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Abstract

Purpose: The current study explored physical activity-induced bone adaptation at different 

stages of somatic maturity by comparing side-to-side differences in midshaft humerus properties 

between male throwing athletes and controls. Throwers present an internally controlled model, 

while inclusion of control subjects removes normal arm dominance influences.

Methods: Throwing athletes (n=90) and controls (n=51) were categorized into maturity groups 

(PRE, PERI, POST-EARLY, POST-MID and POST-LATE) based on estimated years from peak 

height velocity (<−2, −2-to-2, 2-to-4, 4-to-10 and >10 years). Side-to-side percent differences in 

midshaft humerus cortical volumetric bone mineral density (Ct.vBMD) and bone mineral content 

(Ct.BMC), total (Tt.Ar), medullary (Me.Ar) and cortical (Ct.Ar) area, average cortical thickness 

(Ct.Th), and polar Strength Strain Index (SSIP) was assessed.

Results: Significant interactions between physical activity and maturity on side-to-side 

differences in Ct.BMC, Tt.Ar, Ct.Ar, Me.Ar, Ct.Th and SSIP resulted from: 1) greater throwing-to-

nonthrowing arm differences than dominant-to-nondominant arm differences in controls (all 

p<0.05), and; 2) throwing-to-nonthrowing arm differences in throwers being progressively greater 

across maturity groups (all p<0.05). Regional analyses revealed greatest adaptation in medial and 

lateral sectors, particularly in the three POST maturity groups. Years throwing predicted 59% of 

the variance of the variance in throwing-to-nonthrowing arm difference in SSIP (p<0.001).

Conclusion: These data suggest physical activity has skeletal benefits beginning prior to and 

continuing beyond somatic maturation, and that a longer duration of exposure to physical activity 

has cumulative skeletal benefits. Thus, physical activity should be encouraged at the earliest age 

possible and be continued into early adulthood to optimize skeletal benefits.
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MINI ABSTRACT:

Physical activity benefits the skeleton, but there is contrasting evidence regarding whether benefits 

differ at different stages of growth. The current study demonstrates that physical activity should be 

encouraged at the earliest age possible and be continued into early adulthood to gain most skeletal 

benefits.
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INTRODUCTION

Growth is an important time to take advantage of the ability of the skeleton to respond and 

adapt to its prevailing mechanical environment. Approximately 25–30% of adult bone 

mineral is accrued within the 2–3 years around puberty and approximately 95% of adult 

bone mass has accrued by the end of adolescence [1–3]. As fracture risk during aging 

doubles for each standard deviation of bone lost from mean peak bone mass [4] and a 10% 

increase in peak bone mass is predicted to delay the onset of osteoporosis by 13 years [5], 

physical activity to increase peak bone mass during growth is advocated as a means of 

offsetting the increase in low trauma fracture risk associated with aging [6–8].

The skeletal advantage of physical activity during specific phases of growth was eloquently 

shown by Kannus and colleagues [9]. Using racquet sport players as an internally controlled 

model, they observed players who began racquet sports before puberty had more than two-

fold greater differences in bone mass between their playing and nonplaying arms compared 

to players who began post-puberty. In support of this observation, Heinonen et al. [10] 

reported high impact exercise increased bone mineral accrual in premenarcheal, but not 

postmenarcheal girls. Similarly, Ducher et al. [11] observed post-pubertal racquet sport 

players had equivalent side-to-side differences in dual-energy x-ray absorptiometry (DXA) 

derived bone mass between their playing and nonplaying arms compared to peri-pubertal 

players, despite the former playing for longer. These cumulative findings suggest a reduction 

in skeletal mechanoadaptation following puberty and the presence of a ‘window of 

opportunity’ during pre- and early-puberty where the skeleton maybe most amenable to the 

mechanical loading associated with physical activity [12].

Although there is evidence for heightened skeletal benefits of physical activity during early 

phases of puberty, contrasting findings have more recently been reported. Data from the 

Bone Mineral Density in Childhood Study indicated that self-reported weight bearing 

physical activity had a significant longitudinal effect on bone mass accrual, but there was not 

a differential effect according to maturational stage [13]. Meanwhile, data provided by 

Rantalainen et al. [14] suggested that the peri- and post-pubertal periods were actually more 

favourable than pre-puberty to positively modify skeletal traits via physical activity. These 

contrasting findings regarding the window of opportunity for the skeletal benefits of physical 

activity may reflect study design differences, but indicate a need for further research into the 

skeletal benefits of physical activity at different stages of growth.
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Further highlighting a need for additional studies into physical activity effects during growth 

is recent evidence revealing lifelong benefits of physical activity completed when young on 

bone size and strength, but not mass [15–17]. Comparing the throwing and nonthrowing 

arms within former professional baseball players, half of the bone size (total cross-sectional 

area) and one-third of the bone strength (polar moment of inertia) benefits of physical 

activity when young were maintained lifelong [17]. In contrast, the bone mass benefits of 

physical activity when young were gradually lost as a result of medullary expansion and 

cortical trabecularization. These data suggest that physical activity during growth should 

focus on the optimization of bone size and strength rather than the current paradigm of 

increasing mass. Few studies have explored the interaction between physical activity and 

stage of growth on skeletal structural adaptation [10, 11, 14, 18, 19].

The aim of the current study was to explore physical activity-induced bone adaptation at 

different stages of growth. To address this aim, we cross-sectionally compared side-to-side 

differences in midshaft humerus properties between male baseball players and controls at 

different stages of somatic maturity. Baseball players perform unilateral upper extremity 

physical activity which loads and induces adaptation of the humerus within the throwing arm 

[17, 20]. The unilateral nature of throwing enables the contralateral nonthrowing arm to 

minimize selection bias associated with our cross-sectional study design by serving as an 

internal control site for inherited and other systemic traits. By comparing throwing-to-

nonthrowing arm differences in throwing athletes with dominant-to-nondominant arm 

differences in controls, we also isolated the skeletal benefits of throwing-related physical 

activity from side-to-side differences due to elevated habitual unilateral loading associated 

with simple arm dominance.

MATERIALS AND METHODS

Participants

Convenience samples of male baseball players (throwers) and controls aged ≥8 years were 

recruited. Throwers aged ≤23 years were recruited from local regional, high school and 

collegiate baseball teams, whereas those aged >23 years were recruited from individuals 

competing in professional baseball at the Minor League Baseball (Triple-A) level. Throwers 

were included if they: 1) play or practice baseball during the competitive season at least 3 

times per week; 2) play or practice baseball at least 6 months per year; 3) begun playing 

baseball prior to 6 years of age and have been playing for a minimum of 3 years, and; 4) 

have not had a hiatus from competitive baseball for more than 12 months at any time. 

Throwers ≤23 years completed a questionnaire to determine their eligibility and estimate 

weekly playing time and number of throws. Throwers >23 years (professional baseball 

players) did not complete the throwing questionnaire, with an interview being used in place 

to determine eligibility. Exclusion criteria for both throwers and controls were: 1) known 

metabolic bone disease; 2) administration of pharmacological agents known to influence 

skeletal metabolism; 3) participation more than twice per month for longer than six months 

in an activity that primarily involves unilateral upper limb use (except baseball in the 

thrower group); 4) history of a humeral fracture or stress fracture, and; 5) exposure to upper 

extremity immobilization for more than 2 weeks within the past 2 years. Arm dominance 
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was determined as the arm one does or would throw a ball with. The study was approved by 

the Institutional Review Board of Indiana University, and written informed assent was 

obtained from all participants <18 years of age and written informed consent obtained from 

all participants ≥18 years of age and parent/guardians of participants <18 years of age.

Anthropometry

Standing and sitting height were measured to the nearest 0.1 cm using a wall-mounted 

digital stadiometer, whereas an electronic balance scale was used to measure weight to the 

nearest 0.1 kg. Body mass index (BMI, kg/m2) was derived from standing height and 

weight. Humeral length was measured using a sliding anthropometer to the nearest 0.1 cm as 

the distance between the lateral border of the acromion and the radiohumeral joint line.

Maturity

Throwers and controls were categorized into groups based on their estimated years from 

peak height velocity (PHV) (also referred to as ‘maturity offset’). PHV is an accepted 

indicator of somatic maturity and can be used to account for the range of variability in 

somatic maturity between individuals of the same chronological age [21]. We did not use 

Tanner staging of secondary sex characteristics as it more provides an indication of pubertal 

development (as opposed to somatic development), with substantial variability being 

observed in the timing of PHV across Tanner stages [22]. Also, Tanner staging is limited in 

its ability to subcategorize individuals who have completed sexual maturation because of its 

staging of all post-pubertal individuals in a single category (stage 5).

In participants aged <18 years, maturity offset was calculated from standing height, sitting 

height, leg length (calculated as standing height minus sitting height), and chronological age 

using the sex-specific multiple regression equation described by Mirwald et al. [23]. The 

equation explains 92% of the variance in actual years from longitudinally measured PHV 

and provides estimate values of age of PHV that differ from actual values by only 0.24 years 

[23]. In participants aged ≥18 years, maturity offset was estimated as chronological age 

minus self-reported age at the time of their adolescent growth spurt. Participants estimated to 

be <−2, −2-to-2, 2-to-4, 4-to-10 and >10 years from their PHV were categorized into PRE, 

PERI, POST-EARLY, POST-MID and POST-LATE maturity groups, respectively.

Dual-energy x-ray absorptiometry

Whole-body, hip and lumbar spine dual-energy X-ray absorptiometry (DXA) was performed 

using the manufacturer’s standard protocols on a Hologic Discovery-W machine equipped 

with Apex v4.0 software (Hologic, Inc., Waltham, MA, USA). Analyses of whole body 

scans included assessment of whole body areal bone mineral content (BMC, kg), lean mass 

(kg) and percent fat mass (%). Sub-regional analyses provided dominant and nondominant 

whole arm lean mass, with the glenohumeral joint line being the landmark for the division of 

the upper extremity from the trunk.

Peripheral quantitative computed tomography

Peripheral quantitative computed tomography (pQCT) of the midshaft humerus was 

performed bilaterally using a Stratec XCT 3000 machine (Stratec Medizintechnik GmbH, 
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Pforzheim, Germany) equipped with Stratec software version 6.20C, as previously described 

[17, 20, 24, 25]. Subjects were positioned in supine with their upper extremity positioned in 

90° shoulder abduction. A scout scan was performed to visualize the radiohumeral joint and 

a reference line placed at the distal edge of the humeral capitulum. A tomographic slice 

(thickness=2.3 mm; voxel size=300 μm; scan speed=12 mm/s) was taken at 50% of humeral 

length (midshaft) from the reference line, with humeral length being assessed earlier using a 

sliding anthropometer.

Tomographic slices were analyzed for cortical bone mineral density, content, structure and 

estimated strength, and muscle cross-sectional area. Cortical mode 1 (threshold, 710 mg/

cm3) was used to obtain cortical volumetric bone mineral density (Ct.vBMD, mg/cm3), 

cortical BMC (Ct.BMC, mg/mm), and cortical area (Ct.Ar, cm2). Total area (Tt.Ar, cm2) and 

average cortical thickness (Ct.Th, mm) were obtained by analyzing slices using contour 

mode 1 (threshold, 710 mg/cm3) to define the outer bone edge and peel mode 2 (threshold, 

400 mg/cm3) to separate the cortical and subcortical/medullary compartments. Cortical 

thickness measures used a circular ring model, and medullary area (Me.Ar, mm2) was 

derived as total area minus cortical area. Bone strength was estimated by the polar Strength 

Strain Index (SSIP, mm3) obtained using cortical mode 2 (threshold = 400 mg/cm3). SSIP 

represents the density-weighted section modulus and predicts over 90% of the variance in ex 
vivo midshaft humerus mechanical properties [25].

Muscle cross-sectional area (cm2) was assessed by using contour mode 3 (threshold, −100 

mg/cm3) to locate the skin surface and peel mode 2 (threshold, 40 mg/cm3) to locate the 

subcutaneous fat-muscle boundary. A 3×3 kernel filter to filter all voxels between −500 and 

500 mg/cm3 followed by a 5×5 kernel filter to filter all voxels between −500 and 300 

mg/cm3 (F03F05 filter) was used to remove noise. Short-term precision for the pQCT 

scanning procedure on 30 healthy individuals scanned six times with interim repositioning 

showed root mean square coefficients of variation (RMS-CVs) of <1.5% for bone density, 

mass, structure, and estimated strength measures, and <2% for mCSA [25].

To explore regional bone geometry adaptation to throwing, polar pericortical and 

endocortical radii were obtained for the throwing and nonthrowing arms in throwers and 

dominant and nondominant arms in controls. Stratec pQCT image files and data were 

opened in ImageJ (v1.45s; National Institutes of Health) and analyzed using the BoneJ 

plugin [26], as previously described [27]. Images were rotated to align the bones according 

to the IMAX and IMIN axes, and nonthrowing/nondominant arm images were flipped to 

superimpose throwing/dominant arm images. Using a threshold value of 350 mg/cm3 to 

locate bone tissue, the distance of the endocortical and pericortical surfaces from the 

centroid of the medullary cavity were measured in 10° polar sectors. Ct.Th within each 

sector was calculated as the pericortical minus endocortical radius.

Statistical analyses

Two-tailed analyses with α = 0.05 were performed with IBM SPSS Statistics (v23; SPSS 

Inc., Chicago, IL), unless otherwise specified. Participant characteristics within each 

maturity group were compared between throwers and controls using independent sample t-

tests. Throwing demographics between maturity groups in throwers were compared using a 
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chi-square analysis or one-way analyses of variance (ANOVA) followed by Tukey pairwise 

comparisons. Side-to-side differences between the throwing and nonthrowing arms in 

throwers were assessed by calculating mean percent differences ([throwing–nonthrowing]/

nonthrowing x 100%) and their 95% confidence interval (CI). 95% CIs not crossing zero 

were considered statistically significant, as determined by single sample t-tests with a 

population mean of 0%. Similar analyses were performed to determine side-to-side 

differences between the dominant and nondominant arms in controls.

The effects of physical activity (throwers vs. controls) and maturity (PRE vs. PERI vs. 

POST-EARLY vs. POST-MID vs. POST-LATE) on side-to-side percent differences were 

determined using two-way factorial ANOVAs. In the advent of a non-significant ANOVA 

interaction, main effects for each independent variable were explored. Significant ANOVA 

interactions were explored using simple effects tests to assess for the effect of physical 

activity within each maturity group (independent sample t-tests) and maturity within each 

physical activity group (one-way ANOVA followed by Tukey pairwise comparisons), with a 

false discovery rate threshold set at q = 0.05 used to correct for multiple comparisons [28].

To explore the regional-specificity of bone geometry adaptation associated with throwing 

within each maturity group, polar pericortical and endocortical radii and polar Ct.Th data 

were assessed in throwers using two-way repeated measures ANOVA, with arm (throwing 

vs. nonthrowing) and sector (1 through 36) as within-subject variables. Data in each sector 

were corrected a priori for dominant-to-nondominant arm differences observed in controls to 

remove any regional side-to-side differences attributable to simple arm dominance. In the 

presence of a significant arm x sector interaction, post-hoc paired t-tests were used to 

compare throwing vs. nonthrowing arm differences within each individual sector, with a 

false discovery rate threshold set at q = 0.05 used to correct for multiple comparisons [28].

Linear regression analysis was used in the thrower group to assess whether specific 

demographic characteristics (years throwing, estimated playing time per week and estimated 

throws per week) and dominant-to-nondominant differences in upper extremity lean 

measures (whole arm lean mass and upper arm muscle CSA) predicted throwing-to-

nonthrowing differences in midshaft humerus estimated strength (SSIP). The fit of each 

univariate model assessed using the coefficient of determination (R2).

RESULTS

Participant characteristics

A total of 90 throwers and 51 controls were categorized into the 5 maturity groups (Table 1). 

Thrower and control groups within each maturity group were comparable for age, maturity 

offset and estimated age of PHV (all p > 0.05). Whole-body and regional anthropometry was 

generally well-matched between throwers and controls within each maturity group; however, 

throwers in the POST-MID group had greater spine and hip aBMD than their controls, while 

throwers in the POST-LATE group had greater total mass, lean mass, and hip aBMD than 

their controls (all p < 0.05). In throwers, there were no differences between maturity groups 

in terms of age started throwing, estimated playing time per week or estimated throws per 
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week (all p = 0.13 to 0.69); however, each maturity group had progressively more years 

throwing (all p < 0.001).

Effect of throwing on midshaft humerus bone properties

Controls and throwers in each maturity group exhibited side-to-side differences in bone 

properties generally in favor of the dominant and throwing arm, respectively (Supplementary 

table 1). There were significant interactions between physical activity and maturity on side-

to-side differences in Ct.BMC, Tt.Ar, Ct.Ar, Me.Ar, Ct.Th and SSIP (all p < 0.01), indicating 

that the physical activity effect differed according to maturity group. Throwers within each 

maturity group had greater throwing-to-nonthrowing arm differences for Ct.BMC, Tt.Ar, 

Ct.Ar, Ct.Th and SSIP and smaller throwing-to-nonthrowing differences for Me.Ar than 

dominant-to-nondominant arm differences in controls (all p < 0.05; Fig. 1). The significant 

interactions between physical activity and maturity resulted from throwing-to-nonthrowing 

arm differences in throwers being progressively greater across maturity groups from PRE to 

POST-LATE (all p < 0.05; Fig. 1). There was no interaction between physical activity and 

maturity or main effects for either independent variable on Ct.vBMD (all p > 0.25; data not 
shown).

Effect of throwing on regional geometry of the midshaft humerus

Following a priori correction for dominant-to-nondominant arm differences observed in 

controls, there were significant arm x sector interactions for polar pericortical and 

endocortical radii, and polar Ct.Th within each maturity group in throwers (all p < 0.05; Fig. 

2). Post-hoc analyses revealed PRE and PERI throwers had throwing-to-nonthrowing arm 

differences for pericortical radii predominantly in anterior and anterior/lateral sectors, 

respectively (all p < 0.05; Figs. 2A,B). Both the POST-EARLY and -MID groups exhibited 

throwing-to-nonthrowing arm differences for pericortical radii mostly in medial and lateral 

sectors (all p < 0.05; Figs. 2C,D). The throwing arm in the POST-LATE group exhibited 

greater pericortical radii in all sectors when compared to the nonthrowing arm (all p < 0.05); 

however, largest throwing-to-nonthrowing arm differences were observed in medial and 

lateral sectors (Fig. 2E).

Each maturity group had varying regions and numbers of sectors exhibiting significantly 

smaller endocortical radii in their throwing arm (all p < 0.05; Figs. 2A-E). POST-MID and -

LATE throwers had throwing-to-nonthrowing arm differences for endocortical radii in most 

and all sectors, respectively (all p < 0.05; Figs. 2D,E). The combination of larger pericortical 

and smaller endocortical radii in the throwing arm contributed to greater polar Ct.Th in 

varying sectors within each maturity group (all p < 0.05; Figs. 2F-J). In general, each 

maturity group had increased throwing arm Ct.Th in medial, lateral and anterior sectors. 

PRE and PERI throwers did not have throwing-to-nonthrowing arm differences for Ct.Th in 

posterior radii (all p > 0.05; Fig. 2F,G). POST-LATE throwers had throwing-to-nonthrowing 

arm differences for Ct.Th in all sectors (all p < 0.05); however, differences were greatest in 

medial and lateral sectors, consistent with the larger pericortical radii differences in these 

regions (Fig. 2J).
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Predictors of throwing-to-nonthrowing arm differences in bone strength

Years throwing predicted throwing-to-nonthrowing arm differences in SSIP explaining 59% 

of the variance in the latter (p < 0.001; Fig. 3). Estimated playing time per week and 

estimated throws per week did not predict throwing-to-nonthrowing arm differences in SSIP 

(R2 = 0.02 to 0.05, p = 0.11 to 0.33) (data not shown). Similarly, throwing-to-nonthrowing 

arm differences in upper extremity lean measures (whole arm lean mass and upper arm 

muscle CSA) did not predict throwing-to-nonthrowing arm differences in SSIP (all R2 < 

0.01, p = 0.61 to 0.66) (data not shown).

DISCUSSION

The principal finding of this cross-sectional study is that individuals at increasingly 

advanced stages of somatic maturity exhibited progressively greater physical activity-

induced skeletal adaptation. This observation suggests that the mechanical loading 

associated with physical activity has skeletal benefits across all stages of maturation and that 

benefits are not isolated to a single ‘window of opportunity’ during pre- and early-puberty.

The observation of greater throwing-to-nonthrowing arm differences with advancing years 

following somatic maturation contrast those of Bass and colleagues [11, 18] who used a 

similar internally controlled model (i.e. racquet sport players) and cross-sectional study 

design to investigate skeletal mechanoadaptation according to pubertal stage. They reported 

post-pubertal girls and boys had similar magnitudes of racquet-to-nonracquet arm 

differences to those who were peri-pubertal, despite the former having a longer playing 

history [11, 18]. These data suggested a decline in skeletal mechanosensitivity and 

adaptation once growth slowed.

A possible reason for our contrasting data to Bass and colleagues [11, 18], despite their 

similar cross-sectional study design, include the study of a larger number of post-pubertal/

maturation throwers (n=52) who spanned a broader post-maturation range, including a group 

of individuals who were 14.5 years beyond their estimated PHV (average age = 28.1 years). 

Bass and colleagues [11] included only a small number of post-pubertal individuals (n=9) in 

their study of male racquet-sport players who were all within the early stage post-puberty 

(average age = 17.1 years). Our inclusion of a greater number of subjects who were more 

years beyond their estimated age of somatic maturation allowed for a greater effect size and 

enhanced statistical power to identify ongoing skeletal benefits of physical activity beyond 

somatic maturation. Other possible contributing factors to our observation of ongoing 

skeletal benefits of physical activity beyond maturation include our inclusion of control 

subjects to account for side-to-side differences due to habitual loading associated with 

simple limb dominance and the study of baseball players, with the latter possibly 

introducing more progressive or specific humeral loading across somatic maturation than 

occurs in racquet-sport players.

Our findings suggest physical activity has skeletal benefits beginning prior to and continuing 

beyond somatic maturation, and that a longer duration of exposure to physical activity has 

cumulative skeletal benefits. The latter was supported by a strong linear association between 

total years throwing and estimated bone strength. The identification of skeletal benefits of 
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physical activity from a young age fits with the larger body of evidence, while the linear 

association between duration of physical activity exposure and bone adaptation is consistent 

with recent longitudinal data suggesting maturational stage does not have a differential effect 

on physical activity-induced bone mass accrual [13]. Although, the latter study did not 

assess bone structural outcomes and was limited by the use of participant self-report of 

physical activity levels which can be inaccurate.

Although we identified a linear association between years throwing and the magnitude of 

bone adaptation, the true relationship is likely curvilinear plateauing with increasing years of 

exposure. We know from preclinical studies that skeletal adaptation to repetitive mechanical 

loading wanes and exhibits a logarithmic pattern [29–31]. This occurs due to cellular 

accommodation whereby mechanosensitive cells become accustomed to habitual loads [32, 

33]. Adaptation alters the local environment around mechanosensitive cells making it 

progressively more difficult to introduce a large differential between usual and novel loads. 

Thus, we would predict that it is more difficult to induce adaptation with increasing years 

throwing resulting in a plateauing in adaptation with advancing somatic maturation. Ducher 

et al. [34] partially demonstrated this phenomenon in their longitudinal study of racquet-

sports players by showing that girls with the largest side-to-side differences at baseline 

exhibited the least physical activity-induced adaptation over the succeeding 12 months.

Our use of a cross-sectional study design likely explains the observed linear, as opposed to 

expected curvilinear, relationship between adaptation and duration of physical activity 

exposure. Individuals within each advancing maturity group were at increasingly higher 

levels of baseball competition, with those in the POST-EARLY, -MID and -LATE groups 

competing in high school, collegiate and professional baseball, respectively. As each 

progressive level of competition is increasingly more selective with only the best athletes 

continuing to the next level, some of the observed progressive adaptation could be accounted 

for by the inclusion of athletes who had the greatest physical activity exposure and, thus, 

adaptation during their preceding stage/s of somatic maturation.

The pattern of midshaft humerus adaptation observed in the current study is consistent with 

our previous work detailing loading and adaptation of the humeral diaphysis in baseball 

players [17, 20]. The throwing arm in throwers had a larger midshaft humerus (Tt.Ar) with 

more mass (Ct.BMC), a contracted medullary cavity (Me.Ar) and thicker cortex (Ct.Th) than 

the contralateral nonthrowing arm, independent of stage of somatic maturity and normal arm 

dominance. These mass and structural adaptations contributed to increased bone strength 

(SSIP) in each maturity group, with SSIP predicting over 90% of the variance in ex vivo 
midshaft humerus mechanical properties [25]. These data suggest that physical activity 

before, during and after somatic maturation increased bone accrual on the periosteal surface, 

and either increased accrual or decreased resorption on the endocortical surface.

Bone adaptive responses to physical activity-related mechanical stimuli are highly site-

specific. Adaptation is not only localized to the bones that are loaded, but also to the specific 

regions within those bones. To provide an indication of the regional pattern of midshaft 

humerus adaptation to throwing, we assessed polar pericortical and endocortical radii, and 

polar Ct.Th. Data revealed greatest throwing-to-nonthrowing arm differences in medial and 
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lateral sectors, particularly in the three POST maturity groups. This suggests overhand 

throwing predominantly loads the midshaft humerus in a mediolateral direction, which we 

partly modelled using a subject-specific musculoskeletal model and CT-based finite-element 

model of the humerus during a fastball pitch in a professional baseball player [17]. However, 

the greater pericortical radii in all polar segments observed in the POST-LATE group 

suggests that overhand throwing increases midshaft humerus bone strength in all loading 

directions.

The increase in overall bone cross-sectional area (i.e. size) induced when young is 

functionally important. Adding a small amount of mass to the outer surface of a bone results 

in a disproportionate increase in bone mechanical properties as stiffness is proportional to 

fourth power of the distance from the neutral axis [35, 36]. The evolutionary advantage is 

the creation of a strong, yet lightweight skeleton required by humans for endurance tasks 

[37]. However, more importantly an increase in bone size by pericortical expansion induced 

when young has been shown to persist lifelong even in the absence of continued heightened 

physical activity and independent of bone mass [17]. The current data suggest that to 

optimize bone size and, consequently lifelong bone health, physical activity should be 

commenced at the earliest age possible and be continued at least into early adulthood.

The current study possesses numerous strengths, including the use of an internally controlled 

model to minimize the impact of selection bias, inclusion of control subjects to remove side-

to-side differences due to normal arm dominance, and the study of bone structural 

adaptation. The study also used a validated estimator of somatic maturity (i.e. years from 

PHV [maturity offset]), which has recently been revalidated [38], rather than relying on self-

reported stage of sexual maturation. However, the study also possesses limitations. Beyond 

the aforementioned limitation of being a cross-sectional study, the study focused on the 

midshaft humerus which is principally a cortical bone site that is not prone to osteoporotic 

fracture. It is possible that alternative findings and conclusions may be drawn from the study 

of an osteoporotic-prone corticocancellous site, such as the proximal femur. We did not 

quantify differences in throwing variables between maturity groups (beyond estimated 

playing time and throws per week), with other variables such as throwing speed, training 

intensity, and throwing-to-nonthrowing arm differences in muscle strength potentially 

contributing to the linear relationship between years throwing and throwing-to-nonthrowing 

arm differences in estimated bone strength. Also, we studied males only and the findings 

may not be representative of females.

Within the acknowledged limitation of a cross-sectional study design, our data suggest that 

physical activity commenced when very young (prior to somatic maturation) induces 

structural adaptation and that activity continued across and beyond somatic maturation has 

ongoing structural benefits. These data indicate that physical activity should be encouraged 

at the earliest age possible and be continued into early adulthood to optimize structural 

benefits. The current study did not explore the benefits of physical activity continued into 

mid- and late-adulthood; however, our previous work identified that ongoing activity slows 

age-related loss of bone mass from the endocortical surface to maintain some of the mass 

benefits and enhance the strength benefits of activity performed from young and into young 

adulthood [17].
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Fig. 1. 
Throwers within each maturity group had more mass (cortical bone mineral content, 

Ct.BMC [A]), a larger size (total area, Tt.Ar [B]), enhanced structure (larger cortical area, 

Ct.Ar [C]; smaller medullary area, Me.Ar [D], and; greater cortical thickness, Ct.Th [E]) 
and greater estimated strength (polar Strength Strain Index; SSIP [F]) at the midshaft 

humerus in their throwing arm relative to their non-throwing arm, and relative to normal arm 

dominance effects (i.e. dominant-to-nondominant arm differences observed in controls). 

Data show the mean percent difference and 95% CI between the throwing-to-nonthrowing 

arms in throwers corrected for dominant-to-nondominant arm differences in controls (*p < 

0.05, †p < 0.01, ‡p < 0.001, independent samples t-test comparing throwers vs. controls). 

The magnitude of midshaft humerus adaptation to unilateral physical activity within 

throwers (i.e. throwing-to-nonthrowing arm difference) was progressively larger within each 

successive maturity group, with broken horizontal lines indicating significant (p ≤ 0.05) 

differences between pairwise maturity groups (one-way ANOVA followed by Tukey 
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pairwise comparisons, with a false discovery rate threshold used to correct for multiple 

comparisons).
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Fig. 2. 
Overhead throwing induced regional bone geometry adaptation at the midshaft humerus. 

Maps of average pericortical and endocortical radii (A-E) and average ± SD cortical 

thickness (F-J) in 10˚ polar sectors in the throwing (solid lines) and nonthrowing (broken 

lines) arms of throwers in the PRE- (A, F), PERI- (B, G), POST-EARLY (C, H), POST-

MID (D, I), and POST-LATE (E, J) maturity groups. *indicates throwing vs. nonthrowing 

arm difference within individual sector (p < 0.05), as determined by post-hoc post-hoc 

paired t-tests with a false discovery rate threshold used to correct for multiple comparisons. 

Data in each sector were corrected a priori for dominant-to-nondominant arm differences 
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observed in controls to remove any regional side-to-side differences attributable to simple 

arm dominance.
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Fig. 3. 
Relationship between years throwing and percent throwing-to-nonthrowing arm difference in 

midshaft humerus estimated strength (polar Strength Strain Index; SSIP). The percent 

throwing-to-nonthrowing arm difference represents the skeletal gain due to throwing (i.e. 

unilateral physical activity) over that due to normal growth (i.e. observed contralaterally 

within the non-throwing arm). *Indicates p < 0.001, as determined linear regression analysis.
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