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Summary

Microglia dynamically adapt their morphology and function during increasing age.

However, the mechanisms behind these changes are to date poorly understood.

Glucocorticoids (GCs) are long known and utilized for their immunomodulatory

actions and endogenous GC levels are described to alter with advancing age. We

here tested the hypothesis that age-associated elevations in GC levels implicate

microglia function and morphology. Our data indicate a decrease in microglial com-

plexity and a concomitant increase in GC levels during aging. Interestingly, enhanc-

ing GC levels in young mice enhanced microglial ramifications, while the knockdown

of the glucocorticoid receptor expression in old mice aggravated age-associated

microglial amoebification. These data suggest that GCs increase ramification of hip-

pocampal microglia and may modulate age-associated changes in microglial morphol-

ogy.
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1 | INTRODUCTION

Microglia, the brain-resident macrophages, are active players in the

maintenance of neuronal networks (Wu, Dissing-Olesen, MacVicar &

Stevens, 2015). Microglia are long-lived cells that are maintained and

self-renewing throughout life (Ajami, Bennett, Krieger, Tetzlaff &

Rossi, 2007). Recent findings indicate that their renewal and age-

dependent transcriptome are highly dependent on their microenvi-

ronment and display region specificity within the CNS (Grabert et al.,

2016; Tay et al., 2017). Notably, young hippocampal microglia were

found to have a distinct and unique transcriptional phenotype that

dissipated with increasing age (Grabert et al., 2016), suggesting that

these microglia may respond distinctively to aging processes.

However, how these age-related differences arise and from what

mediators they originate is still not fully understood.

Hormones are powerful chemical mediators that are able to

transform a cell-extrinsic signal into an altered cell function and

gene expression profile. Aging is reported to provoke endocrine

changes related to a plethora of pathophysiological conditions

ranging from menopause to diabetes (Jones & Boelaert, 2014).

Glucocorticoids (GCs) are a class of steroid hormones, which gen-

erally produce an anti-inflammatory microglia profile (Bellavance &

Rivest, 2014). The effects of GCs are mediated through the min-

eralocorticoid (MR) and glucocorticoid receptor (GR) (Reul & De

Kloet, 1985), with the latter being more abundantly expressed in

the microglia of young mice (Sierra, Gottfried-Blackmore, Milner,

McEwen & Bulloch, 2008). Both humans and rodents show age-

related changes in circulating GC plasma levels (Fitzsimons et al.,†Shared authorship.
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2016), possibly rendering aged microglia sensitive to their

immunomodulatory effects.

To date, however, no literature has fully described how age-

related increases in GC impact hippocampal microglia function. As

the microglial morphology is dynamically altered depending on its

cellular function (Fern�andez-Arjona, Grondona, Granados-Dur�an,

Fern�andez-Llebrez & L�opez-�Avalos, 2017), we hypothesized that

age-associated increases in GC levels implicate hippocampal micro-

glia cell morphology and therefore possibly their function. By both

artificially increasing GC levels and using specific siRNAs to knock-

down GR expression in vivo, we here describe a mechanism wherein

GCs modulate hippocampal microglial morphology and may affect

microglial amoebification during aging.

2 | RESULTS/DISCUSSION

First, hippocampal microglia complexity was correlated to daily

levels of [GC] (Figure 1a–d). Microglial coverage was assessed by a

percentage of thresholded CD11b+ surface area in the molecular

layer (ML) of the hippocampus and CD11b+ cell morphological

complexity with Sholl analysis in the same region as previously

described by Hoeijmakers et al. (2017). Both Iba1 and CD11b reli-

ably stained microglia, yet side-by-side comparison of Iba1 and

CD11b staining on the same cells in 6-month-old untreated mice

revealed that CD11b stained a significantly higher amount of

microglial ramifications (Supporting Information Figure S1). At

6 months of age, both hippocampal and cortical CD11b coverage

started to decline (Figure 1a,b and Supporting Information Fig-

ure S2) coinciding with persistent increases in daily [GC] (Fig-

ure 1c). Combined, hippocampal CD11b coverage and [GC] both

followed significant yet opposite trends during advancing age (Fig-

ure 1d). Extending these results, the relationship between both hip-

pocampal and cortical CD11b surface area expression with age-

associated [GC] showed a significant inverse correlation (Supporting

Information Figure S2e,f). Next to that, we found that the rate at

which CD11b surface area expression decreased with age was sig-

nificantly higher in the cortex compared to the hippocampus (Sup-

porting Information Figure S2d), a result corroborating previous

findings from Grabert et al. (2016) describing brain-region-depen-

dent microglial aging. The age-associated decreases in hippocampal

and cortical CD11b surface area were phenocopied by the Iba1

costaining immunoreactivity (Figure 1e and Supporting Information

Figure S2a). We next analyzed microglial complexity by means of

CD11b+ cell Sholl analysis (Figure 1f). Sholl analysis supported that

at 6 months, hippocampal microglia cell complexity declined (Fig-

ure 1f–h). Also, the CD11b+ cell complexity showed a significant

inverse correlation with age and followed the opposite trend of

[GC] (Figure 1i). We found CD11b+ cell numbers to remain stable

with age, and we did not detect any CD11b+/GR- cells in these

experimental conditions (Figure 1j–l). These data suggest that age-

associated GC elevations may associate with an amoeboid micro-

glial phenotype. To selectively study the effect of increasing [GC]

without other age-related variables, [GC] was increased in 3-

month-old mice using slow-release GC pellets for the duration of

7 days. Mice were subsequently sacrificed either immediately or

after a 2-day recovery period following exogenous GC removal

(Figure 2a), and from an CD11b/Iba1 costaining, hippocampal

CD11b coverage and cell complexity were measured (Figure 2b).

Surprisingly, increasing daily [GC] (Figure 2c) induced a significant

increase in both hippocampal CD11b coverage (Figure 2d) and

CD11b+ cell ramifications (Figure 2e,f) and these alterations were

rapidly reversed during the 2-day recovery (Figure 2b–f). To investi-

gate whether [GC] could impact on measures indicative of micro-

glial phagocytic activity, hippocampal CD68 surface area and

CD68+ lysosomal volume of hippocampal Iba1+ cells were ana-

lyzed. However, the GC-induced increases in ramifications were

not accompanied by increases in either hippocampal CD68 expres-

sion, nor CD68+ lysosomal volume of hippocampal Iba1+ cells

(Supporting Information Figure S3). In a primary attempt to exclude

any possible indirect effect of GC treatment in vivo, we isolated

human microglia to study the direct effects of GR modulation on

microglial morphology in vitro. Our microglial isolation procedure

yielded a >95% population of live CD45+/CD11b+ cells (Supporting

Information Figure S4a) that robustly expressed Iba1 (Supporting

Information Figure S4c). In vitro, Iba1+ cell surface area was signifi-

cantly reduced after 72 hour treatment with dexamethasone (DEX;

synthetic GR agonist), yet reversed by costimulation with both

mifepristone (MIF; synthetic GR antagonist) and DEX (Supporting

Information Figure S4d). Interestingly, the DEX-induced reduction

in microglial cell size was predominantly originated from a reduced

soma size (Supporting Information Figure S4e), as it also coincided

with the extension of microglial processes (Supporting Information

Figure S4f). Importantly, antagonizing DEX-mediated GR activation

F IGURE 1 Age-associated alterations in GC levels inversely correlate with age-associated decreases in both CD11b+ cell coverage and
morphological complexity. (a) Micrographs displaying hippocampal CD11b staining. (b) Hippocampal CD11b surface area percentage bar graph.
(c) Blood plasma circadian amplitude [GC] bar graph. (d) Regression curves of plasma [GC] and hippocampal CD11b surface area. (e)
Micrographs displaying hippocampal sections’ CD11b (left) and Iba1 (right) immunoreactivity. (f) Micrographs displaying hippocampal sections’
CD11b (white) and Iba1 (red) immunoreactivity. Boxed area (top) is magnified in bottom panels of individual CD11b+ cell morphology (left) and
traces (right). (g) Sholl plots displaying CD11b+ cell branch intersections per 5 lm steps from the cell soma. (h) Sholl-derived area under curve
(arbitrary units: A.U.) bar graph. (i) Regression curves of plasma [GC] and hippocampal CD11b+ cell complexity as shown in Sholl-derived area
under curve (A.U.). (j) Single z-plane confocal micrographs displaying CD11b+ cells with GR+ nuclei (arrowheads). (k) CD11b+/GR+ or GR- cell
quantification (nd, not detected). (l) Regression curves of plasma [GC] and hippocampal CD11b+ cells/mm3. Significant differences are indicated
as follows: **p < 0.01, ***p < 0.001, vs. 3 months, one-way ANOVA. Scale bars = 50 (a), 20 (e,f), and 16 (j) lm.
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using MIF reversed these morphological alterations, in vitro (Sup-

porting Information Figure S4d–f). That GCs induced extension of

microglial processes in vitro and a ramified microglial morphology

in vivo could suggest that elevated [GC] induce a homeostatic

microglial phenotype in the young mice. Therefore, we hypothe-

sized that reducing microglial sensitivity to GC in old mice should

further aggravate age-related microglial amoebification. To test this

hypothesis, GR expression was knocked down in 20-month-old

mice (Figure 2g) as previously described (Fitzsimons et al., 2013;

Schouten et al., 2015). Of note, limitations of this siRNA-mediated

knockdown approach include the intrahippocampal delivery itself

that might induce alterations in the tissue for which we controlled

with noncoding siRNA and the lack of cell-type specificity. The lat-

ter might be accompanied by neuronal GR knockdown impacting

spine density (Fitzsimons et al., 2013), possibly contributing to

changes in microglial morphology. Nevertheless, nuclear GR protein

levels in CD11b+/Iba1+ cells were reduced to ~10%, 3 days post-

injection (dpi; Figure 2h–i), which was accompanied by a decrease

in hippocampal CD11b coverage (Figure 2j,k) and microglial com-

plexity (Figure 2l–n).

Amongst the many hallmarks of aging (L�opez-Ot�ın, Blasco,

Partridge, Serrano & Kroemer, 2013) that may impact on micro-

glia, our data indicate that increases in [GC] enhance microglial

ramification, which may modulate age-associated microglial

amoebification. Further research should point out which other

age-related variables contribute to these morphological changes

of microglia. Our work supports previous evidence describing dys-

trophic microglial in the aged brain (Streit, Sammons, Kuhns &

Sparks, 2004), age-related microglial changes in actin (dis)assembly

genes that arrange the cell cytoskeleton (Galatro et al., 2017),

and a decline in engagement of microglia with their environment

in a brain-region-dependent manner (Grabert et al., 2016). Inter-

fering with these processes by GC-mediated modulation of neu-

roinflammation under (patho)physiological conditions might help

to restore microglial homeostasis during aging and therefore

possibly neuronal network maintenance as well as behavior (Bilbo

& Schwarz, 2012).
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