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A B S T R A C T

Background: Given our aging population, there’s great interest in identifying modifiable risk factors for cognitive
decline. Studies have highlighted the relationship between aspects of mobility and cognitive processes. However,
cognition and mobility are both multifaceted concepts and their interrelationships remain to be well defined.
Research question: Here, we firstly aimed to replicate cross-sectional associations between objective measures of
mobility and cognition. Second, we tested whether these associations remained after the consideration of
multiple age-related confounders. Finally, to test the hypothesis that the association between mobility and
cognition is stronger in older adults, we examined the moderating effect of age in the association between
mobility and cognition.
Methods: In the Canadian Longitudinal Study on Aging, 28,808 community-dwelling adults (aged 45–87; 51%
female) completed mobility (gait, balance and chair stands) and cognitive (memory, executive function and
processing speed) assessments. General linear models were used to examine mobility-cognition relationships and
the moderating effect of age.
Results: Cognitive measures were significantly associated with mobility measures (all p < 0.001). Further, age
significantly moderated the mobility-cognition relationship, with the strength of the associations generally in-
creasing with age.
Significance: All cognitive measures were related to indices of mobility, suggesting a global association. In our
moderation analyses, the mobility-cognition relationship often increased with age. However, the small effect
sizes observed suggest that mobility is, in isolation, not a strong correlate of cognitive performance in middle and
late-adulthood.

1. Introduction

Age-related neural changes are associated with a decline in various
cognitive domains, such as memory, executive function, and processing
speed. Similarly, age-related neural and muscular changes often lead to
a deterioration in aspects of mobility, such as gait, balance and lower-
extremity function. These changes may occur in tandem, as mounting
evidence has highlighted the relationship between aspects of cognition

and mobility processes [1]. Given that cognition and mobility impair-
ments are a costly burden both to the individual and to society, the
drive to identify correlates of healthy ageing warrants a better under-
standing of cognition-mobility relationships.

Cognition and mobility are both multifaceted concepts, and the
interrelationship between their sub-domains is not yet well char-
acterised. Whereas some have suggested that mobility is preferentially
associated with executive function [2], a recent meta-analysis of cross-
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sectional studies on cognition and mobility in healthy older adults
found evidence for associations across the board, albeit with small ef-
fect sizes [3]. Further, studies have often focused on the association
between one mobility and one cognitive measure (e.g. gait and execu-
tive function), thus limiting conclusions about the global nature of the
mobility-cognition association.

The interdependence between mobility and cognition has been hy-
pothesised to reflect age-dependent changes in shared neural mechan-
isms [4] and an increased demand for cognitive monitoring in motor
control with age [5]. However, previous studies have predominantly
focused on older adults, resulting in an unclear understanding of the
effect of age on this association. Accordingly, examining the mobility-
cognition relationship in a wider age-span may lead to a clearer picture
of its development.

The present study aimed to conduct the largest investigation of
mobility and cognitive performance to date, through analysis of a po-
pulation-based dataset with a wide age-span, the Canadian
Longitudinal Study on Aging (CLSA). In a component of the CLSA study,
psychological and mobility baseline data were collected on over 30,000
adults, aged between 45 and 85. Here, we firstly aimed to replicate
cross-sectional associations between objective measures of mobility
(walking time, chair stands and balance) and cognition in the baseline
CLSA data. Since these associations have typically been studied with
sample sizes of N < 400, or more recently with samples in the 1000s
[6,7], a sample size in the 10,000s may serve as a powerful response to
the discrepancies that remain in the mobility-cognition literature. En-
abled by our large sample size, we also tested whether these associa-
tions remained after the consideration of multiple age-related con-
founders. Finally, to test the hypothesis that the association between
mobility and cognition is stronger in older adults, we examined the
moderating effect of age in the association between mobility and cog-
nition.

2. Methods

2.1. Participants

The CLSA is a Canadian multi-centre study of 51,338 people be-
tween the ages of 45 and 85 years at the time of recruitment [8]. All
CLSA participants provided data on demographic, lifestyle, physical,
clinical, psychological and economic measures. A sub-set of CLSA par-
ticipants (n= 30,097), referred to as the CLSA Comprehensive cohort,
visited a local data collection site for additional assessments, including
physical performance measures and additional cognitive testing. For
the present analysis, only participants from the CLSA Comprehensive
cohort (dataset version 2.1) were considered. Participants missing all
cognitive or all mobility data and those with a self-reported history of
specific neurological illnesses (i.e., dementia, Parkinson’s disease,
multiple sclerosis or stroke), or a lower-limb prosthetic leg or foot were
excluded from the analyses (Appendix 1 in Supplementary materials).

2.2. Mobility measures

Walking time (in seconds) was measured with a stopwatch over a
clearly marked straight-line 4-meter course. Participants were in-
structed to walk at their own pace. Balance was measured as time (in
seconds) a balance position (one-legged stand, with eyes open) was
held, with an upper cut-off of 60 s. Participants were positioned ap-
proximately one meter from a wall and instructed to stand on one foot
for as long as possible while first lifting the dominant leg to the calf
level. The test was then repeated on the other leg. In the present ana-
lysis, the longer of the two times was used. In the chair stands test,
participants were asked to sit on a chair and fold their arms across their
chest. Participants were then instructed to stand up and sit down
without using their arms five times. The time (in seconds) taken to
complete five chair rises was recorded.

2.3. Cognitive measures

Choice reaction time (in seconds), a measure of processing speed,
was collected using a touch-screen computer. In this task, a row of 4
plus signs would appear in the centre of the screen. After 1 s, one of the
plus signs would be replaced with a square. The participant was in-
structed to touch the square as quickly as possible. After 10 practice
trials, the mean reaction time of correct answers, excluding timeouts,
were calculated for the 52 test trials.

The Rey Auditory Verbal Learning Test (RAVLT; [9]) was used to
assess immediate and delayed recall of a list of 15 words. In the CLSA,
only one learning trial and one delayed trial (with a 5-minute delay)
were conducted.

To assess executive function, the Mental Alternation Test (MAT;
[10]) the Stroop neuropsychological screening test (Victoria version,
[11]) and the phonetic and categorical fluency tests were conducted. In
the MAT, participants were instructed to alternate between number and
letter (i.e. 1-A, 2-B, 3-C) as quickly as possible for 30 s. The score,
ranging from 0 to 51, indicates the number of correct alternations,
excluding errors. The Stroop test consisted of 3 parts. First, the parti-
cipant was instructed to name the colour of each circle, as fast as
possible, without making mistakes. The participant was then asked to
name the ink colour of each word. In the final condition, the participant
is asked to name the ink of the colour words, as quickly as possible. The
interference score was calculated by subtracting the time (in seconds) to
complete condition 1 from the time (in seconds) taken to complete
condition 3. To measure phonological fluency, participants were asked
to list as many words as possible beginning with the letters “f”, “a” and
“s”, in 3 60-second trials. For each trial, the score consists of the total
number of permitted words given. In the present analysis, the average
score from the 3 trials was used. Similarly, in the categorical fluency
test a score is given based on the number of animals listed in 60 s. For
further reference on the cognitive measures used, please see [12].

2.4. Covariates

Age, sex and education level were recorded for all participants.
Education was scored on a six-point scale: (1) no qualifications, (2)
completed high-school, (3) trade certificate or diploma (4) community
college degree, (5) Bachelor’s degree and (6) post-graduate degree.

Additional covariates of interest were selected based on their links
with mobility and/or cognition. These included depressive symptoms
[13], physical activity [14], social participation [15], BMI [16] and
history of arthritis [17]. Depressive symptoms were assessed using the
Centre for Epidemiological Studies Depression Scale (CES-D), a clini-
cally validated self-report questionnaire [18]. Physical activity was
measured using the Physical Activity Scale for the Elderly (PASE; [20]).
The PASE is a self-report questionnaire designed for older adults, and
also validated in middle-aged adults, wherein participants report lei-
sure, household, and work-related activities in the last week. Frequency
of participation in social activities was measured using questions pre-
viously used in the English Longitudinal Study on Ageing [21], which
addressed cultural, educational, physical, religious and familial activ-
ities participated in the last 12 months. Frequency of participation was
scored on a five-point scale, ranging from (0) did not participate in a
community-related activity to (4) participated in a community-related
activity at least once a day. History of arthritis (rheumatoid or os-
teoarthritis), was collected through self-report. Finally, BMI was cal-
culated from participant’s height and weight.

2.5. Statistical analyses

Descriptive summary measures are presented for all outcomes and
covariates of interest. Data distributions were visually screened, and
mobility and cognitive outcome values± 3 standard deviations from
the mean were deemed as extreme outliers and excluded from the
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analysis. For balance, 13,412 (48.64%) of participants performed at
ceiling. We therefore divided participants into two groups: good (held
position for 60 s) and poor (held position for less than 60 s) balance.
Prior to analyses, z scores were calculated for all separate tests. The z
scores obtained from the processing speed task and the Stroop test were
multiplied by -1 so that higher scores on all tests reflect better cognitive
performance.

The primary analysis used generalised linear models to examine the
relationships between mobility and cognitive outcomes, adjusting for
age, sex and education level. Analyses were then repeated with de-
pressive symptoms, physical activity, social participation, BMI and
history of arthritis as additional covariates. For all analyses, standar-
dized estimates (β), 95% confidence intervals and p-values are re-
ported. Given that we used seven cognitive and three mobility tests, the
alpha level was Bonferroni-corrected and set at p < 0.002.

To test the hypothesis that the association between mobility and
cognition increases with age, we tested the moderating effect of age by
including interaction variables in the general linear models. The in-
teraction variable included the mobility measure and age, and these
variables were centered on their means before generating higher order
terms. As a secondary hypothesis, the alpha level for the interaction
terms was set at p < 0.05. To illustrate significant interactions, the
MATLAB function PlotInteraction.m was used.

Sample size varied across tests because only participants without
any cognitive or mobility data were excluded. All statistical analyses
were conducted using the Statistical and Machine Learning Toolbox
(v10.2) for MATLAB (R2016a; MathWorks, Natwick, MA).

3. Results

An overview of sample characteristics is given in Table 1. The mean
age was 62.9 years (SD 10.2), and 51% of the participants were female.
While excluded participants did not differ in terms of education
(p=0.276), they were older (p < 0.001), more often female
(p < 0.001), had higher BMI (p=0.024) and had a higher prevalence
of arthritis (p < 0.001) than those included in this study (Appendix 2
in Supplementary materials).

All cognitive measures were significantly associated with mobility

measures after adjustment for age, sex and education (all p-values<
0.001; Table 2). Standardized coefficients were small for walking speed
(-0.043 to -0.106) and chair stands (-0.04 to -0.165), and small-to-
moderate for balance (0.107 to 0.187). Additional adjustment for BMI,
social participation, arthritis, depressive symptoms and physical ac-
tivity attenuated coefficients but did not affect statistical significance
(Appendix 3 in Supplementary materials).

The moderating effect of age is presented below and given in full in
Appendix 4 in Supplementary materials. In Figs. 1–4, each plot shows
the estimated effect when age is fixed at a given value (red) and the
overall estimated effect of the response, averaging out the effects of the
other predictors (blue). The plotted mean effects for different age values
are indicative of the role of age on the relationship between mobility
and cognitive measures.

For walking time, age was a significant moderator of the association
with REY immediate recall (β=-0.021, 95% CI: -0.031, -0.01,
p < 0.001), REY delayed recall (β=-0.017, 95% CI: -0.028, -0.007,
p=0.002) and the Stroop test (β=-0.022, 95% CI: -0.032, -0.012,
p < 0.001). For both REY and Stroop measures, a greater association
between walking and memory was observed with increasing age
(Fig. 1A–C).

For chair stands, age was a significant moderator of the association
with processing speed (β=0.018, 95% CI: 0.006, 0.029, p=0.002) the
mental alternation test (β=-0.018, 95% CI: -0.029, -0.007, p=0.002),
and the Stroop test (β=-0.027, 95% CI: -0.032, -0.012, p< 0.001;
Appendix 4 in Supplementary materials). For mental alternation and
the Stroop test, an increase in age led to an increase in the association
with chair rises. The opposite pattern was observed for processing
speed, as measured by choice reaction time (Fig. 2A–C).

For balance, with the exception of phonetic fluency (β=0.003,
95% CI: -0.024, 0.029, p=0.842), age was a significant moderator of
the relationship with all cognitive measures (Appendix 4 in
Supplementary materials). The association between balance and per-
formance on REY immediate recall (β=0.059, 95% CI: 0.033, 0.084,
p < 0.001), REY delayed recall (β= 0.028, 95% CI: 0.002, 0.054,
p=0.037), mental alternation test (β= 0.037, 95% CI: 0.033, 0.084,
p=0.007), the Stroop test (β=0.052, 95% CI: 0.027, 0.077,
p < 0.001) and categorical fluency (β=0.037, 95% CI: 0.011, 0.063,
p=0.006) increased with age. The opposite pattern was observed for
processing speed, wherein a smaller effect was observed in older adults
(β=-0.035, 95% CI: -0.061, -0.009, p=0.009; Figs. 3,4).

4. Discussion

Changes in cognitive function and mobility are commonly observed
in ageing populations. In a study of 28,808 community-dwelling adults
we found that poor cognitive function was associated with reduced
mobility, as measured by gait, balance and chair stands, even when
various confounders were considered. Given the large sample size, an
interpretation of standardised beta coefficients may be more in-
formative than significance levels. It is important to stress that coeffi-
cients, albeit significant, were modest at best. The small magnitude of
observed effects suggests that previous studies may have been under-
powered when examining the mobility-cognition association.

It has been speculated that the mobility-cognition relationship may
be selectively driven by executive function [2]. Here, we found that all
cognitive measures were associated with indices of mobility. These
findings are in line with a previous meta-analysis, wherein small, yet
significant, pooled effect sizes for the association between mobility and
executive function, processing speed and memory were reported [3].
For gait and chair stands, the largest coefficient was observed in the
relationship with processing speed, while the association with memory
measures tended to yield the smallest coefficients. This pattern corro-
borates previous reports of weak associations with memory measures
[22]. Altogether, our results suggest that the association between cog-
nition and mobility is not domain specific, but a global association, with

Table 1
Overview of sample characteristics and outcome measures.

Sample characteristics Mean ± SD Range

Demographics
N 28,808
Age (years) 62.87 ± 10.2 45–87a

Sex (N, % female) 14,683 (51%)
Education level 4.01 ± 1.58 1–6
BMI 28.05 ± 5.43 12.9–69.65
History of arthritis (N, %) 9918 (34.43%)
Depressive symptoms (CES-10) 5.19 ± 4.62 0–30
PASE score 110.63 ± 45.11 0–267.64
Social participation 3.02 ± 0.60 0–4

Mobility measures
Balance (s) 39.51 ± 23.32 0–60
Chair stands (s)b 13.17 ± 3.35 2.12–24.66
Walking time (s)b 4.2 ± 0.82 1.56–7.41

Cognitive measures
Choice reaction time (ms)b 810.1 ± 159.7 445.8–1442.8
REY Immediate recall 5.86 ± 1.84 1–11
REY Delayed recall 4.03 ± 2.1 0–10
Phonemic fluency 13.1 ± 4.27 1–35
Categorical fluency 21.46 ± 6.32 3–40
Mental alternation test 27.25 ± 7.85 1–51
Stroop score (interference) 14 ± 8.43 −83 to 122

a Although CLSA targeted men and women aged between 45 and 85 at
baseline, some participants were older than 85.

b Lower values reflect better performance.
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only a suggestive predilection toward processing speed and executive
function over memory measures.

Mobility is a multi-faceted concept measured in the CLSA cohort
through: gait speed (locomotion), single leg-stand (balance) and chair
stands (lower-extremity strength/power). Although they target slightly
different aspects of mobility, observational studies have implicated gait,
balance and chair stands in the loss of independence, quality of life and
even mortality of older adults [23]. Here, these aspects are shown to
also correlate with cognitive function. While the cross-sectional nature
of our analysis prevents us from drawing conclusions regarding direc-
tionality, it could be that age-related changes in cognition affects mo-
bility [24], that reduced mobility precedes cognitive decline [25], or

that their correlation is driven by a third factor, such as physical ac-
tivity [26]. Firstly, mobility relies on cognitive processes to anticipate
and adapt to the moving environment while maintaining postural
control and motor coordination [7]. For instance, gait and balance re-
quire the interplay of attention and executive function. Decreased ex-
ecutive function could, therefore, lead to decreased mobility func-
tioning [27]. Conversely, decreased physical function, as evidenced by
those with difficulties rising from chairs, balancing or walking, can
promote physical inactivity, limit engagement in social and leisure
activities, and increase risk of depression, all of which have detrimental
effects on cognitive function [3,13,15]. Nonetheless, in the present
analysis, controlling for physical activity, depressive symptoms and

Table 2
Standardized coefficients, confidence intervals (95%) and p-values for associations between measures of mobility and cognition after adjusting for age, education and
sex.

Walking time Chair stands Balance

N β (SE) 95% CI p N β (SE) 95% CI p N β (SE) 95% CI p

Choice reaction time 27,886 −0.106
(0.006)

−0.117,
−0.094

< 0.001 27,247 −0.165
(0.006)

−0.176,
−0.153

< 0.001 27,126 0.178
(0.013)

0.152,
0.203

<0.001

REY I 27,298 −0.064
(0.006)

−0.075,
−0.052

< 0.001 26,664 −0.066
(0.006)

−0.077,
−0.055

< 0.001 26,551 0.151
(0.013)

0.126,
0.176

<0.001

REY II 27,299 −0.043
(0.006)

−0.055,
−0.032

< 0.001 26,670 −0.036
(0.006)

−0.048,
−0.025

< 0.001 26,552 0.123
(0.013)

0.099,
0.149

<0.001

Mental alternation
test

26,467 −0.096
(0.006)

−0.108,
−0.084

< 0.001 25,850 −0.077
(0.006)

−0.088,
−0.065

< 0.001 25,736 0.110
(0.013)

0.084,
0.137

<0.001

Stroop 28,333 −0.066
(0.006)

−0.077,
−0.054

< 0.001 27,677 −0.045
(0.006)

−0.056
−0.034

< 0.001 28,734 0.124
(0.012)

0.099,
0.148

<0.001

Categorical fluency 27,613 −0.095
(0.006)

−0.110,
−0.084

< 0.001 26,972 −0.089
(0.006)

−0.1, −0.077 < 0.001 26,846 0.181
(0.013)

0.155,
0.206

<0.001

Phonemic fluency 27,999 −0.090
(0.006)

−0.110,
−0.084

< 0.001 27,355 −0.095
(0.006)

−0.106,
−0.083

< 0.001 27,229 0.173
(0.013)

0.148,
0.199

<0.001

Beta= Standardized coefficients; SE= Standard Error.

Fig. 1. Plots illustrate the moderating effect of
age on the associations between walking time
and cognitive measures. Each plot shows the
estimated effect when age is fixed at given
values (red). (For interpretation of the refer-
ences to colour in this figure legend, the reader
is referred to the web version of this article.)

Fig. 2. Plots illustrate the moderating effect of
age on the associations between chair stands
and cognitive measures. Each plot shows the
estimated effect when age is fixed at given
values (red). (For interpretation of the refer-
ences to colour in this figure legend, the reader
is referred to the web version of this article.)

Fig. 3. Plots illustrate the moderating effect of
age on the associations between balance and
cognitive measures. Each plot shows the esti-
mated effect when age is fixed at given values
(red). (For interpretation of the references to
colour in this figure legend, the reader is re-
ferred to the web version of this article.)

Fig. 4. Plots illustrate the moderating effect of
age on the associations between balance and
cognitive measures. Each plot shows the esti-
mated effect when age is fixed at given values
(red). (For interpretation of the references to
colour in this figure legend, the reader is re-
ferred to the web version of this article.)

N. Demnitz et al. Gait & Posture 64 (2018) 238–243

241



social activity did not remove the association between mobility and
cognition.

As hypothesised, we found that the mobility-cognition association is
often stronger in older adults. This increased interdependence with age
may reflect age-related atrophy of shared neural structures and/or an
increased reliance on cognitive processes for sensorimotor integration
with age (for review, see [28]). For instance, white matter hyper-
intensities (WMHs) are associated with reduced cognitive function
[29], slower gait and an increased risk of falls [30]. Given that WMH
prevalence increases with age [29], it is plausible that increased WMH
burden may account for some of the increased mobility-cognition with
age. Similarly, global brain atrophy, as well as regional gray matter
loss, are susceptible to age-related changes and have been shown to
correlate with declines in both mobility [30] and cognitive function
[31]. Finally, it is worth noting that most previous studies have looked
only at older samples (aged 65+), which may explain why our stan-
dardised coefficients were smaller than those previously reported [6].

The strengths of our study include the population-based design and
the many independent cognitive and mobility measures investigated. A
large sample allows the incorporation of multiple confounding vari-
ables to be incorporated into the model without concerns over power
loss [32]. Poor mobility is associated with a cascade of other detri-
mental factors (e.g. depression, social isolation, low physical activity).
Many of these factors are also independently associated with cognition
[13–15]. Analyses of the relationship between mobility and cognition
should, therefore, account for these factors. To date, however, studies
have often been unable to do so because they lack sample character-
isation or the power to include several covariates in their models. The
availability of these variables in the CLSA dataset, as well as its notable
sample size, are strong advantages of this study.

Some limitations should be noted. First, analyses in large cohorts
like the CLSA may yield statistically significant associations even when
their explanatory power is very small [33]. For example, the association
between walking and REY delayed recall was significant (p < 0.001),
despite having a very small coefficient (ß=0.04). This highlights the
importance of drawing conclusions from standardized coefficients and
confidence intervals over and above the p-value. Second, CLSA parti-
cipants at the time of enrolment were community-dwellers aged 45-87.
Recruitment excluded those living in long-term care facilities or unable
to provide informed consent and this may have resulted in a healthy
participant bias, particularly for the older adults. It should also be noted
that our mobility measures may have lacked sensitivity. As evidenced
by the high proportion of adults performing at ceiling in the balance
score, a 60 s one-legged balance test may not be adequate to assess
subtle balance difficulties in healthy populations. Similarly, although
highly relevant in clinical populations, a 4m self-paced walking test
may not be sensitive enough to capture mobility-cognition relations in
healthy adults and may be confounded by acceleration and deceleration
speed at the start and end of the pathway. Accordingly, more precise
(quantitative gait measures by electronic walkways), more challenging
(e.g., 4 m at fast pace), or longer (e.g., 10 m at usual pace) measures
may be more appropriate in research-settings. Quantitative gait ana-
lyses also offer additional gait indices, such as step-time variability and
gait rhythm, which have been argued to be more sensitive to associa-
tions with cognition ([34], for review see [1]). It would, therefore, be of
interest to incorporate a more comprehensive analyses of gait in future
studies.

As previously mentioned, the cross-sectional design of our current
findings prevents any causal inferences regarding the mobility-cogni-
tion relationship. Fortunately, CLSA participants will continue to be
followed, with repeated cognitive and mobility assessments, until 2033.
Driven by the baseline findings presented here, this cohort presents a
unique opportunity to compare and complement cross-sectional and
longitudinal findings. It will therefore be of interest to use follow-up
CLSA data to address (1) whether adults with poor mobility at baseline
are more likely to develop cognitive impairments later on, (2) whether

adults with poor cognition at baseline are more likely to develop mo-
bility impairments later on, and (3) whether, longitudinally, the asso-
ciation between the two becomes stronger with increasing age.

5. Conclusion

In conclusion, we found that cognitive performance was associated
with indices of mobility in a large sample of community-dwelling
adults. These associations remained significant even when adjusting for
multiple confounders. Associations were observed across cognitive
domains, and were moderated by age, suggesting that shared age-re-
lated mechanisms may underlie the relationship between mobility and
cognition. While these results are informative for interventions aimed
at promoting healthy ageing, the small effect sizes observed may limit
the promise of mobility as a stand-alone target.
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