughout the East Fork stream network from multiple sampling visits (median of 5 visits 

with a minimum of 3 and maximum of 88) between June 26th and September 11th, 2012. 

Monitoring of these sites was conducted by either the U.S. or Ohio Environmental 

Protection Agency (EPA), or both, following each agency’s standard phosphorus sampling 

protocols (Nietch, 2006; Ohio EPA, 2009). The U.S. EPA established a nutrient monitoring 

program in the East Fork beginning in 2006 as part of a case study for watershed 

management research and development. The U.S. EPA routine stream monitoring sites range 

from headwaters to the main stem, and were established to capture land use variation and 

account for spatial nesting within tributary networks. The sites are sampled year-round with 

some sites visited daily, others weekly, and others every three weeks. The goal of the U.S. 

EPA monitoring is to assess long-term trends in nutrient chemistry at a system scale. The 

OHEPA sites, on the other hand, were established as part of the 2012 East Fork Watershed 

assessment for the State’s required 303D reporting. The OHEPA watershed water quality 

assessment targets the low-flow conditions of streams in the region, corresponding to the 

conditions during which WWTPs in the system could be having the greatest impact on water 

quality. To combine the information collected from the two programs we limited the data 

obtained from the U.S. EPA program to only the period when OHEPA was sampling in the 

system. The sampling schemes of both programs more readily capture base flow conditions. 

Eighty-five of these sites were used in the construction of statistical models (called modeling 

sites in Fig 1), while 20 sites were selected using a spatially-balanced random sample (Olsen 

et al., 2012) and withheld from the models for validation (called validation sites in Fig 1). A 

further 779 sites were included in the study for prediction, which were obtained from the 

NSI data set (Nagel et al., 2015).

Two sets of covariates were used for statistical modeling of median TP concentration. The 

first, from here on referred to as the ‘national’ data set, included 14 covariates for which 

spatial data coverages are freely available throughout the entire conterminous United States. 

These included nine landscape variables, four land use variables, and one point source 
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variable, which were hypothesized to affect TP in streams throughout the watershed (Table 

1). Watershed area was used as a surrogate for discharge because discharge data were not 

available at every sampling and prediction site used in the study. In addition to the national 

landscape and land use variables, three additional covariate coverages (referred to as ‘local’) 

were available in the study area. These were the location of septic systems throughout the 

watershed, as well as the TP load and average TP concentration of releases from all 

wastewater treatment plants (WWTP) in the watershed during 2012. A layer of septic 

locations throughout the watershed was created from GIS data and parcel numbers obtained 

from the five County Health Departments within the watershed.

The Discharge Monitoring Report (DMR; U.S. EPA, 2016a) Pollutant Loading Tool is a 

national database that does provide TP concentration, and other water quality measurements, 

from many NPDES permit holders, such as waste water treatment plants. However, given 

our local knowledge of the dischargers in the watershed we were aware that several of the 

WWTPs monitored TP concentration as frequently as weekly, but the DMR tool at best 

contains monthly values or averages. To access the most data available on WWTP 

discharges we asked a partner at the Ohio EPA to request a data retrieval on our behalf from 

an in-house electronic DMR database (Paul Gledhill, Modeler, Surface Water Division, Ohio 

EPA, March 18, 2014). The delivered data was the same base information as is contained in 

the national DMR tool, but instead of monthly averages for several of the plants the data 

from the Ohio EPA included the weekly values reported at select WWTPs. Using the data 

from Ohio EPA, we were able to handle multiple permitting requirements to obtain daily 

WWTP TP concentrations and loads. All WWTPs in the watershed are required to report 

discharge, ammonia concentration, and total suspended solids (TSS); however, several plants 

do not have a reporting requirement for TP concentration, while others do. For the plants 

that do have to monitor TP concentration, we used generalized linear modeling (GLM) to 

interpolate daily TP concentrations as a function of ammonia, discharge, and TSS. We also 

tested for a seasonal effect, which was significant, and, therefore, also included it in the 

GLM. The model used to interpolate daily TP data was then used in a predictive mode to 

obtain values for WWTPs that don’t have a TP reporting requirement or only are required to 

report TP on a monthly or quarterly basis. The daily interpolated or estimated data was 

required to parameterize a watershed loading model as part of another project (Karcher et 
al., 2012). For this study, the daily TP loads were summed for each point source to get an 

annual TP load for 2012. This was divided by the summed daily discharges to get an average 

TP concentration for each point source for 2012. WWTP TP loads and concentrations were 

calculated for the entire year (2012) rather than for the sampling period (June–September) in 

order to gain some measure of the continued long-term input of TP from wastewater, which 

likely has lagged effects on in-stream TP concentrations. We chose to include only the 

location of NPDES discharge permits in the national model because using data available on 

the DMR tool would introduce caveats regarding the completeness of this database 

nationally, although we acknowledge its potential utility in other studies. Thus, the point 

source variables differed between our national and local data sets in that only the location of 

a discharge permit was included for the national, whereas actual release loads and 

concentrations for all WWTPs were included for the local.
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Each areal covariate was hypothesized to influence TP in the watershed in a particular 

spatial manner (Diebel et al., 2009; Frieden et al., 2014). Thus, the spatial treatment of each 

areal covariate was selected a priori (Table 1), following initial exploratory spatial data 

analysis. Those covariates that were widespread throughout the watershed and hypothesized 

to have cumulative effects downstream were treated in a ‘cumulative watershed’ manner; 

that is, the total area or amount of that particular covariate in the subwatershed contributing 

to any reach on the stream network. Those covariates that were patchily distributed 

throughout the watershed and hypothesized to have more localized effects were treated in a 

‘proportion of Reach Contributing Area (RCA)’ manner; that is, the proportion of the 

adjacent catchment area contributing directly to an individual reach (RCA) (Peterson and 

Ver Hoef, 2014), and not the entire subwatershed above the reach. Reaches were delineated 

according to stream segments in the NHDPlus v2 (McKay et al., 2012). Septic systems were 

treated in a cumulative watershed manner and as a density in the cumulative watershed, 

because of their hypothesized potential to influence TP concentration in a diffuse manner 

(Arnscheidt et al., 2007; Withers and Jarvie, 2008), as well as the known effects of septic 

densities on other water quality parameters in the East Fork watershed (Peed et al., 2011; 

Schenck et al., 2015). The septic data available were areal, as opposed to point data, with 

each septic system occupying one or several 10 m2 raster grid cells, depending upon its size. 

Because of this, our septic density covariate has the units of cumulative septic area (km2) 

divided by cumulative watershed area (km2). Till plain soils in the upper part of the 

watershed, as well as soils occurring predominantly in valley bottoms, were treated as 

presence/absence because of the large number of zero values throughout the watershed, 

which makes transformation of the distribution of continuous variables to approximate 

symmetry difficult. Discharge permits were also treated as presence/absence in the national 

data set. Waste water treatment plant TP loads and concentrations in the local data set were 

accumulated from their point source downstream. Release loads were ‘reset’ below the 

Harsha Lake reservoir; that is, WWTP TP releases upstream of the Harsha Lake were 

accumulated to the reservoir but did not continue to accumulate downstream of the dam. 

This was done to account for the nutrient ‘sink’ effect of the reservoir. TP load and average 

concentration released from the Harsha Lake dam were known and included as the initial 

values for point source accumulation downstream of the dam, to account for dam releases as 

a ‘source’ of nutrients. Thus, Harsha Lake was considered to act as both a source and sink of 

TP in the watershed.

A total of 1,311 km of digital stream network was analyzed throughout the East Fork 

watershed. The stream network was initially reconditioned from the NHDPlus v2 to ensure 

only a single streamline existed for each reach (users can now download such reconditioned 

streamlines directly from the NSI (Nagel et al., 2015) for the entire conterminous United 

States). The stream network was then converted to a topologically constructed ‘landscape 

network’ (LSN) using the STARS 2.0.1 toolbox (Peterson and Ver Hoef, 2014) in ArcGIS 

10.2.2 (ESRI, 2014). This type of LSN is a geodatabase that contains the topological 

relationship information among all segments in a stream network, including flow direction, 

via a number of relationship tables (Peterson and Ver Hoef, 2014). All national and local 

covariates were then attached to their respective LSN along with the 85 observation sites, 20 

validation sites, and 779 prediction sites, according to the methods outlined by Peterson 
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(Peterson, 2014). The NHDPlus v2 provides additional watershed attributes for each stream 

segment; however, the local covariates used in this study required manual processing, so the 

national covariates were also manually processed for consistency. Once the geoprocessing 

was completed, each LSN was exported as a .ssn file object, using the STARS 2.0.1 toolbox, 

for use in the SSN package in R Statistical Software version 3.2.0 (Ver Hoef et al., 2014; R 

Core Team, 2015). The final .ssn file objects used in this study are provided as supporting 

information (S1). All exploratory analysis and model selection and evaluation subsequent to 

the geoprocessing was performed in R and the outputs are provided as supporting 

information (S2).

Statistical analyses

Initial model selection for both the national and local data sets (from here on referred to as 

the ‘nonspatial’ models) was conducted using best-subsets multiple linear regression on log-

transformed covariates and the response variable. Best-subsets regression (BSR) (Furnival 

and Wilson, 1974) was used because severe multicollinearity of the set of available 

covariates made other variable selection procedures untenable. The ‘best’ set of covariates 

was selected for each data set using Akaike’s Information Criterion (AIC), with a maximum 

of six covariates being allowed in each model to avoid overfitting. Although AIC can overfit 

compared to some other penalized goodness of fit measures, only AIC was readily available 

for the SSN models. Therefore, for consistency, AIC was used for model selection and 

comparison throughout.

Where categorical variables occurred in the six best covariates, interaction terms were 

included and BSR was repeated to determine the best set of covariates including 

interactions, again based on AIC. The inclusion of interaction terms required that the first 

order terms in the interaction also be included in the model, whether or not they were in the 

initial BSR selection. In addition, because of the high multicollinearity in the covariate set 

and the accompanying high correlation of the coefficient estimates, the regression coefficient 

table p-values (Wald test) sometimes indicated that the covariates selected by BSR were not 

significant. Standard diagnostic procedures were conducted to validate the final nonspatial 

models including various residual plots, influence plots, and added-variable plots (Fox and 

Weisberg, 2011) as shown in the supporting information (S2).

Generalized variance inflation factors (GVIF; Fox and Weisberg, 2011) for the variables 

(and interactions) indicated multicollinearity in the predictors; however, the variance 

inflation observed in these models would not affect the ability of the models to predict 

(Shmueli, 2010), which was our primary objective. Other dimension reduction techniques, 

principal components regression (PCR) and canonical correlations regression (CC), were 

considered. These methods eliminate the multicollinearity problem by creating predictors 

that are uncorrelated (only in a pure statistical sense, not in a spatial sense) linear 

combinations of the full set of available explanatory variables. However, these do not 

identify the variables that are important to the processes being studied and eliminate those 

that are not. Since this is a scientific study, prediction models must be validated based in part 

on whether the selected variables make sense scientifically.

Scown et al. Page 8

J Am Water Resour Assoc. Author manuscript; available in PMC 2018 August 01.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



Spatial stream network modeling was then conducted for the national and local data sets 

(from here on referred to as the ‘spatial’ models) using the final set of covariates and 

interactions from the nonspatial models. SSN modeling includes any combination of 

upstream and downstream spatial autocovariance models and parameters among sites along 

the stream network, as well as autocovariance parameters in Euclidean (landscape) space. 

Spatial autocovariance is quantified by the selected model type, range, and partial sill of the 

semivariogram of the response variable, which is estimated using a moving average 

approach in SSN modeling (Peterson and Ver Hoef, 2010). The ‘best’ set of autocovariance 

parameters to include in the spatial models, along with the nonspatial model covariates and 

interactions, was determined based on AIC. Standard diagnostic procedures were then 

conducted to validate the final spatial models for the national and local data sets (S2).

Because the models were fitted using least squares and generalized least squares (spatial 

models), the normal distribution for errors was not automatically assumed. The leave-one-

out cross-validation (LOOCV) studentized residuals from the 85 modeling sites and the 

standardized residuals at the 20 validation sites were fit very well by the normal distribution. 

However, the predictive distribution at the 20 validation sites in the original scale is of 

primary importance. Accordingly, the ratios in the original scale of the observed to the 

predicted (exponentiated log-scale predictions) were examined. They were fitted by 

lognormal, Gamma, Weibull, and normal distributions. In each case the appropriate 

distribution was selected using AIC. The median predicted value, prediction standard error, 

and 90% prediction interval were subsequently back-transformed to the original scale based 

on the appropriate distribution.

Multiple criteria for model evaluation were used to compare the performance of the four 

final models: the national nonspatial and spatial, and the local nonspatial and spatial. 

Goodness of fit comparisons were based on AIC and decomposition of model variance 

components for the national and local models. Prediction accuracy was compared using the 

Root Mean Square of the Percent Prediction Error (RMSPPE) and the width of the 90% 

prediction interval as a percentage of the median prediction averaged among the 20 

validation sites. The latter is conceptually similar to a coefficient of variation. The signed 

prediction error (prediction minus observation) expressed as a percentage of the median 

prediction was also calculated for each of the 20 validation sites.

Results

Adding the local covariates representing potentially important sources of phosphorus from 

septic systems and WWTPs to the covariates in the national data set produced different 

predictive models for TP concentration in the East Fork watershed. When the local 

covariates were included the multiple linear regression (MLR) model explained more of the 

variance in median TP concentration with an adjusted R2 = 0.552 compared to an adjusted 

R2 = 0.483 with the national covariates. A set of four covariates and two interactions 

produced the ‘best’ model from the national data set, while a set of five covariates and three 

interactions emerged when local covariates were included (Table 2). Both cumulative septic 

area and WWTP TP loads were significant covariates in the local model, whereas septic 

density did not emerge as a significant covariate. Furthermore, the inclusion of septic 
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systems and WWTP TP loads in the data set resulted in a different set of covariates that were 

significant for predicting TP concentration. In particular, watershed area, low (0–2%) slope 

area, and Clermont soils were not significant after the septic and WWTP covariates were 

included, whereas agriculture and Rossmoyne soils were (Table 2).

The coefficients of the significant covariates in the model fit from the national data set 

suggested that with an increase in watershed area and in the presence of till plain soils there 

is a decrease in median TP concentration (Table 2). The interaction between Clermont and 

till plain soils further decreased median TP concentration, although the effect was smaller 

than that of till plain soils alone, suggesting that as the area of Clermont soils increases, the 

effect of till plain soils on lowering median TP concentration is reduced. Clermont soils 

alone did not have a significant effect on median TP concentration. The interaction of low 

slopes with till plain soils significantly increased median TP concentration in the models fit 

with the national data set (Table 2). In the models fit with the local covariates included, 

cumulative septic area significantly increased median TP concentration, as did WWTP TP 

load in the presence of till plain soils (Table 2). Agricultural area also significantly increased 

median TP concentration in the local models; however, the interaction between agricultural 

area and the presence of till plain soils reduced median TP concentration (Table 2). 

Increasing area of Rossmoyne soils significantly reduced median TP concentration in the 

model fit with the local covariates included, whereas this covariate was not significant in the 

model fit from the national data set only. Coefficient estimates varied only modestly and 

consistently between the nonspatial and spatial models for the national and local covariates.

Spatial stream network modeling revealed that spatial autocovariance existed among 

samples of median TP concentration in the East Fork watershed. The autocovariance 

structure was best explained by a linear-with-sill tail-up autocovariance model (see Ver Hoef 

et al., 2006 for details). This type of autocovariance model suggests that median TP 

concentration at a site is related to median TP concentration at sites upstream, and that this 

relationship weakens with distance upstream in a linear manner. The range over which 

spatial autocovariance existed in median TP concentration (i.e., the distance at which the 

‘sill’ or maximum variance among pairs of sites was reached) was approximately 25 river 

km, with the maximum downstream travel distance in the watershed being around 135 river 

km.

In terms of goodness of fit, the spatial model outperformed the nonspatial model, which 

assumes median TP concentration samples are not spatially autocorrelated, using the 

national data set and when the local covariates were included. Based on AIC, the ‘best’ 

model was the local spatial followed by the local nonspatial, national spatial, and national 

nonspatial. For the model fitted from the national covariates AIC was reduced by 9.6 points 

and the nugget, or unexplained variance, declined from 0.480 to 0.139, representing a 71% 

reduction, by including spatial autocovariance parameters in the model (Table 2). In fact, 

more of the variance in median TP concentration was explained by the autocovariance 

structure (in-stream spatial covariance) than by the covariates in the national spatial model. 

Similarly, in the model fit from the data set that included the local covariates AIC dropped 

by 1.2 points and the nugget was reduced by 47%, from 0.405 to 0.214, by including spatial 

parameters. The amount of variance in median TP concentration explained by the covariates 
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(equivalent to the generalized R2 in MLR) also decreased by including autocovariance 

parameters for both the national and the local models (Table 2). This suggests that nonspatial 

models may be artificially inflating the amount of variance in median TP concentration that 

is being explained by the covariates because spatial autocorrelation inherent in the stream 

network is not being accounted for; that is, the assumption of independence among samples 

is being violated.

In terms of prediction accuracy, the nonspatial and spatial models fit from the data set that 

included the local covariates predicted median TP concentration more accurately than the 

national models. RMSPPE among the 20 validation sites was lowest for the local spatial 

model followed by the local nonspatial, national spatial, and national nonspatial (Table 3). 

However, all RMSPPE values were high, ranging from 89 to 106% (Table 3). These high 

RMSPPEs appeared to be related to two outliers, sites CWL and 200497, which had 

observed median TP concentration much higher than predicted in all four models (Fig 2). 

Removal of these two outliers reduced the RMSPPE from 106 to 56% for the national 

nonspatial, from 94 to 50% for the national spatial, from 93 to 48% for the local nonspatial, 

and from 89 to 48% for the local spatial model. Site M04S16 also had a much higher 

predicted median TP concentration than observed in the national models, although it did not 

fall outside of the 90% prediction interval (Fig 2a and b).

Predicted median TP concentration values were generally close to those observed up to 

around 0.2 mg/L in all four models, with the 90% prediction intervals being relatively tight 

in this prediction range (Fig 2). However, there was a substantial increase in the width of the 

90% prediction intervals as median predictions increased, particularly in the models fitted 

from the national data set (Fig 2a and b). This increase in prediction intervals was associated 

with fewer extreme values in the modeling data set; in particular, site CWL had the highest 

observed median TP concentration of any of the 105 monitoring sites but was withheld from 

the modeling, by chance, in selection of the validation data set. However, by including 

specific local covariates in the models the prediction intervals at high prediction values were 

greatly improved and no sites were extremely over-predicted (Fig 2c and d). Inclusion of 

spatial autocovariance parameters also improved prediction accuracy at sites with high 

observed median TP concentration. In particular, median TP concentration at site M04S29, 

located near the mouth of the river, was accurately predicted in both spatial models but 

under-predicted in both nonspatial models (Fig 2). The averages among the 20 validation 

sites of the width of the 90% prediction interval as a percentage of the predicted value were 

smaller for the local models than for the national models, as well as being 11% smaller in 

the spatial model than the nonspatial for the national data set (Table 3).

Discussion

Model evaluation and prediction using national and local covariates

Nationally-available spatial databases are increasingly being utilized in watershed science 

and management in the United States and other countries. Our results suggest that while 

covariates from these databases (e.g., the NLCD) can be used to produce reasonable 

statistical models of nutrients in stream networks (TP concentrations in this study), the 

inclusion of additional covariates that are not currently available nationwide, specifically the 
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locations of septic systems and the TP load released from WWTPs, improves both model fit 

and prediction accuracy. Sferratore et al. (2005) found that global land use and lithology data 

could be used to correctly predict watershed nutrient fluxes from diffuse sources, but that 

prediction accuracy was sensitive to knowledge of the distribution of point sources of 

nutrients, particularly for phosphorus. Our results also indicate that knowledge of local point 

sources improves models of TP concentration. Although our analysis covered only one 

watershed, septic systems and WWTPs represent explicit sources of phosphorus. Therefore, 

it is reasonable to suggest that were these covariates available nationally, the effectiveness of 

these databases for stream network modeling of nutrients in the United States would be 

greatly improved. Given the relevance of predicting nutrient concentrations to water quality 

management everywhere, future iterations of these databases should aim to include such 

covariates. While databases exist nationally on the location of discharge permits and annual 

discharge summaries of some facilities (e.g., the U.S. EPA’s Discharge Monitoring Report 

Pollutant Loading Tool), these databases could be built upon to become more complete and 

more frequently updated. Such updates are occurring with the DMR Pollutant Loading Tool 

as electronic submission of discharge monitoring reports can now be done. However, 

facilities may be missing from the DMR Pollutant Loading Tool, as noted on the tool 

website. It should be noted that WWTP nutrient loads are often not static over time. We 

found it important to have knowledge of the actual loadings from these point sources, as 

opposed to just their location in our study. If loads are changing over time due to new permit 

requirements, increased capacity, or upgraded nutrient removal technologies, then it would 

be necessary to provide adequate metadata and make routine updates to the data contained 

on point source loadings in the national databases. This could add considerable costs to 

managing these data.

Our results suggest that an SSN modeling approach also improves goodness of fit and 

prediction accuracy of in-stream TP concentration models compared to traditional MLR. 

The importance of including spatial autocovariance parameters was particularly evident for 

the model based on the nationally-available covariates (Table 2), indicating that an SSN 

modeling approach should be adopted when using national covariates alone to model TP 

concentration in stream networks. Accurate prediction at sites with high TP concentrations 

depended upon the inclusion of spatial autocovariance parameters in the national and local 

models, particularly in areas around other sites of high TP concentrations. For example, site 

M04S29 at the mouth of the river (Fig 3) was under-predicted in both nonspatial models (Fig 

2a and c), which only have access to the covariate values at that site in order to make a 

prediction. However, both spatial models accurately predicted median TP concentration at 

this site (Fig 2b and d) because SSN models are able to draw upon known observed values at 

nearby, correlated locations in order to improve predictions (Ver Hoef and Peterson, 2010). 

In this case, there were two sites with high TP concentrations near the mouth of the river that 

were used by the SSN models to predict high median TP concentration at the validation site 

M04S29 (Fig 3). These results support the increasing evidence that SSN modeling improves 

on traditional MLR in stream networks (Frieden et al., 2014; Isaak et al., 2014).

The relatively poor prediction accuracy of models in this study was largely attributable to 

two outliers in the validation data set (sites CWL and 200497; Fig 2). Site CWL is located 

on a headwater stream surrounded by intensive agriculture and experienced stagnant water 
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conditions in 2012, resulting in an extremely high TP concentration that was not predicted 

by the models in this study. Site 200497 is located on a small tributary approximately 2 km 

downstream of a WWTP release (Fig 1). Although other sites directly downstream of 

WWTPs were included in the modeling, 200497 is the only example of a small tributary site 

receiving discharges from a major point source. Dilution in the small tributary is minimal 

compared to the main channel. Removal of these two outliers resulted in substantial 

improvements in prediction accuracy among the remaining 18 validation sites.

Differences among the four models inevitably produce different spatial predictions of 

median TP concentration throughout the East Fork watershed using the NSI prediction sites 

(Fig 3). These differences are most obvious in the upper part of the watershed (i.e., in the till 

plain) and around the mouth of the river (Fig 3). In particular, both national models predict 

very high median TP concentration along the main stem in the upper part of the watershed, 

while tributaries are predicted to have very low median TP concentration. Conversely, the 

local models predict lower median TP concentration along the main stem and higher values 

in the tributaries of the till plain (Fig 3). In the till plain, low slopes only occur in a relatively 

narrow band along the main valley floor, coincident with the location of high predicted 

values in the national models. The interaction between low slopes and till plain soils in the 

national models resulted in these sites having high predicted median TP concentration. 

However, there are also septic systems in the till plain region of the watershed, as well as 

three waste water treatment plants (Fig 1). The local model coefficients suggest that septic 

systems and WWTP TP loads, in the presence of till plain soils, cause the moderately high 

median TP concentration values observed at the three uppermost modeling sites. Without 

access to these local covariates, the national model has misattributed these high values to the 

interaction between low slopes and till plain soils, and over-predicted sites in this area; for 

example, site M04S16 (Fig 2a and b). Discrepancies in predictions are also evident between 

the nonspatial and spatial models along the lower main stem near the mouth of the river (Fig 

3). In particular, median TP concentration predictions in this area are much lower in both 

nonspatial models compared to their respective spatial counterpart. The lower predicted 

values in the nonspatial models along the lower main stem can be attributed to large 

watershed areas in the national model and large areas of Rossmoyne soils in the local model. 

In contrast, the spatial models are able to draw on the nearby modeling sites, which have 

known high values, in order to make better predictions along the lower main stem (Fig 3). 

This is also the reason why validation site M04S29 was more accurately predicted in both 

spatial models than in the nonspatial models (Fig 2).

The inferences gleaned from the four TP concentration models in this study were influenced 

by working retrospectively using existing monitoring data and by the design of our model 

validation approach. Our objective was to determine how local watershed modeling and 

prediction based on national spatial databases could be improved by including additional 

local covariates and adopting the SSN modeling approach. In order to meaningfully evaluate 

prediction accuracy, it was necessary to withhold known observation data from the modeling 

process. We chose a spatially-balanced random survey design to select the validation sites 

because it guarantees that samples represent the entire extent of the 105 monitoring sites 

within the study area as best as possible (Olsen et al., 2012). Obtaining a good spatial 

representation throughout the study area is essential because the location of observations is 
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known to influence spatial patterns observed in watersheds (e.g., Scown et al., 2016). 

However, the statistical distribution of the response variable among the modeling and 

validation sites was overlooked by adopting a spatially-balanced random survey of 

monitoring sites, as were the spatial distributions of the covariates. In particular, the sites 

with the highest and lowest observed median TP concentration values of all 105 sites used in 

this study (sites CWL and M04P12, respectively) were withheld from the modeling data set 

and included in the validation data set, by chance. Also the till plain soils covariate was only 

relevant to ten modeling sites, with the interaction between till plain soils and other 

covariates represented by even fewer sites. Thus, coefficient estimations and spatial 

predictions were likely affected by the spatially-balanced random sampling of validation 

sites, and model results may have been different had the validation sites selected been 

different. The monitoring program designs adopted by the U.S. and Ohio EPAs, whose data 

were used in this study, may have further affected the model inferences. The Ohio EPA 

monitoring program in the East Fork watershed targets stream biotic assessments at 

subwatersheds around 100 km2 in area or greater and around the potential effects of 

permitted point sources. This places sites primarily along the main stem of the East Fork and 

larger confluent tributaries. The U.S. EPA monitoring program spreads sites more evenly 

among small tributaries and main stems, but focuses effort in the lower portions of the 

watershed so that all sites could be visited on the same day and more frequently. Thus, 

smaller tributaries, particularly in the eastern part of the watershed, were underrepresented in 

the sample of monitoring sites (Fig 1) and median TP concentration predictions are likely 

affected by the absence of monitoring data in these areas of the East Fork watershed.

We can make some broad comparisons to other modeling approaches, most notably 

SPAtially Referenced Regression On Watershed attributes (SPARROW), that have been used 

to predict TP concentration in the East Fork of the Little Miami River. Although a full 

comparison of SPARROW and SSN modeling is beyond the scope of this paper, highlighting 

several important differences between the two is necessary. SPARROW models are 

developed for national or regional applications (Alexander et al., 2004; Alexander et al., 
2007; Robertson and Saad, 2011), and, consequently, use stream network GIS data at a 

coarser spatial resolution (1:500,000 scale stream lines and 1-km or 100-m DEM) compared 

to those used in our SSN modeling (1:100,000 scale stream lines and 10-m DEM). The data 

inputs for the response variable also differ between SPARROW and our SSN analyses. 

Concentrations of TP used in SPARROW are derived from gages on large rivers with long 

periods of record (Alexander et al., 2004; Alexander et al., 2007; Robertson and Saad, 

2011), of which only one occurs in the East Fork watershed at the outlet. In contrast, we 

used grab samples taken at 105 locations throughout the watershed, including on smaller 

streams, for our modeling and validation. These differences in GIS and water quality inputs 

create substantial differences in the spatial extent and resolution of TP concentration 

predictions. While both models are predicting over the same areal extent of the watershed, ~ 

1300 km2, they differ substantially in the length of stream network along which those 

predictions are made. In the headwaters of the East Fork, which are encompassed by the 12-

digit hydrologic unit 050902021006, SPARROW predicts a TP concentration of 0.23 mg/L 

only for the 23 km of stream reach of that main stem using the MRB3 model (USGS, 2015). 

Our SSN predictions in that same HUC12 are at the midpoints of 49 main stem and tributary 
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reaches, totaling 86 stream km, with TP concentration ranging from 0.08 mg/L to 0.46 mg/L 

with a median of 0.21 mg/L. As intended, SPARROW models provide predictions of 

nutrient concentrations at national and regional extents in broad brushstrokes; whereas SSN 

can provide nutrient concentration predictions at a much finer spatial resolution that can 

potentially lead to more specific management action. Both SPARROW (Alexander et al., 
2004) and SSN (Hagy, 2015) analyses have emphasized the importance of gaining accurate 

estimates of nutrient loads from point sources to improve those analyses.

Interpretation of national and local covariates

The best-subsets regression using the national spatial data coverages produced a relatively 

generic set of covariates whose relevance for understanding and managing TP 

concentrations in the East Fork watershed is limited. In fact, the autocovariance parameters 

in the national spatial model explained more of the variance in median TP concentration 

than the covariates (Table 2), indicating that knowledge of TP concentration at nearby 

locations is more informative than the set of specific national covariates used at a particular 

site. The decline in median TP concentration with increasing watershed area in the national 

model reflects a dilution effect and has little consequence for interpretation and 

management. However, the significantly lower TP concentration in the presence of till plain 

soils compared to drift plain soils in the national model is consistent with the findings of 

Daniel et al. (2010) who observed lower TP concentrations in catchments in the till plain 

versus the drift plain of the Little Miami River watershed. The presence or absence of till 

plain soils also had significant interactions with cumulative Clermont soil area and 

cumulative area of land having a slope of 0–2%. Clermont soil, which is widespread 

throughout the drift plain, appears to reduce the effect that till plain soils have on lowering 

in-stream TP concentration; however, the cumulative area of Clermont soil did not have a 

significant effect itself. The mechanisms behind the observed effects of areas of soil types 

are worthy of future investigation; for example, by incorporating into the model soil 

attributes such as erodibility and permeability, which are contained in the national database. 

The national model also appears to have misattributed high median TP concentration in the 

upper watershed to the interaction between low slopes and till plain soils, as discussed in the 

preceding section. Despite their generality, the national covariates are readily available, 

require much less geoprocessing than the local covariates, and produce a reasonable model 

of median TP concentration in the East Fork when combined with spatial autocovariance 

parameters.

The covariates that emerged from the local best-subsets regression model are more relevant 

for interpretation and management of TP concentrations in the East Fork watershed. We 

observed a positive relationship between TP concentration and cumulative agricultural area 

in the local model. Agricultural land cover is a nationally-available covariate; however, it did 

not emerge from the national best-subsets regression, suggesting that local covariates are 

required to decompose the multiple interacting influences on TP concentrations in the East 

Fork watershed. The positive effect of agricultural land cover on TP concentrations observed 

in this study is consistent with previous research in the Little Miami River (Daniel et al., 
2010) and other watersheds (Carpenter et al., 1998). The interaction between agricultural 

area and till plain soils had a negative coefficient in the local model, suggesting that till plain 
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soils may buffer the effect of agriculture in the East Fork watershed. This is consistent with 

the findings of Daniel et al. (2010) who found that in the till plain region of the Little Miami 

River watershed, TP concentration was not significantly related to the percentage of row 

crop land cover, whereas in the drift plain there was a positive relationship. The effect till 

plain soils have on lowering stream nutrient loads is likely related to these soils being more 

permeable and less erodible than drift plain soils (Daniel et al., 2010), which may enable 

them to retain nutrients within the soil profile rather than losing them to the stream via 

runoff and erosion. We also observed an interaction between the presence of till plain soils 

and WWTP TP loads on stream TP concentrations. Permitted point source discharge 

locations and WWTP outfalls were excluded from the study design of Daniel et al. (2010). 

In other watersheds, however, WWTP densities are associated with higher stream TP 

concentrations (Rothenberger et al., 2009), as are greater sewage flows from treatment plants 

(Zampella, 1994). Septic tanks have been hypothesized to be a low-level, but chronic input 

of phosphorus into streams and rivers (Arnscheidt et al., 2007), and we observed a 

significant positive relationship between septic area and median TP concentration in the 

local model. Although an individual septic system can be considered a potential point source 

of stream TP, septic systems are so widespread throughout the East Fork watershed that our 

results suggest they have cumulative effects on TP concentrations and operate more like a 

diffuse source at the watershed scale.

Because of the prominence of fine clay and poorly infiltrating soil types in the East Fork 

watershed (i.e., Clermont, Avonburg, and Rossmoyne soils) traditional septic systems that 

rely on buried leach fields for wastewater treatment are prone to failure. Aerobic septic 

systems, used frequently in place of the traditional systems in the watershed, require more 

homeowner attention to remain effective and are often designed with direct discharges to 

receiving streams. Therefore, these conditions of onsite wastewater management that are 

somewhat specific to the study watershed likely help promote the significance of septic 

systems found for predictive modeling of phosphorus in East Fork streams. Other studies 

conducted in East Fork streams have found septic densities to correlate well with molecular 

markers of human fecal bacteria (Peed et al., 2011) and other contaminants of emerging 

concern (Schenck et al., 2015). Although cumulative septic area rather than density emerged 

as a significant covariate in this study, we note this aspect of the study system as a caveat to 

the relative importance of having data on septic systems to improve predictions for nutrients 

in watersheds.

Conclusions

Our objective was to determine whether a predictive model of in-stream phosphorus 

concentrations based on nationally-available spatial covariates could be improved by 

including additional locally-derived covariates and adopting an SSN modeling approach. 

Nationally-available spatial data can be used for spatial predictions of nutrients throughout 

stream networks; however, additional local covariates provided a more mechanistic 

interpretation of influences on TP concentrations in the East Fork watershed, as well as 

increasing model goodness of fit and prediction accuracy. While the national covariates were 

effective in building generic models of median TP concentration, these models were highly 

susceptible to prediction errors because of misattribution of mechanisms. Adopting an SSN 
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modeling approach was essential to improve the prediction accuracies of the national model, 

and inclusion of WWTP TP loads and septic areas in the local models resulted in further 

improvements. The advantage that the national covariates have is that they are becoming 

readily available in the format required to conduct SSN modeling (Hill et al., 2015; Nagel et 
al., 2015), thus dramatically reducing geoprocessing costs. For models built using national 

covariates, as well as models with additional local covariates, SSN prediction provides 

researchers with 1) an expected value of a response variable that can then be field tested, and 

2) a spatial distribution of prediction errors. These outcomes can be used to inform future 

monitoring programs or to designate additional monitoring sites around existing programs 

(Peterson and Ver Hoef, 2010; Isaak et al., 2014). Investigation of the prediction errors 

associated with the models presented in this study would likely yield valuable information 

for managers in the East Fork watershed; however, that is beyond the scope of this study.

The effects of monitoring and analysis design on inferences in this study help to inform the 

design of future stream network modeling studies, which will depend upon the study 

objective. If the objective is primarily to fit an SSN model to a response variable, perhaps for 

purely explanatory purposes, all observational data can be retained in the modeling process 

and validation can be conducted using various cross-validation techniques (e.g., LOOCV). 

In addition, the initial design of monitoring locations should cover a broad distribution of 

paired distances among sites, as well as multiple samples around confluences, to enable 

longitudinal network relationships to be established and autocovariance functions to be 

quantified (Frieden et al., 2014; McDonnell et al., 2015). If the aim of the study is to 

evaluate prediction accuracy, withholding of validation sites is necessary; however, the 

statistical and spatial distributions of the response variable and covariates must be 

considered when selecting these sites. Conducting a spatially-balanced random sample 

stratified by certain patchily-distributed covariates (e.g., till plain soils in this study) may be 

a solution. Imposing further constraints based on the statistical distribution of the response 

variable may also be necessary to accurately model and predict extreme values. Careful 

consideration of such stratified sampling approaches is essential (Maas-Hebner et al., 2015). 

Iteratively conducting modeling and validation with multiple samples could be incorporated 

into the process within the SSN package in R (Jay Ver Hoef, November 5, 2015, personal 

communication); however, it is clear from our results that conducting modeling and 

prediction on a single set of modeling and validation sites can greatly affect the study 

inferences. Regardless of the approach adopted, thorough initial exploratory data analysis is 

imperative in SSN modeling studies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
Map of the East Fork Watershed. Regional location and detail is shown of: the stream 

network; location of modeling, validation, and prediction sites; the location of wastewater 

treatment plants (WWTP) with known phosphorus release loads; the two Level IV 

Ecoregions in the watershed—the till plain and drift plain (boundary indicated by dashed 

line); and the extent of Reach Contributing Areas (RCAs) that contain till plain soils in the 

upper part of the watershed. Note till plain soils occur in the till plain as well as in some 

valley bottoms in the upper drift plain.
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FIGURE 2. 
Observed versus predicted median TP concentration at the 20 validations sites. (A) National 

nonspatial, (B) national spatial, (C) local nonspatial, and (D) local spatial models. Locally 

weighted smoothing (lowess) lines are shown, as well as the 5 and 95% prediction limits. 

Sites with extreme observed or predicted values are labeled for discussion.
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FIGURE 3. 
Spatial predictions of median TP concentration. Predictions are shown at 779 National 

Stream Internet (NSI) sites throughout the East Fork watershed based on the (A) national 

nonspatial model, (B) national spatial model, (C) local nonspatial model, and (D) local 

spatial model. Modeling sites are also shown with their observed median TP concentration 

values and validation sites are shown with their signed error expressed as a percentage of the 

prediction. High resolution figure supplied in S3.
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TABLE 1

List of Covariates, Their Spatial Treatment, and Data Source. Areal covariates were considered either 

throughout the entire watershed upstream of a point or as a proportion of the local Reach Contributing Area 

(RCA) around that point (see text for details).

Variable type Included in model Covariate Spatial Treatment Data Source

Landscape National and local Watershed area (km2) Cumulative watershed NED 10 m DEM1

Tributary stream category (WS ≤ 100 km2) Cumulative watershed NED 10 m DEM1

Main stem stream category (WS > 100 km2) Cumulative watershed NED 10 m DEM1

Slope 0–2% area (km2) Cumulative watershed NED 10 m DEM1

Slope > 5% area (km2) Proportion of RCA NED 10 m DEM1

Avonburg soil area (km2) Cumulative watershed SSURGO1

Clermont soil area (km2) Cumulative watershed SSURGO1

Rossmoyne soil area (km2) Cumulative watershed SSURGO1

Till plain soils (Miamian, Russell, Xenia) Presence/absence in RCA SSURGO1

Valley soils (Cincinnati, Edenton) Presence/absence in RCA SSURGO1

Land use National and local Agriculture (km2) Cumulative watershed NLCD1

Urban/developed land (km2) Proportion of RCA NLCD1

Deciduous forest (km2) Proportion of RCA NLCD1

Pasture (km2) Proportion of RCA NLCD1

Local Area of septic systems (km2) Cumulative watershed See text

Density of septic system areas (km2/km2) Density in watershed See text

Point sources National NPDES permit address Presence/absence in watershed NPDES2

Local WWTP total P load released in 2012 (kg) Accumulated downstream See text

WWTP average TP concentration (mg/L) Accumulated downstream See text

Abbreviations used in table: NED—National Elevation Dataset; DEM—Digital Elevation Model; WS—Watershed; SSURGO—Soil Survey 
Geographic Database; RCA—Reach Contributing Area; NLCD—National Land Cover Database; NPDES—National Pollutant Discharge 
Elimination System; WWTP—Wastewater Treatment Plant.

1
Data obtained from https://gdg.sc.egov.usda.gov/.

2
Data obtained from http://www.epa.gov/enviro/geospatial-data-download-service/.
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TABLE 2

Modelling Results. Covariates, coefficients, and goodness of fit criteria for the multiple linear regression 

(nonspatial) and SSN (spatial) models for the national and local covariates.

Covariate/coefficient/criteria Nonspatial Spatial

National coefficients Watershed area −1.096** −1.255**

Slope 0–2% area 0.9791 1.2121

Clermont soil area 0.2781 0.1731

Presence of till plain soils −2.729** −3.453***

Slope 0–2% area:Till plain soils 1.936*** 2.284***

Clermont soil:Till plain soils −1.802*** −1.985***

Intercept −1.783*** −1.707***

National AIC AIC 144.61 135.88

National variance components Covariates 0.520 0.429

Autocovariance n/a 0.432

Nugget 0.480 0.139

Local coefficients Agricultural area 0.387*** 0.374***

Rossmoyne soil area −0.591*** −0.583***

Presence of till plain soils 1.2261 1.2261

Cumulative septic area 1.376** 1.349*

WWTP TP load −0.0071 0.0031

Agriculture:Till plain soils −1.187* −0.990*

Septic:Till plain soils 9.6672 8.6672

WWTP TP load:Till plain soils 0.273* 0.283*

Intercept −1.926*** −1.932***

Local AIC AIC 134.98 133.76

Local variance components Covariates 0.595 0.491

Autocovariance n/a 0.295

Nugget 0.405 0.214

*
Coefficient p-value < 0.05.

**
Coefficient p-value < 0.01.

***
Coefficient p-value < 0.001.

1
Added because of significant interaction.

2
Selected by BSR but not by Wald test.
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TABLE 3

Root mean square percent prediction error (RMSPPE) and the width of the 90% prediction interval as a 

percentage of the prediction averaged among the 20 validation sites for the four models.

Model RMSPPE Average (90% P.I. /
prediction) × 100%

National nonspatial 106% 203%

National spatial 94% 192%

Local nonspatial 93% 180%

Local spatial 89% 184%
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