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Abstract

Objective—Consistent estimation of causal effects with inverse probability weighting estimators 

is known to rely on consistent estimation of propensity scores. To alleviate the bias expected from 

incorrect model specification for these nuisance parameters in observational studies, data-adaptive 

estimation and in particular an ensemble learning approach known as Super Learning has been 

proposed as an alternative to the common practice of estimation based on arbitrary model 

specification. While the theoretical arguments against the use of the latter haphazard estimation 

strategy are evident, the extent to which data-adaptive estimation can improve inferences in 

practice is not. Some practitioners may view bias concerns over arbitrary parametric assumptions 

as academic considerations that are inconsequential in practice. They may also be wary of data-

adaptive estimation of the propensity scores for fear of greatly increasing estimation variability 

due to extreme weight values. With this report, we aim to contribute to the understanding of the 

potential practical consequences of the choice of estimation strategy for the propensity scores in 

real-world comparative effectiveness research.

Method—We implement secondary analyses of Electronic Health Record data from a large 

cohort of type 2 diabetes patients to evaluate the effects of four adaptive treatment intensification 

strategies for glucose control (dynamic treatment regimens) on subsequent development or 

progression of urinary albumin excretion. Three Inverse Probability Weighting estimators are 

implemented using both model-based and data-adaptive estimation strategies for the propensity 

scores. Their practical performances for proper confounding and selection bias adjustment are 

compared and evaluated against results from previous randomized experiments.

Conclusion—Results suggest both potential reduction in bias and increase in efficiency at the 

cost of an increase in computing time when using Super Learning to implement Inverse 

Probability Weighting estimators to draw causal inferences.

*Corresponding author: Romain Neugebauer, romain.s.neugebauer@kp.org. 

HHS Public Access
Author manuscript
Int J Biostat. Author manuscript; available in PMC 2018 July 19.

Published in final edited form as:
Int J Biostat. 2016 May 01; 12(1): 131–155. doi:10.1515/ijb-2015-0028.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Keywords

inverse probability weighting; super learning; propensity score; data-adaptive estimation; marginal 
structural model

1 Introduction

Consistent estimation of causal effects with Inverse Probability Weighting (IPW) estimators 

is known to rely on consistent estimation of propensity scores (PS) [1]. To alleviate the bias 

expected from incorrect parametric model specification for these nuisance parameters in 

observational studies, various data-adaptive PS estimation strategies (also known as machine 

learning algorithms) have been proposed [2–9] as alternatives to the common practice of PS 

estimation based on an arbitrarily specified parametric model (e. g., logistic model fitted by 

maximum likelihood) [10–13]. More recently, an ensemble learning approach known as 

Super Learning (SL) [14] was proposed as a data-adaptive strategy for PS estimation [15–

19] to avoid reliance on a single arbitrarily chosen machine learning algorithm.

While the theoretical arguments against the use of arbitrarily specified parametric models 

that do not encode true subject-matter knowledge about the functional form of the PS are 

evident, the extent to which data-adaptive PS estimation such as SL can improve inferences 

in practice is not. Despite results from several simulation studies that have addressed this 

topic previously, some practitioners may view bias concerns over arbitrary parametric 

assumptions as academic considerations that are inconsequential in practice. They may also 

be wary of data-adaptive estimation of the PS for fear of greatly increasing estimation 

variability due to extreme weight values.

With this report, we aim to contribute to the existing literature for understanding the 

potential practical consequences of the choice of estimation strategy for the PS. This effort is 

based on secondary analyses from a real-world comparative effectiveness research (CER) 

study in type 2 diabetes. Three IPW estimators are implemented using both model-based and 

data-adaptive estimation strategies for the PS. Their practical performances for proper 

confounding and selection bias adjustment are compared and evaluated against results from 

previous randomized experiments.

In Section 2, we introduce the CER observational study, its research question, results from 

prior randomized experiments and we introduce the notation for describing the various 

estimation approaches detailed in Section 3. Results from three candidate IPW estimators of 

the same causal estimand based on four candidate estimation approaches for the PS are 

presented in Section 4. We end with a discussion of these results in Section 5.

2 A case study in comparative effectiveness research in diabetes

In this section, we describe the CER question, answers from previous randomized studies, 

and the observational study on which is based the evaluation in this report. We also 

introduce formal notation for representing the data structure and the parameter of interest in 
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this analysis. We note that the presentation in this section appeared in prior work that relied 

on the same CER study [20, 21].

2.1 Research question and previous trial results

It has long been hypothesized that aggressive glycemic control is an effective strategy to 

reduce the occurrence of common and devastating microvascular and macrovascular 

complications of type 2 diabetes (T2DM). A major goal of clinical care of T2DM is 

minimization of such complications through a variety of pharmacological treatments and 

interventions to achieve recommended levels of glucose control. The progressive nature of 

T2DM results in frequent revisiting of treatment decisions for many patients as glycemic 

control deteriorates. Widely accepted stepwise guidelines start treatment with metformin, 

then add a secretagogue if control is not reached or deteriorates. Insulin or (less frequently) a 

third oral agent is the next step. Thus, it is common for T2DM patients to be on multiple 

glucose-lowering medications.

Previous recommendations specify target hemoglobin A1c of < 7% for most patients [22, 

23]. However, evidence supporting the effectiveness of a blanket recommendation is 

inconsistent across several outcomes [24–31], especially when intensive anti-diabetic 

therapy is required. In the analyses of this report, we aim to evaluate the impact of 

progressively more aggressive glucose-lowering strategies on the development or 

progression of albuminuria, a microvascular complication in T2DM.

In the ACCORD and ADVANCE clinical trials published from 2008 to 2010 [32–34], 

intensive glucose-lowering strategies using multiple classes of glucose-lowering agents 

succeeded in reducing A1c levels substantially. In the ADVANCE trial, the more intensive 

therapy arm aimed to reach an A1c level < 6.5% and achieved a mean A1c level of 6.5 %, 

compared to a mean level of 7.3 % in the control arm. In the ACCORD trial, the more 

intensive arm aimed for an A1c of < 6%, and achieved a mean A1c of 6.4 % (vs. 7.5 % in 

controls). There is substantial data from both trials [35, 36] to support the hypothesis [37, 

38] that, in general, those with T2DM who are treated to lower A1c levels may have lower 

rates of onset and progression of albuminuria (e. g., HR: 0.79,0.66-0.93 in ADVANCE).

2.2 An observational, multi-center, retrospective, cohort study

The effects of intensive treatment remain uncertain, and the optimal target levels of A1c for 

balancing benefits and risks of therapy are not clearly defined. For these reasons, using data 

from the electronic health records (EHR) from patients of seven sites of the HMO Research 

Network [39], a large retrospective cohort study of adults with T2DM was conducted to 

evaluate the impact of progressively more aggressive glucose-lowering strategies on several 

clinical outcomes. To properly account for time-dependent confounding and informative 

selection bias, a parametric dynamic marginal structural model (MSM) [40–45] was fitted 

using IPW estimation [40, 46, 47] for the purpose of contrasting cumulative risks under the 

following four treatment intensification (TI) strategies denoted by dθ: patient initiates TI at 
the first time (no grace periods allowed [45]) her first observed A1c level reaches or drifts 
above θ% and patient remains on the intensified therapy thereafter with θ = 7, 7.5, 8, or 8.5.
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Details of the study design, analytic approach, and results are described elsewhere [48, 49]. 

In brief, results were consistent with that of ACCORD and ADVANCE and imply that the 

pattern of results in these trials are applicable to a large population of adults with T2DM 

treated in routine clinical settings. In particular, findings from the observational study 

confirmed the benefit of tight glycemic control with respect to the development or 

progression of albuminuria.

Here, we report on results from secondary analyses of the same observational data using not 

only alternate PS estimation strategies but also alternate IPW estimators based on a 

nonparametric dynamic MSM. These secondary analyses aim to contrast the same four 

counterfactual survival curves indexed by the same TI strategies described above for the 

purpose of evaluating the impact of four alternate PS estimation strategies on three alternate 

IPW estimators. We now formally describe the observational data and the causal parameter 

of interest before detailing the various estimation approaches considered to evaluate it.

2.3 Data, parameter of interest, and assumptions

The observed data on each patient in the cohort consist of measurements on exposure, 

outcome, and confounding variables made at 90-day intervals between study entry and until 

each patient’s end of follow-up. The time (expressed in units of 90 days) when the patient’s 

follow-up ends is denoted by T∼ and is defined as the earliest of the time to failure, i. e., 

albuminuria development or progression, denoted by T or the time to a right-censoring event 

denoted by C. When a patient is right-censored, i. e., T∼ = C, the type of right-censoring 

event experienced by the patient is recorded and denoted by Γ with possible values 1, 2, or 3 

to represent end of follow-up by administrative end of study, disenrollment from the health 

plan, or death respectively. For patients with normoalbuminuria at study entry, i. e., 

microalbumin-to-creatinine ratio (ACR) < 30, we defined failure as an ACR measurement 

indicating either microalbuminuria (ACR 30-300) or macroalbuminuria (ACR >300). For 

patients with microalbuminuria at study entry, we defined failure as an ACR measurement 

indicating macroalbuminuria. We thus excluded patients with a baseline ACR measurement 

missing (5884) or indicating macroalbuminuria (1608), which yielded the sample size n = 

51, 179. The indicator that the end of follow-up is due to the occurrence of a failure event is 

denoted by Δ, i. e., Δ = 1 implies that T∼ = T and Δ = 0 implies that T∼ = C. At each time point 

t = 0, …, T∼, the patient’s exposure to an intensified diabetes treatment is represented by the 

binary variable A1(t), and the indicator of the patient’s right-censored status at time t is 

denoted by A2(t). We thus have A2(t) = 0 for t = 0, …, T∼ − 1 when T∼ ≥ 1 and A2(T∼) = 1 − Δ. 

The combination A (t) = (A1 (t), A2(t)) is referred to as the action at time t. At each time 

point t = 0, …, T∼, covariates such as A1c measurements (others are listed in Table 1 of 

previous published work [21]) are denoted by the multidimensional variable L(t) and defined 

from measurements that occur before the action at time t, A(t), or are otherwise assumed not 

to be affected by the actions at time t or thereafter, (A(t), A(t + 1), …). In addition, the 

covariates at time t include an outcome measurement denoted by Y (t), i. e., Y (t) ∈ L(t) for 

t = 0, …, T∼. For each time point t = 0, …, T∼, the outcome is the indicator of past failure, i. e., 

Y (t) = I (T ≤ t − 1). By definition, the outcome is thus 0 for t = 0, …, T∼, missing at t = T∼ + 1
if Δ = 0 and, 1 at t = T∼ + 1 if Δ = 1. Indeed, when Δ = 0, the patient’s end of follow-up is due 
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to occurrence of a right-censoring event during the last follow-up interval T∼ and as a result it 

is not known to the analyst whether the patient would have experienced failure at that time, i. 

e., I(T = T∼) and thus Y(T∼ + 1) = I(T ≤ T∼) are missing. To simplify notation, we use overbars 

to denote covariate and exposure histories, e. g., a patient’s exposure history through time t 
is denoted by A(t) = (A(0), …, A(t)). Following the MSM framework [40], we approach the 

observed data in this study as realizations of n independent and identically distributed copies 

of O = (T∼, Δ, (1 − Δ)Γ, L(T∼)), A(T∼), ΔY(T∼ + 1) denoted by Oi for i = 1, …, n. The longest 

observed follow-up time is maxi = 1, …, n T∼i = 36 (9 years). Details about the approach 

implemented for mapping EHR data into these coarsened exposure, covariate and outcome 

data for each patient were described elsewhere [48, Appendix E].

In this study, we aim to evaluate the effect of dynamic treatment interventions on the 

cumulative risk of failure at a pre-specified time point t0, e. g., t0 = 11 to investigate 

cumulative risks of failure over three years. The dynamic treatment interventions of interest 

correspond to treatment decisions made according to given clinical policies for initiation of 

an intensified therapy based on the patient’s evolving A1c level. These policies denoted by 

dθ were described above. Formally, these policies are individualized action rules [42] 

defined as a vector function dθ = (dθ(0), …, dθ(t0)) where each function, dθ(t) for t = 0, …, 

t0, is a decision rule for determining the action regimen (i. e., a treatment and right-censoring 

intervention) to be experienced by a patient at time t. A decision rule dθ(t) maps the action 

and covariate history measured up to a given time t to an action regimen at time 

t:dθ(t): (L(t), A(t − 1)) (a1(t), a2(t)). In this study, the decision rules of interest are defined 

such that dθ(t)(L(t), A(t − 1)) is:

- (a1(t), a2(t)) = (0, 0) (i. e., no use of an intensified treatment and no right-censoring) 

if and only if the patient was not previously treated with an intensified therapy (i.e., 

A(t − 1) =0)and the A1c level at time t (an element of L(t)) was lower than or equal to 

the threshold θ.

- (a1(t), a2(t)) = (1, 0) (i. e., use of an intensified treatment and no right-censoring) 

otherwise.

To simplify notation below, the action regimen

(a(0) = dθ(0)(L(0)), a(1) = dθ(1)(L(1), a(0)), …, a(t) = dθ(t)(L(t), a(t − 1)))

through time t is denoted by dθ(L(t)) for any given observed covariate history through time t, 

L(t). The parameter of interest denoted by ψ
θ1, θ2 is the difference between the cumulative 

risks at time t0 associated with two distinct treatment strategies dθ1
 and dθ2

:

ψ
θ1, θ2 = P(Ydθ1

(t0 + 1) = 1) − P(Ydθ2
(t0 + 1) = 1),
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where Ydθ
(t0 + 1) for θ = θ1, θ2 denotes a patient’s potential outcome at time t0 + 1 had she 

been treated between study entry and time t0 according to the decision rule dθ For 

conciseness, we refer the reader to earlier work [42, 43] [48, Appendices B and D] for a 

detailed description of the concepts and the counter-factual statistical framework on which 

relies the definition of this parameter of interest.

Identifiability of this parameter with the observational data above relies on at least three 

assumptions detailed elsewhere [48, Appendices C]: no unmeasured confounding, positivity, 

and consistent estimation of the action mechanism (defined in the next section).

If the MSM framework above (missing data framework) is not explicitly resting on the more 

general structural framework through additional explicit assumptions encoded by a causal 

diagram [50], then an additional assumption referred to as consistency assumption is made 

[51, 52].

In addition, a more or less flexible non-saturated MSM may be assumed [10-12, 44, 53]. The 

assumption encoded by such an MSM typically imposes constraints on the survival curves 

that underlie the definition of the parameter of interest ψ
θ1, θ2. In practice, specification of a 

non-saturated MSM is essentially an arbitrary choice that does not encode real knowledge 

about the true survival curves of interest. The previous CER analysis of these observational 

data was based on such a MSM although minimal constraints were actually imposed because 

the MSM chosen was relatively close to saturation. Approaches to hedge against the bias 

that would arise from MSM misspecification in practice have been proposed [54] and are 

still being researched [55].

Alternatively, the MSM may be left nonparametric, i. e., no additional assumptions are made 

(e. g., through specification of a saturated MSM). This is the approach taken here because it 

reflects the absence of knowledge about the true functional forms of the four survival curves 

of interest. We note that such an approach may not always be practical due to data sparsity 

that prevents contrasting the interventions of interest with precision (curse of 

dimensionality). In such cases, a nonparametric MSM approach based on a working non-

saturated model [56] can be adopted to explicitly recognize the limitation of an arbitrarily 

specified non-saturated MSM in capturing the true parameter of interest ψ
θ1, θ2.

3 Inverse probability weighting estimation

In this section, we describe three IPW estimators of the target parameter ψ
θ1, θ2 which are 

each implemented based on one of four PS estimation strategies. More precisely, each IPW 

estimator consists in, first, estimating each of the two cumulative counterfactual risks 

γ
θ1 ≡ P(Ydθ1

(t0 + 1) = 1) and γ
θ2 ≡ P(Ydθ2

(t0 + 1) = 1), separately, using for both one of the 

three IPW estimators described below and, second, taking the difference between the 

resulting two estimates. Inference about the cumulative risk difference (RD) ψ
θ1, θ2 from 

Neugebauer et al. Page 6

Int J Biostat. Author manuscript; available in PMC 2018 July 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



each of these three estimators is derived based on the influence curve of the corresponding 

IPW estimator and the delta method [57].

3.1 Three inverse probability weighting estimators

From here on, the indicator that a given event · has occurred is denoted by I (·).

3.1.1 Unbounded estimator—The Horvitz-Thompson estimator [58] of γθ denoted by 

γn, HT
θ  is defined as the solution of the estimating equations associated with the following 

unbiased estimating function:

I A(T⌣(t0)) = dθ(L(T⌣(t0)))

∏t = 0
T⌣(t0)

g(A(t) |L(t), A(t − 1))
Y(T⌣(t0) + 1) − γθ,

where T⌣(t0) = min (T∼, t0) and g(A(t) |L(t)A(t − 1)) denotes the conditional probability of the 

observed action at time t given observed past covariates and actions.

This IPW estimator is a non-convex, linear combination of outcomes as shown by its closed-

form expression below:

γn, HT
θ = 1

n ∑
i = 1

n I Ai(T⌣i(t0)) = dθ(Li(T⌣i(t0)))

∏t = 0
T⌣i(t0)

g(Ai(t) |Li(t), Ai(t − 1))
Yi(T⌣i(t0) + 1) .

Thus, this estimator is unbounded [59, Section 4.1], i. e., the resulting point estimates of the 

counter-factual cumulative risk is not guaranteed to fall between 0 and 1. We note also that 

all outcomes from the following patients are completely ignored by this estimator even if 

these patients followed the treatment strategy dθ fully or partially before their end of follow-

up (because I Ai(T⌣i(t0)) = dθ(Li(T⌣i(t0))) = 0):

- patients who experienced a censoring event before or at time t0 or,

- patients who experienced the outcome before or at t0 but who did not follow the 

treatment strategy dθ through the failure time or,

- patients who neither experienced the outcome nor a censoring event before or at 

t0 and who did not follow the treatment strategy dθ through t0.

Both because of the resulting loss of information and the aforementioned unboundedness 

property, this IPW estimator is expected [60, Section 2.1] to be less efficient than the other 

two IPW estimators discussed in the following sections.

The resulting Horvitz-Thompson estimator of ψ
θ1, θ2 is denoted by ψn, HT

θ1, θ2 and defined as:

ψn, HT
θ1, θ2 = γn, HT

θ1 − γn, HT
θ2 .
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An estimator of its variance is given by

1
n2 ∑

i = 1

n I Ai(T⌣i(t0)) = dθ1
(Li(T⌣i(t0))) − I Ai(T⌣i(t0)) = dθ2

(Li(T⌣i(t0)))

∏t = 0
T⌣i(t0)

g(Ai(t) |Li(t), Ai(t − 1))
Yi(T⌣i(t0) + 1) − ψn, HT

θ1, θ2

2

.

This estimator is conservative in the sense that it over-estimates the variance of the 

unbounded IPW estimator when the probabilities g(Ai(t) |Li(t), Ai(t − 1)) in the previous 

expressions are replaced with efficient estimates.

3.1.2 Bounded estimator—An alternative [61, 62] [63, Section III. C.] to the previous 

estimator of γθ denoted by γn, bd
θ  is defined as the solution of the estimating equations 

associated with the following unbiased estimating function:

Dbd(O |γθ, g) =
I A(T⌣(t0)) = dθ(L(T⌣(t0)))

∏t = 0
T⌣(t0)

g(A(t) |L(t), A(t − 1))
Y(T⌣(t0) + 1) − γθ .

Note that the only difference with the previous estimating function is that not only the 

outcome Y(T⌣(t0) + 1) but also the target parameter γθ is multiplied by the inverse probability 

weight 
I A(T⌣(t0)) = dθ(L(T⌣(t0))

∏t = 0
T⌣(t0)

g(A(t) |L(t), A(t − 1))
. As a result, the IPW estimator is now a convex, linear 

combination (i. e., a weighted average) of outcomes as shown by its closed-form expression 

below:

γn, bd
θ = ∑

i = 1

n

I Ai(T⌣i(t0)) = dθ(Li(T⌣i(t0)))

∏t = 0
(T⌣i(t0)

g(Ai(t) |Li(t), Ai(t − 1))

∑
i = 1

n I Ai(T⌣i(t0)) = dθ(Li(T⌣i(t0)))

∏t = 0
(T⌣i(t0)

g(Ai(t) |Li(t), Ai(t − 1))

Yi(T⌣i(t0) + 1) .

This estimator is thus bounded [59, Section 4.1], i.e. the resulting point estimates of the 

counterfactual cumulative risk is guaranteed to fall between 0 and 1. We note however that 

implementation of this estimator results in the same loss of information that characterize the 

Horvitz-Thompson estimator. Because of this loss of information, this IPW estimator is 

expected to be less efficient that the IPW estimator discussed in the following section.

The resulting bounded estimator of ψ
θ1, θ2 is denoted by ψn, bd

θ1, θ2 and defined as:

ψn, bd
θ1, θ2 = γn, bd

θ1 − γn, bd
θ2 .
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An estimator of its variance is given by

1
n2 ∑

i = 1

n
Cn

θ1Dbd(Oi |γn, bd
θ1 , g) − Cn

θ2Dbd(Oi |γn, bd
θ2 , g)

2
using the notation

Cn
θ ≡ 1

n ∑
i = 1

n I Ai(T⌣i(t0)) = dθ(Li(T⌣i(t0)))

∏t = 0
T⌣i(t0)

g(Ai(t) |Li(t), Ai(t − 1))

−1

for θ = θ1, θ2 .

This estimator is conservative in the sense that it over-estimates the variance of the bounded 

IPW estimator when the probabilities g(Ai(t) |Li(t), Ai(t − 1)) in the previous expressions are 

replaced with efficient estimates.

3.1.3 Hazard-based bounded estimator—The previous two IPW estimators are 

designed to directly evaluate the counterfactual cumulative risk γθ. These approaches result 

in a loss of information because outcomes from patients who only partially follow the 

dynamic intervention of interest are ignored by these estimators. Instead, an alternate IPW 

estimator that makes use of all outcomes observed while patients follow the dynamic 

interventions of interest has commonly been used in practice. This alternate IPW estimator 

is thus expected to be more efficient than the previous two IPW estimators. Unlike them, it is 

designed to evaluate the counterfactual hazards associated with the dynamic intervention of 

interest for t = 0, …, t0 and the resulting hazard estimates are then mapped into estimates of 

the counterfactual cumulative risk γθ [64] [48, Appendix D]. Details about this indirect IPW 

estimating approach for γθ are described below.

We denote the counterfactual discrete-time hazard under the dynamic intervention dθ at time 

t with αt, θ, i.e. αt, θ ≡ P Ydθ
(t + 1) = 1 |Ydθ

(t) = 0 . A stabilized bounded IPW estimator of αt, 

θ is denoted by αn, bd
t, θ  and defined as the solution of the estimating equations associated with 

the following estimating function:

h(O, t, θ, g, g′) Y(t + 1) − αt, θ with h(O, t, θ, g, g′) defined as

I Y(I) = 0)I(A(t) = dθ(L(t))
∏ j = 0

t g′ A( j) = dθ(L( j)) | A( j − 1) = dθ(L( j − 1))

∏ j = 0
t g A( j) |L( j), A( j − 1)

 using the notation 

g′ A( j) = dθ(L( j)) | A( j − 1) = dθ(L( j − 1))  to denote the probability of a patient following the 

intervention of interest at time j given that she followed the intervention through time j − 1.

This IPW estimator is a convex, linear combination of the outcomes at time t + 1 from all 

patients who did not experience the event before or at time t and who followed the 

intervention of interest through time t as shown by the closed-form expression:
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αn, bd
t, θ = ∑

i = 1

n h(Oi, t, θ, g, g′)

∑i = 1
n h(Oi, t, θ, g, g′)

Y(t + 1) . (1)

As noted in previous work [20, Section 3.3] and when 0 < αt, θ < 1, this estimator is 

equivalent to a stabilized IPW estimator of the coefficient βt, θ denoted by βn, bd
tθ  of the 

following saturated logistic dynamic MSM for the counterfactual hazards under 

interventions dθ at time points t:

logit αt, θ = ∑
j ∈ 𝒯

∑
k ∈ Θ

β j, kI(t = j, θ = k),

where logit(x) = log x
1 − x , t ∈ 𝒯 ≡ 0, 1, 2, …K  for K ≥ t0, and Θ = {7; 7.5; 8; 8.5}. More 

specifically, the estimator βn, bd
t, θ  is defined by the standard IPW estimation approach to fit a 

dynamic MSM [42, 43] with the following choice of numerator for the IP weight associated 

with each person-time outcome Yi (t + 1) contributing to the weighted regression: 

∏ j = 0
t g′ A( j) = dθ(L( j)) | A( j − 1) = dθ(L( j − 1)) . The equivalence between βn

t, θ and αn
t, θ is 

expressed by the following link: βn, bd
t, θ = logit αn, bd

t, θ .

The collection of estimators αn, bd
t, θ  (equivalently βn, bd

t, θ ) for t = 0, …, t0 can then be mapped 

into an hazard-based IPW estimator of the counterfactual cumulative risk γθ denoted by γn, h
θ

and defined as:

γn, h
θ = 1 − ∏

t = 0

t0
(1 − αn, bd

t, θ )

= 1 − ∏
t = 0

t0
1 − 1

1 + exp −βn, bd
t, θ .

In practice, computation of the point estimate of the counterfactual hazards may often be 

faster using the first equality.

The resulting hazard-based bounded IPW estimator of ψ
θ1, θ2 is denoted by ψn, h

θ1, θ2 and 

defined as:

ψn, h
θ1, θ2 = γn, h

θ1 − γn, h
θ2 .
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An estimator of its variance can be obtained (see proof in the Appendix) using the following 

closed-form expression derived from the influence curve associated with the IPW estimator 

of the coefficients of the saturated dynamic MSM:

1
n2 ∑

i = 1

n
(1 − γn, h

θ1 ) ∑
t = 0

t0
αn, bd

t, θ1 (I(t = j, θ1 = k))′ j ∈ 𝒯, k ∈ Θ − (1 − γn, h
θ2 ) ∑

t = 0

t0
αn, bd

t, θ2 (I(t = j, θ2 = k))′ j ∈ 𝒯, k ∈ Θ IC(Oi |αn . bd, g, g′)

2

 

in which the collection of all estimators αn, bd
t, θ  for t ∈ 𝒯 and θ ∈ Θ is denoted by

αn, bd ≡ αn, bd
0, 7 , αn, bd

0, 7.5, …, αn, bd
0, 8.5, αn, bd

1, 7 , αn, bd
1, 7.5, … ,

(I(t = j, θ = k)) j ∈ 𝒯, k ∈ Θ ≡

I(t = 0, θ = 7)
I(t = 0, θ = 7.5)

⋮
I(t = 0, θ = 8.5)
I(t = 0, θ = 7)

I(t = 0, θ = 7.5)
⋮

for θ = θ1, θ2 and

the value of the influence curve for patient i, IC(Oi|αn.bd, g, g'), is defined as

Cn ∑
t ∈ 𝒯

∑
θ ∈ Θ

h(Oi, t, θ, g, g′)(I(t = j, θ = k))t ∈ 𝒯, θ ∈ Θ(Yi(t + 1) − αn, bd
t, θ )

using the square matrix notation

Cn ≡ 1
n ∑

i = 1

n
∑

t ∈ 𝒯
∑

θ ∈ Θ
h(Oi, t, θ, g, g′)αn, bd

t, θ (1 − αn, bd
t, θ )V(t, θ)

−1

and

V(t, θ) ≡ (I(t = j, θ = k)) j ∈ 𝒯, k ∈ Θ × (I(t = j, θ = k))′ j ∈ 𝒯, k ∈ Θ .

The estimator above is conservative in the sense that it over-estimates the variance of the 

hazard-based bounded IPW estimator when the probabilities g(Ai(t) |Li(t), Ai(t − 1)) in the 

previous expressions are replaced with efficient estimates.

3.2 Four propensity score estimation approaches

In observational studies, the conditional probabilities 

g(A(t) = dθ(L(t)) |L(t), Y(t) = 0, A(t − 1) = dθ(L(t − 1))) that are required to derive point 

estimates and inferences with the previous three IPW estimators are unknown and must thus 

be estimated first. In this section, we start by describing the decomposition of these nuisance 

parameters based on 5 classes of propensity scores (PS). Next, we describe the four 
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approaches considered for estimating these various PS in this report: two model-based and 

two data-adaptive estimation approaches. For conciseness, the vector of probabilities 

g(A(t) = dθ(L(t)) |L(t), Y(t) = 0, A(t − 1) = dθ(L(t − 1))) for t ∈ 𝒯 is denoted by g below.

3.3 Decomposition of the action mechanism

The conditional probability g(A(t) |L(t), Y(t) = 0, A1(t − 1), A2(t − 1) = 0) for t ∈ 𝒯 is referred 

to as the action mechanism at time t and can be factorized based on the following 5 PS:

- PS for TI initiation denoted by μ1(t):

P(A1(t) = 1 |L(t), Y(t) = 0, A1(t − 1) = 0, A2(t) = 0)

- PS for TI continuation denoted by μ2(t):

P(A1(t) = 1 |L(t), Y(t) = 0, A1(t − 2), A1(t − 1) = 1, A2(t) = 0)

- PS for right-censoring by administrative end of study denoted by μ3(t):

P(I(A2(t) = 1, Γ = 1) = 1 |L(t), Y(t) = 0, A1(t − 1), A2(t − 1) = 0)

- PS for right-censoring by disenrollment from the health plan denoted by μ4(t):

P(I(A2(t) = 1, Γ = 2) = 1 |L(t), Y(t) = 0, A1(t − 1), A2(t − 1) = 0, I(A2(t) = 1, Γ = 1) = 0)

- PS for right-censoring by death denoted by μ5(t):

P(I(A2(t) = 1, Γ = 3) = 1 |L(t), Y(t) = 0, A1(t − 1), A2(t − 1) = 0, I(A2(t) = 1, Γ = 1) = 0, I(A2(t)
= 1, Γ = 2) = 0) .

Thus, for patients who did not fail before time t and who followed the decision rule dθ 
through time t, an estimate of the nuisance parameter 

g A(t) = dθ(L(t) |L(t), Y(t) = 0, A(t − 1) = dθ L(t − 1))  can be derived from estimates of the 5 

PS above based on the following closed-form expression implied by the factorization of the 

action mechanism at time t using the chain rule:

I(A1(t − 1) = 0)μ1(t)
A1(t)

(1 − μ(t))
1 − A1(t)

+ I(A1(t − 1) = 1)μ1(t) × (1 − μ3(t))(1 − μ4(t))(1 − μ5(t)) .

3.4 Model-based PS estimation

3.4.1 Logistic models with pooled data over time—A common [10, 11] approach 

used in practice by analysts to simultaneously estimate each of the 5 PS above for all t ∈ 𝒯
consists in fitting a single model, referred to as a “pooled model”, using data pooled over 

time t. We also considered such an approach in this report. More specifically, data were 

pooled over all follow-up times t to fit a separate main-term logistic model for estimating 
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each of the 3 PS for right-censoring (μ3(t), μ4(t), μ5(t)) and the PS for TI continuation (μ2(t)). 
Data were also pooled for all time points t > 0 to fit a single main-term logistic model for 

estimating the PS for TI initiation after t = 0 (i. e., μ1(t) for t > 0). A separate main-term 

logistic model was fitted for estimating the PS for TI initiation at t =0 (i. e., μ1(0)). By 

“main-term logistic model”, we mean a logistic model with only main terms for each 

explanatory variable considered (i. e., no interaction terms between explanatory variables). 

The explanatory variables considered were all time-independent covariates and the last 

measurement of time-varying covariates (Markov assumption). In addition, exposure to TI in 

the last period was included as an explanatory variable for the 3 PS for right-censoring and 

the latest change in A1c was included as an explanatory variable for estimating all PS. All 

pooled logistic models also included the variable indexing the 90-day follow-up intervals (i. 

e., t) as an explanatory variable. We denote the estimator of the nuisance parameter g derived 

with this approach by gn.

3.4.2 Logistic models with data stratified by time—In the previous approach, each 

pooled logistic model encodes the assumption that the associations between the explanatory 

variables and the PS outcome variable (e. g. death occurrence for PS μ5(t) do not change 

over time. Concern over this assumption [65] motivates instead the use of a different logistic 

model (referred to as a “stratified model”) to estimate each PS at each time point t separately 

or, at least, the inclusion of interaction terms between the explanatory variables and 

functions of t in the pooled models. We note that it is such a concern over time-modified 

confounding that motivated, in the previous section, the specification of two separate models 

to estimate the PS for TI initiation: one stratified logistic model to estimate μ1 (0) and one 

separate pooled logistic model to estimate all μ1(t) for t > 0 simultaneously. To fully address 

concerns over time-modified confounding, we also considered a second PS estimation 

approach in which, for each time point t separately, 5 main-term logistic models were fitted 

to estimate each of the 5 PS. The parameterization of these stratified models are the same as 

that described in the previous section with the difference that the time variable t was omitted 

from all logistic models. We denote the estimator of the nuisance parameter g derived with 

this approach by gn,t.

3.5 Data-adaptive PS estimation

3.5.1 Logistic models with data-adaptive selection of interaction terms—To 

lessen the constrains imposed by main-term logistic models, we considered a third PS 

estimation approach that is based on extending the previous stratified logistic models by 

data-adaptively including two-way interaction terms between explanatory variables. Due to 

the large number of explanatory variables in this study and overfitting concerns, we 

separately implemented the following ad hoc data-adaptive algorithm for selecting the subset 

of all possible interaction terms to include in each stratified model. For each of the 5 PS and 

each time t ∈ 𝒯, we first computed 105 two-way interaction terms based on the 15 

explanatory variables that were most significantly associated (smallest p-value) with the PS 

outcome variable in a univariate logistic regression. Second, for each of these 105 terms, we 

implemented a logistic regression of the PS outcome variable on the interaction term and the 

two main terms that define the interaction term. Third, we identified the interaction terms 

with a p-value lower than 0.05. Finally, if more than 50 interaction terms met this criterion, 
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we selected only the 50 terms with the smallest p-value and added them to the stratified 

logistic model for the PS. We denote the estimator of the nuisance parameter g derived with 

this approach by gn,t, ×.

3.5.2 Super learning—The two model-based estimators gn and gn,t described earlier do 

not reflect real subject-matter knowledge about the adequacy of the expit1 function chosen 

to properly represent the true values of the 5 PS over time. Indeed, in practice, PS model 

specification such as choosing a logistic model is typically rooted in tradition, preference, or 

convenience. To avoid erroneous inference due to such arbitrary model specifications, data- 

adaptive estimation of the nuisance parameter g may be implemented in practice but 

consistent estimation then relies on judicious selection of a machine learning algorithm also 

known as “learner”. We considered such a learner gn,t, × in the previous section but many 

other learners have been proposed and can be used as potential candidates for estimating the 

5 PS (e. g. [3, 66-74]). Akin to the selection of a parametric model, the selection of a learner 

does not typically reflect real subject-matter knowledge about the relative suitability of the 

different learners available, since “in practice it is generally impossible to know a priori 

which learner will perform best for a given prediction problem and data set” [14]. To hedge 

against erroneous inference due to arbitrary selection of a learner, Super Learning [14] (SL) 

may be implemented to combine predicted values from a library of various candidate 

learners (that includes the arbitrary learner that would have been guessed otherwise) through 

a weighted average. The selection of the optimal combination of the candidate learners is 

based on cross-validation [75-78] to protect against overfitting such that the resulting learner 

(called “super learner”) performs asymptotically as well (in terms of mean error) or better 

than any of the candidate learners considered. If the arbitrary learners that would have been 

guessed is based on a parametric model and happens to be correct then using SL instead of 

the correctly guessed learner only comes at a price of limited increase in prediction 

variability.

We considered a SL approach to estimate the PS in this report. More specifically, for each 

time point t separately, 5 super learners were implemented to estimate each of the 5 PS 

based on the following 10 candidate learners: (i) 5 learners2 defined by logistic models with 

only main terms for the most predictive explanatory variables identified3 by a significant p-

value in univariate regressions with 5 significance levels (α = 1e- 30, 1e-10, 1e-5, 0.1, and 

1), and (ii) 5 polychotomous regression learners4 based on the most predictive explanatory 

variables identified by a significant p-value in univariate regressions with the same 5 

significance levels. We denote the estimator of the nuisance parameter g derived with this SL 

approach by gn,t,SL.

1 expit(x) = 1
1 + exp( − x)

2implemented by the SL.glm routine available in the SuperLearner R package [79].
3using the template screening routine screen.glmP available in the SuperLearner R package.
4implemented by the SL.polyclass routine given in [80, Appendix]. This routine implements the polyclass learner [72] based 
on the Bayesian Information Criterion (BIC) as the model selection criterion. To improve computing speed, this learner was favored 
over the SL.polymars routine that is available by default in the SuperLearner R package but that relies on cross-validation 
for model selection.
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4 Comparison of practical performances

In this section, we examine and contrast the results from the application of the three IPW 

estimators based on the four PS estimation approaches just described to address the CER 

question from the observational study introduced in Section 2. We note that the bounded 

hazard-based IPW estimators in this report were implemented using nonparametric 

estimation of the numerator of the stabilized IP weights, i. e. 

∏ j = 0
t g′ A( j) = dθ(L( j)) | A( j − 1) = dθ(L( j − 1))

∏ j = 0
t g A( j) |L( j), A( j − 1)

. More specifically each probability 

g′ A( j) = dθ(L( j)) | A( j − 1) = dθ(L( j − 1))  for t ∈ 𝒯 was estimated by the proportion of 

patients in the observed data who followed rule dθ at time t among patients who did not fail 

before and at time t − 1 and who followed rule dθ at time t − 1. Note that this weight 

stabilization scheme (i. e., the definition of the numerator chosen for the IP weight) follows 

guidelines in the literature on dynamic MSM (e. g., Appendix A3 in [45]) in the sense that 

the numerator of the IP weight is i) only a function of time t and the A1c threshold θ that 

defines the rules of interest, and ii) is thus not a function of the patient’s exposure history 

A(t) as is typically the case with the numerator of the IP weight commonly used to fit static 

MSM in practice.

Results from the 12 IPW estimators considered in this report are also compared to the results 

from a crude analysis that aims to contrast the survival curves associated with the four 

treatment intensification strategies of interest dθ without any adjustment for confounding 

and selection bias. Such an analysis can be implemented by applying the hazard-based IPW 

estimator with its stabilized weights set to 1. Figure 1 displays the resulting point estimates 

of the four survival curves, i. e., crude estimates of 1 − γθ for t0 = 0, …, 15 and θ = 7, 7.5, 8, 

8.5. These crude point estimates of the survival curves can be compared to their analogues 

based on the three IPW estimators implemented with the four PS estimation approaches 

displayed on Figures 2-4. Each of these figures contains four plots that each displays 

estimates of the four counterfactual survival curves based on the same IPW estimator but a 

different PS estimation approach. Table 1 provides details about the comparison of the four 

survival curves at 3 years using the crude analysis approach. Inferences in Table 1 can be 

contrasted to that based on the three IPW estimators implemented with the four PS 

estimation approaches in Table 2.

We note a striking difference between the unbounded IPW estimates of the survival curves 

based on the PS estimators gn and gn,t and the unbounded IPW estimates based on gn,t,SL on 

Figure 2. The first two sets of estimates resemble the crude estimates on Figure 1 with the 

difference that the crude estimates provide evidence, albeit weak, that is consistent with 

results from the ACCORD and ADVANCE randomized trials which indicated a potential 

beneficial effect of more aggressive therapy initiation rules. Indeed, the crude point 

estimates indicate a consistent ordering of the four survival curves over time with curves 

indexed by a lower A1c threshold (aggressive rules) above the curves indexed by a higher 

A1c threshold. While the trend from the crude analysis is restored and more apparent with 

the IPW estimates based on gn,t, ×, it becomes evident with the early and clear separation of 

the IPW estimates of the survival curves based on gn,t,SL. The change in the unbounded IPW 
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results across PS estimation approaches can be explained by examining and contrasting the 

distributions of the estimated IP weights resulting from each PS estimator. Figure 5 

describes the distribution of the non-zero estimated IP weights

I Ai(T⌣i(t0)) = dθ(Li(T⌣i(t0))

∏t = 0
T⌣i(t0)

g(At(t) |Li(t), Ai(t − 1))

associated with observed failures Y i(T⌣i(t0) + 1) = 1 and pooled over time points t0 = 0, …, 15 

and rules θ = 7, 7.5, 8, 8.5. We note a clear and increasing shift of the estimated IP weights 

toward the lower bound 1 as the PS estimation approach becomes more and more 

nonparametric, i. e. as we go from estimating the PS with gn, gn, t, gn, t, ×, and gn,t,SL. These 

results provide supporting evidence that model-based PS estimation can lead to bias which 

can be corrected with the use of data-adaptive PS estimation such as SL in practice.

The set of results from the hazard-based bounded IPW estimator on Figure 4 follow a very 

different pattern with little distinctions between the point estimates derived from the four PS 

estimation approaches and that despite a similar and notable change in the distribution of the 

stabilized IPW weights. Figure 7 describes the distribution of the non-zero estimated 

stabilized IP weights h(Oi, t, θ, g, g′) associated with observed failures Yi(t + 1) = 1 and 

pooled over time points t = 0, …, 34 and rules θ = 7, 7.5, 8, 8.5. We note a clear and 

increasing shift of the estimated IP weights toward the lower bound 0 and great reduction in 

the number of larger weights as the PS estimation approach becomes more and more 

nonparametric.

The set of results from the bounded IPW estimator on Figure 3 follows an intermediate 

pattern between that of the unbounded and hazard-based bounded estimators in the sense 

that while the curves become increasingly and more consistently separated in the expected 

directions as the PS estimation becomes more nonparametric (similar to Figure 2), the 

distinctions between results from the four PS estimation approaches are less obvious (similar 

to Figure 4). Figure 6 describes the distribution of the non-zero estimated IP weights

I Ai(T⌣i(t0)) = dθ(Li(T⌣i(t0)))

∏t = 0
T⌣i(t0)

g(Ai(t) |Li(t), Ai(t − 1))

∑i = 1
n I Ai(T⌣i(t0)) = dθ(Li(T⌣i(t0)))

∏t = 0
(T⌣i(t0)

g(Ai(t) |Li(t), Ai(t − 1))

associated with observed failures Y i(T⌣i(t0) + 1) = 1 and pooled over time points t0 = 0, …, 15 

and rules θ = 7, 7.5, 8.5. We note a clear and increasing concentration of the estimated IP 

weights around the median with a reduction in the number of larger weights as the PS 

estimation approach becomes more and more nonparametric.
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We conjecture that the apparent gradual change in the patterns of results across PS 

estimation approaches as we go from the unbounded, bounded and hazard-based IPW 

estimators relates to the differences in boundedness and efficiency between the three 

estimators. More specifically, we conjecture that the successive decrease in sensitivity to 

bias from errors in PS estimation that result in larger weight values is a consequence of the 

boundedness property and the improved efficiency of the hazard-based estimator relative to 

the bounded IPW estimator. This conjecture is also supported by previous work [20] in 

which we studied an alternate estimator, referred to as Targeted Minimum Loss based 

Estimator (TMLE), using the same data and based on the same four PS estimation 

approaches described in this report to evaluate the same causal estimands. TMLE is a 

substitution estimator and is thus also characterized by the boundedness property. Our 

previous work showed that TMLE was slightly more efficient than the hazard-based IPW 

estimator studied here but that TMLE is also not very sensitive to bias from increasing errors 

in PS estimation across the four PS estimation approaches studied in this report.

In Table 2, we compare the inference we would derive in practice from various estimation 

choices that led to results consistent with that of previous randomized experiments. It 

indicates that the estimated standard error of the hazard-based bounded IPW estimator 

generally decreases as the PS estimation approach becomes more nonparametric. This 

apparent gain in estimation efficiency is explained by the concentration of the IPW weights 

and the decrease in the proportion of large weights from progressively more flexible PS 

estimation approaches as shown on Figure 6. We note that these results contradict the 

position that model-based PS estimation is preferable in practice because data-adaptive PS 

estimation leads to larger weights and thus an increase in IPW estimation variability by 

revealing practical violations of the positivity assumption. Estimation of the IP weights 

based on arbitrarily specified parametric models might then be viewed as an implicit weight 

truncation scheme that restricts the proportion of large weights through smoothing with a 

misspecified model. On the contrary, the results in this report suggest that model-based 

estimation of the weights can lead to artificial violation of the positivity assumption in 

practice (large weights due to model misspecification) when the positivity assumption is in 

truth not violated. The practical consequence of such model-based estimation is not only 

biased inference but also increased uncertainty that both could be avoided with data-adaptive 

PS estimation.

5 Discussion

Results from the secondary analyses in this report illustrate real-world practical 

consequences of the choice of estimation strategy for the PS in CER based on IPW 

estimation. We demonstrated that data-adaptive estimation of the PS based on SL can result 

in substantial bias reduction and gain in estimation efficiency compared to model-based 

estimation of the PS. These observed gains in efficiency are consistent with known 

theoretical results that have shown that ignoring information on nuisance parameters (e. g., 

estimating PS even when they are known by study design) can improve the efficiency of the 

causal effect estimators [81, Section 2.3.7]. The improved estimation performance with SL 

comes at cost of an increase in computing time. Indeed, the derivation of the PS estimators 

gn, gn, t, gn,t, ×, and gn,t,SL required approximately 10 minutes, 15 minutes, 40 minutes, and 
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29 hours of computing time in our implementation that is based on an early version of SL 

[79]. We note that more recent versions of software implementing SL that make use of 

parallel computing may greatly decrease computing times. Alternate and in particular faster 

data-adaptive estimation approaches including other ensemble learning methods could be 

substituted for SL but, to our knowledge, the application of any such alternatives could not 

be theoretically validated by formal finite sample and asymptotic results such as the ones 

established for the super learning methodology.

We note that, with data-adaptive PS estimation, the IPW estimators in this report may no 

longer be asymptotically linear with the influence curves used to derive the conservative 

variance estimators presented earlier. The application of these variance estimators in practice 

may thus not be justified theoretically when the PS are estimated data-adaptively. Recent 

research [82] to derive valid inference when nuisance parameters are estimated with SL led 

to to the development of a new IPW estimation approach that is asymptotically linear with a 

known influence curve. This approach is currently applicable in point treatment studies only. 

Additional research is needed to generalize this IPW approach to studies with time-varying 

exposures and covariates such as the CER study that motivated the present report. Until this 

generalization is available, one may argue that IPW estimation in real-world CER with time-

varying interventions should rely on model-based PS estimation because theoretically valid 

inferences can then be derived in practice using the conservative variance estimators 

presented in this report. We counter-argue that these variance estimators are only valid when 

PS are estimated based on correct models and that the asymptotic coverage of the resulting 

confidence intervals is 0 if these models are incorrect.

Finally, we note that the variance estimator corresponding with the hazard-based bounded 

IPW estimator of a RD ψθ1, θ2
 using a saturated MSM presented in Section 3.1.3 generalizes 

to hazard-based IPW estimation of such RD using a non-saturated (dynamic or static) MSM. 

To our knowledge, these closedform expressions for variance estimation were not described 

previously in published work despite their high practical relevance to avoid bootstrap-based 

inference.
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Appendix

We denote a working logistic MSM for the counterfactual hazards 

αt, θ ≡ P Ydθ
(t + 1) = 1 |Ydθ

(t) = 0  with k coefficients β = (βj)j = 0, …, k by m(t, θ|β), i. e.:

m(t, θ | β) = 1
1 + exp( − l(t, θ | β)) ,
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where the linear part of the working model is denoted by l(t, θ |β) and defined as:

l(t, θ | β) ≡ ∑
j = 0

k
β j f j(t, θ),

for a given set of k functions fj. For example, in Section 3.1.3, we have fj(t, θ) ≡ I(t = τ, θ = 

k) for (τ, k) ∈ 𝒯 × Θ and j = 1, …, k ≡ Card(𝒯 × Θ) with 𝒯 ≡ 0, 1, 2, …, K  and Θ = {7; 7.5; 8; 

8.5}.

By definition of a working MSM [56], the target parameter β0 (a k-dimensional vector) is 

defined as follows:

β0 ≡ arg minβ ∑
t

∑
θ

(E(Ydθ
(t + 1) | (Ydθ

(t) = 0) − m(t, θ | β))2h(t, θ),

for a given user-specified function h(t, θ). Here, we adopt the choice commonly made with 

logistic MSM:

h(t, θ) = λ(t, θ)
m(t, θ | β)(1 − m(t, θ | β)) ,

where λ(t, θ) represents the user-specified numerator of the stabilized IP weights involved in 

IPW estimation of β0 using standard logistic regression software (e.g., 

λ(t, θ) ≡ P(A(t) = dθ(L(t))) = ∏ j = 0
t P(A( j) = dθ(L( j)) | A( j − 1) = dθ(L( j − 1)))). Indeed, with 

such a choice of function h(t, θ), an IPW estimator βn for β0 can easily be implemented 

using standard weighted logistic regression software and is defined as the solution of the 

following unbiased estimating function [42, 43]:

∑
t

∑
θ

I(Y(t) = 0)I(A(t) = dθ(L(t)))

∏ j = 0
t P(A( j) |L( j), A( j − 1))

λ(t − θ)(Y − m(t, θ | β))
m(t, θ | β)(1 − m(t, θ | β))

dm(t, θ | β)
dβ ,

which we denote by D(O|β) (ak×1 matrix). We note that the following equalities hold:

m(t, θ | β)(1 − m(t, θ | β)) = exp( − l(t, θ | β))
(1 + exp( − l(t, θ | β)))2 , (2)

dm(t, θ | β)
dβ = dl(t, θ | β)

dβ
exp( − l(t, θ | β))

(1 + exp( − l(t, θ | β)))2 . (3)

From these equalities, we have:
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D(O | β) = ∑
t

∑
θ

I(Y(t) = 0)I A(t) = dθ(L(t)) λ(t, θ)

∏ j = 0
t P(A( j) |L( j), A( j − 1)

dl(t, θ | β)
dβ (Y − m(t, θ | β)) .

The resulting IPW estimator βn is asymptotically linear with influence curve denoted by 

IC(O|β) and defined as follows [81]:

n(βn − β) = 1
n ∑

i = 1

n
IC(Oi | β) + o(1)

with

IC(O | β) = − E dD(O | β)
dβ′

−1
D(O | β),

where we use the general notation X' for the transpose of any given matrix X. We denote the 

k × k matrix − E dD(O | β)
dβ′

−1
 by C and we have:

C = E ∑
t

∑
θ

I(Y(t) = 0)I A(t) = dθ(L(t)) λ(t, θ)

∏ j = 0
t P(A( j) |L( j), A( j − 1))

exp( − l(t, θ | β))
(1 + exp( − l(t, θ | β)))2

dl(t, θ | β)
dβ

dl(t, θ | β)
dβ ′

−1
.

A substitution estimator Sdθ, n(t) of the counterfactual survival probability 

Sdθ
(t) = 1 − P(Ydθ

(t + 1) = 1) can be derived based on the IPW estimator βn as follows: 

Sdθ, n(t) = ∏ j = 0
i (1 − m( j, θ | βn)) This estimator is asymptotically linear with influence curve 

denoted by ICS(O|β) that can be derived based on the influence curve IC(O|β) of the 

estimator βn using the delta method as follows [57]:

ICS(O | β) =
d∏ j = 0

t (1 − m( j, θ | β))
dβ′ IC(O | β)

= ∏
j = 0

t
(1 − m( j, θ | β)) ∑

j = 0

t d(1 − m( j, θ | β))
dβ′

1 − m( j, θ | β) IC(O | β)

=(2), (3) − Sdθ
(t) ∑

j = 0

t
m( j, θ | β)dl( j, θ | β)

dβ′ IC(O | β)

= − Sdθ
(t) ∑

j = 0

t 1
1 + exp( − l( j, θ | β))

dl( j, θ | β)
dβ′ IC(O | β)
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Similarly, a substitution estimator ψn
θ1, θ2(t) of the cumulative risk difference 

ψn
θ1, θ2(t) = P(Ydθ1

(t + 1) = 1) − P(Ydθ2
(t + 1) = 1) can be derived based on the IPW estimator 

βn as follows: ψn
θ1, θ2(t) = ∏ j = 0

t (1 − m( j, θ2 | βn) −∏ j = 0
t (1 − m( j, θ1 | βn)). This estimator is 

asymptotically linear with influence curve denoted by ICψ(O|β) that can be derived based on 

the influence curve IC(O|β) of the estimator βn using the delta method as follows:

ICψ(O | β) =
d ∏ j = 0

t (1 − m( j, θ2 | β)) − ∏ j = 0
t (1 − m( j, θ1 | β))

dβ′ IC(O | β) .

Using the same derivations as above, we get:

ICψ(O | β) = Sdθ1
(t) ∑

j = 0

t 1
1 + exp( − l( j, θ1 | β))

dl( j, θ1 | β)
dβ′ − Sdθ2

(t) ∑
j = 0

t 1
1 + exp( − l( j, θ2 | β))

dl( j, θ2 | β)
dβ′ IC

(O | β) .

A consistent estimator of the variance of the estimator βn, Sdθ, n(t), and ψn
θ1, θ2 described 

above is given by 1
n2 ∑i = 1

n (IC(Oi | βn))2, 1
n2 ∑i = 1

n (ICS(Oi | βn))2 and 1
n2 ∑i = 1

n (ICψ(Oi | βn))2, 

respectively. When the probabilities P(A( j) |L( j), A( j − 1)) involved in these closed-form 

expressions are unknown and replaced instead with efficient estimates, these variance 

estimators are conservative in the sense that they over-estimate the estimators’ true variance 

[81].
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Figure 1. 
Crude estimates over 16 quarters of the four survival curves associated with the four TI 

initiation strategies dθ with θ = 7, 7.5, 8, 8.5.
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Figure 2. 
Unbounded IPW estimates (no weight truncation) over 16 quarters of the four survival 

curves associated with the four TI initiation strategies dθ with θ = 7, 7.5, 8, 8.5. The 

estimates on the top left, top right, bottom left, and bottom right plots were obtained based 

on the estimators gn, gn,t, gn,t,x, and gn,t,SL, respectively.
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Figure 3. 
Bounded IPW estimates (no weight truncation) over 16 quarters of the four survival curves 

associated with the four TI initiation strategies dθ with θ = 7, 7.5, 8, 8.5. The estimates on 

the top left, top right, bottom left, and bottom right plots were obtained based on the 

estimators gn, gn,t, gn,t,x, and gn,t,SL, respectively.
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Figure 4. 
Bounded hazard-based IPW estimates (no weight truncation) over 16 quarters of the four 

survival curves associated with the four TI initiation strategies dθ with θ = 7, 7.5, 8, 8.5. The 

estimates on the top left, top right, bottom left, and bottom right plots were obtained based 

on the estimators gn, gn,t, gn,t,x, and gn,t,SL, respectively.
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Figure 5. 
Distribution of the IP weights assigned to failures observed under any of the four TI 

initiation strategies in the unbounded IPW estimation approach. Each plot represents the 

distribution of the IP weights derived with the estimators gn, gn,t, gn,t,x, and gn,t,SL in the 

interval indicated by the labels on the x axis. These intervals are defined by the 25th, 50th, 

75th, 99th, and 99.9th percentiles of the IP weights derived with the estimator gn.
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Figure 6. 
Distribution of the IP weights assigned to failures observed under any of the four TI 

initiation strategies in the bounded IPW estimation approach. Each plot represents the 

distribution of the IP weights derived with the estimators gn, gn,t, gn,t,x, and gn,t,SL in the 

interval indicated by the labels on the x axis. These intervals are defined by the 25th, 50th, 

75th, 99th, and 99.9th percentiles of the IP weights derived with the estimator gn.
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Figure 7. 
Distribution of the IP weights assigned to failures observed under any of the four TI 

initiation strategies in the hazard-based bounded IPW estimation approach. Each plot 

represents the distribution of the IP weights derived with the estimators gn, gn,t, gn,t,x, and 

gn,t,SL in the interval indicated by the labels on the x axis. These intervals are defined by the 

25th, 50th, 75th, 99th, and 99.9th percentiles of the IP weights derived with the estimator gn.
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