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Abstract

Epstein-Barr virus (EBV) was the first human tumor virus discovered more than 50 years ago. 

EBV-associated lymphomagenesis is still a significant viral-associated disease as it involves a 

diverse range of pathologies, especially B-cell lymphomas. Recent development of high-

throughput next-generation sequencing technologies and in vivo mouse models have significantly 

promoted our understanding of the fundamental molecular mechanisms which drive these cancers 

and allowed for the development of therapeutic intervention strategies. This review will highlight 

the current advances in EBV-associated B-cell lymphomas, focusing on transcriptional regulation, 

chromosome aberrations, in vivo studies of EBV-mediated lymphomagenesis, as well as the 

treatment strategies to target viral-associated lymphomas.
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5.1 Introduction

Approximately two million new cases of cancer are annually attributed to infectious agents. 

12% to 15% of human cancers are associated with oncogenic virus infection and are 

suspected to be major drivers [1, 2]. Uncovering the roles of infectious agents will help 

facilitate our understanding of the mechanism of cancer pathogenesis mediated by infectious 

agents and develop potential methods for therapeutic intervention. Epstein-Barr virus 

(EBV), also known as herpesvirus 4, was the first human tumor virus to attract significant 

attention since it was discovered associated with Burkitt’s lymphoma in 1964 [3]. EBV 

infects more than 95% of the world’s population and sustains lifelong asymptomatic 

infection. Its ability to induce oncogenesis is likely due to suppression of the immune system 

or a result of the uncontrolled proliferation. A recent study demonstrated that 1.8% of cancer 

deaths were related to EBV-attributable malignancies worldwide [4].

Initial infection of EBV is usually asymptomatic or can cause infectious mononucleosis 

(IM) [5]. The following lytic infection in epithelial cells results in the expression of the 
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complete viral gene program. Previous studies clearly showed that EBV had the ability to 

transform human primary B lymphocytes into lymphoblastoid cell lines (LCLs) [6, 7]. To 

date, EBV is still the most efficient transforming virus in culture and can rapidly transform 

resting B cells in vitro [8, 9]. The persistence of EBV infection is mainly in B cells and leads 

to EBV associated B-cell lymphoma, typically in individuals with suppressed immune 

systems. Nasopharyngeal carcinoma (NPC) and EBV-associated gastric carcinoma (GC) are 

also related with EBV-infected epithelial cells, but whether or not the virus is a major 

contribution to the pathogenesis of these tumors is still unclear. Therefore, the presence and 

precise contributions of EBV to numerous human cancers is a challenge to explain. 

However, it also provides a great opportunity to the development of novel prophylactic or 

therapeutic methods.

5.2 EBV-Associated B-Cell Lymphomas

5.2.1 Burkitt’s Lymphoma (BL)

Burkitt’s lymphoma (BL) can be classified into three forms based on the geographic 

distribution: endemic BL (eBL), sporadic BL (sBL), and HIV-associated BL [10]. The 

discovery of EBV in BL tumors and the fact that almost 100% of endemic BL are EBV 

positive support the possibility that BL tumors are driven by EBV as a major contributor. 

Further sera-epidemiological studies have provided evidence that African BL tumors are 

positive for EBV [11]. One critical feature of BL tumors is the translocation and activation 

of MYC [10]. MYC overexpression in BL tumors results from a translocation event between 

the MYC gene and immunoglobulin locus which further regulates the downstream network 

and facilitates tumorigenesis [12, 13]. Most EBV-positive BL tumors consistently express 

latent antigen EBNA1 as the predominant latent antigen and are termed latency I [14]. 

Previous studies show that EBNA1 can play antiapoptotic roles which also contributes to 

increased tumorigenicity [15, 16]. In addition, and different from that observed in Africa, 

only 15–20% of BL tumors are EBV positive in other parts of the world [12]. The extremely 

uncommon observation is consistent with the fact that EBV together with malaria can 

increase the frequency of BL tumors. However, the mechanism of their interaction is not 

fully understood and needs further investigation [12, 17].

5.2.2 Diffuse Large B-Cell Lymphoma (DLBCL)

Diffuse large B-cell lymphoma (DLBCL) is the most common non-Hodgkin lymphoma 

(NHL), accounting for 40% of adult NHL [18]. Two major subtypes of DLBCL, germinal 

center B cell (GCB) and activated B cell (ABC), were divided based on genomic signatures 

[19]. Approximately 10% DLBCL is EBV positive, which has been described in the World 

Health Organization (WHO) classification system [20]. EBV-positive DLBCL is mainly 

identified in the elderly because the median age of these patients is 71 years, although in 

younger patients can also be found [20, 21]. The incidence of EBV among DLBCL patients 

is less than 5% in the United States and European countries but 10–15% in Asian and Latin 

American countries [21–24]. EBV-positive DLBCL is associated with activation of NF-κB 

and JAK/STAT signaling pathways, but the detailed mechanisms of tumorigenesis will need 

to be further investigated [25].
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5.2.3 Posttransplant Lymphoproliferative Disease (PTLD)

Posttransplant lymphoproliferative disease (PTLD) is mainly derived from B cells in 

transplant patients [26, 27]. It is often associated with EBV infection in the context of an 

impaired immune surveillance system. Furthermore, 60–80% of PTLDs are shown to be 

EBV positive [28]. EBV is the crucial driver of PTLDs development that is typically early-

onset cases of posttransplantation [29]. Early-onset PTLDs that are associated with EBV-

infected B cells are usually polyclonal or oligoclonal, while most late-onset PTLDs with or 

without EBV infection are monoclonal [30]. The transplant-associated immunosuppression 

in PTLDs leads to expression of EBNA3 family members in addition to all the latent 

antigens, which are characteristics of latency III-associated EBV infection [9]. The 

prevention and treatment of EBV-associated PTLDs rely on surgery with irradiation, 

immunotherapy with monoclonal antibodies (e.g., rituximab), and antiviral drugs [31]. The 

development of T-cell-based therapies has been very promising to treat EBV-driven PTLDs 

by transferring patient-derived ex vivo amplified EBV-specific cytotoxic T cells back to 

patients [32].

5.2.4 Hodgkin Lymphoma (HL)

Hodgkin lymphoma (HL) is characterized by the presence of Hodgkin-Reed-Sternberg 

(HRS) cells [33]. The direct link of EBV and HL is confirmed by the detection of EBER 

expression in HRS cells using EBER-specific in situ hybridization [34]. In addition, 

EBNA1, LMP1, and LMP2A are also expressed in EBV-infected HRS cells [35]. HL cells 

are B-cell originated and derived from the germinal center. They require the necessary 

signals to escape apoptosis as a result of the lack of functional BCRs [36]. Therefore, in 

EBV-infected HRS cells, LMP1 mimics the CD40 receptor, recruits TRAF family members, 

and further activates downstream NF-κB signaling pathways to promote cell survival by 

inhibiting cell apoptosis [37]. Meanwhile, LMP2A recruits cytoplasmic kinase to activate B-

cell Ig receptors or activates the PI3K-AKT pathway in the absence of Ig receptors to 

promote B-cell survival and growth [9, 38].

5.2.5 EBV-Associated B-Cell Lymphoma in the Context of HIV

The increased reports of EBV-associated lymphomas with the onset of acquired 

immunodeficiency syndrome (AIDS) imply a molecular connection between EBV and HIV 

in the infected hosts [39]. In HIV-associated lymphomas, EBV infection can be found in 

80% of DLBCL and 80–100% of primary central nervous system lymphomas (PCNSL) 

[40]. BL can occur before HIV infection even if circulating CD4+ T-cell numbers are 

normal. DLBCL typically occurs only after HIV infection when circulating CD4+ T cells 

are exhausted [41]. AIDS-BLs involve the typical MYC translocation and are less frequently 

infected by EBV [42, 43]. These observations suggest that HIV may be a potential 

stimulator which leads to an increase in the risk of EBV-mediated MYC translocation and 

therefore lymphomagenesis. Most AIDS-associated lymphomas that are EBV positive do 

express broad expression of the latent antigens and are type III latency program. This is 

likely due to the suppressed immune system and so a loss of control of the EBV-positive 

cells.
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5.3 Molecular Biology of EBV-Mediated B-Cell Lymphomas

EBV is an oncogenic herpesvirus because of its ability to immortalize human primary B 

lymphocytes in vitro. In general, EBV primary infection is asymptomatic, and the following 

persistent infection will be established in memory B cells after an early period of virus 

production [44]. Therefore, two typical EBV infections can be established in the host: lytic 

infection in epithelial cells and latent infection in memory B cells [45, 46]. The initial events 

of EBV primary infection are the focus of current studies, but the detailed mechanisms are 

still not completely understood. In latent infection, specific transcription programs are 

defined as latency I, II, and III according to the expression of the viral-encoded latent 

antigens, which are thought to be the critical drivers of EBV-associated lymphomagenesis.

5.3.1 EBV-Associated Transcription Regulatory Network

One hallmark of cancer is the dysregulation of gene expression [47]. The characteristic of 

effective in vitro transformation by EBV indicates its strong ability to regulate cellular 

transcriptional programs. With the rapid development of high-throughput sequencing 

technologies, more and more studies are focused on a complicated regulatory network 

during EBV-mediated B-cell transformation by utilizing the common database such as NCBI 

GEO, ENCODE, and TCGA project [48–50].

To determine the molecular mechanisms which drive lymphomagenesis, EBV-transformed 

lymphoblastoid cell lines (LCLs) are one of the best systems to perform in vitro studies. 

More recent studies have concentrated on EBV latent protein-mediated regulatory networks 

using next-generation high-seq analysis, of which the frequently used is ChIP-seq (Table 

5.1). ChIP-seq analysis indicated that EBNA2 can convert B lymphocytes to LCLs by 

targeting H3K4me1 modified sites as well as noncoding regions to regulate cellular gene 

expression to drive proliferation of LCLs [51]. In addition, EBNA2 induces a new pattern of 

genome-wide binding through recruitment of RBPJκ and EBF1 to drive LCL survival [52]. 

EBNA2 recruits the SWI/SNF ATPase BRG1 to bind large-scale MYC enhancers activating 

its expression [53]. EBNA-LP binds with B-cell transcription factors (TFs), which are highly 

similar to EBNA2 including RBPJκ and EBF [54]. These high-seq data provides evidence to 

support the explanation that both EBNA2 and EBNA-LP are crucial for LCL outgrowth. 

EBNA3C, another EBV latent antigen essential for LCLs growth, is associated with cellular 

transcription factors. It binds to BATF/IRF4 and SPI1/IRF4 sites to repress CDKN2A 

transcription through the recruitment of Sin3A in LCLs [55]. EBV latent proteins EBNA3A 

and EBNA3C inhibit BCL2L11 transcription by recruiting the H3K27 methyltransferase 

EZH2 to silence long-range enhancers [53]. ChIP-seq analysis shows that EBNA2 and 

EBNA3s (EBNA3A, EBNA3B, and EBNA3C) can target multiple cellular genes through 

cell-specific regulation of long-range enhancer-promoter interactions [56]. Another study 

indicated that while these four latent antigens can competitively bind to RBPJκ at its 

repressive sites to control cellular genes expression, EBNA3s are more likely to interact with 

other transcription factors [57]. For example, IRF4 is essential for EBNA3C to associate 

with specific sites on viral and cellular DNA [16, 55, 57, 58]. A recent study identified a 

number of host dependency factors in BL and LCLs using CRISPR/Cas9 loss-of-function 

screen [59]. These specific genes, including PI3K/AKT, cFLIP, BATF/IRF4, and IRF2, are 
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likely crucial in regulating downstream transcriptional network to facilitate cell growth and 

survival.

During EBV primary infection, the correlative latent antigens convert resting B cells to 

LCLs, and their dependent function may rely on super-enhancers to control B-cell growth 

[60]. EBV super-enhancers (ESEs) with higher H3K27c signals involve the oncogenes MYC 

and Bcl2 to promote LCL growth and survival, which provides new insights on EBV-

induced lymphoproliferation [60]. EBNA2, EBNA3A, and EBNA3C can enhance RUNX3 

expression via RBPJκ to regulate the upstream RUNX3 super-enhancer and meanwhile 

control the downstream RUNX1 expression [61]. Additionally, abundant enhancers (eRNAs) 

are also transcribed from ESEs and are regulated by the activity of ESEs [62]. For example, 

the inactivation of EBNA2 and bromodomain-containing protein 4 (BRD4) in ESEs will 

significantly reduce the expression of eRNAs and further the MYC protein, therefore 

affecting LCL growth [62].

About 300 novel EBV transcripts have been predicted by combining multiple platform data 

from PacBio SMART Iso-Seq, RNA-Seq, and deep-CAGE, which illustrates the complex 

regulation of viral gene transcription during EBV infection [63]. Studies on miRNA 

targetome show that EBV miRNAs mainly target cellular transcription factors to manipulate 

the microenvironment during latent infection, suggesting the importance of EBV-expressed 

miRNAs in contributing to viral-mediated oncogenesis [64]. Furthermore, EBV miRNAs 

can modulate immune recognition to protect infected cells from killing by cytotoxic EBV-

specific CD4+ T cells through repression of pro-inflammatory cytokine release, naïve CD4+ 

T-cell differentiation, and peptide presentation, which allow for establishment of latent 

infection and development of lymphomas [65]. Similarly, EBV miRNAs can use multiple 

pathways to evade immune surveillance and killing by EBV-specific CD8+ T cells [66].

Although the development and manipulation of high-throughput sequencing technologies 

provide us a deeper and wider understanding of EBV-mediated transformation or 

lymphomagenesis (Fig. 5.1), the complicated regulatory network targeted by EBV latent 

infection is still being explored. Furthermore, systematic proteomic analyses can possibly 

validate some of the genomic observations and gain additional insights into EBV-host 

interactions [67]. In the future, more efficient systems and more advanced technologies with 

higher resolution, specificity, and sensitivity will be helpful in revealing the complex EBV-

host interactions in associated lymphomas.

5.3.2 Genomic Instability and Chromosome Aberrations

Genomic instability is a hallmark of cancer that increases the risks of oncogenic 

chromosome alterations [1, 9]. Previous studies have indicated that EBV persistent infection 

can result in chromosome aberrations in associated lymphomas [9, 26, 68]. EBV latent 

antigens play crucial roles in driving genomic instability. To be specific, EBNA1 may 

function to contribute to genomic instability through activation of the RAG gene or 

induction of reactive oxygen species (ROS) [17, 29]. EBNA3C can promote genomic 

instability by inhibiting BubR1 transcription and inactivating the mitotic spindle checkpoint 

[69]. Additionally, EBNA3C can compromise the mitotic spindle checkpoint and block 

caspase-mediated cell death, leading to abnormal mitosis and DNA damage accumulation 
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[15, 70]. Although the detailed mechanism of EBNA3C-mediated genetic instability needs 

further investigation, multiple functions of EBNA3C may contribute to genetic instability 

directly or indirectly by binding with cell cycle or DNA damage checkpoint proteins, 

including cyclin A [71], Chk2 [72], cyclin D1 [73], p53 [74, 75], and the E2F family 

member E2F1/E2F6 [28, 76]. LMP1-associated genomic instability may also result from 

telomerase activation and DNA damage response (DDR) inhibition [69, 77]. Intriguingly, 

EBV tegument protein BNRF1 could also induce centrosome amplification and further 

chromosome instability during lytic infection, suggesting that EBV viral particles may be 

sufficient to modify host chromosome without the establishment of latent infection [78].

In addition, the EBV genome can frequently integrate into host cell chromosomes in 

persistently infected B cells [22, 79, 80]. This integration increases the possibility of 

lymphomagenesis when the constitutive regions release the viral genome which leads to loss 

of normal DNA or chromosome instability [81]. For instance, the integration of the EBV 

genome into chromosome 6q15 blocks the expression of the tumor repressor BACH2 in 

Burkitt lymphoma cell lines [80]. Using whole genome sequencing technology, a recent 

study reports that a comprehensive view of integration sites shows that they are randomly 

distributed across the entire host genome in EBV-positive Raji (Burkitt’s lymphoma cells), 

and C666-1 (nasopharyngeal carcinoma cells) and so may be contributing to 

lymphomagenesis [25]. The frequent chromosome recombination, involved in chromosome 

8 and c-Myc activation, is also noted in Burkitt’s lymphoma cells after combined treatment 

with EBV and purified 4-deoxyphorbol ester [82].

5.3.3 In Vivo Models of EBV Infection

Host-range restriction is a major limitation of EBV research because humans are the 

exclusive natural host for EBV. Therefore, the development of a more efficient in vivo 

system to support the studies from in vitro results will provide additional information related 

to the complicated EBV-host interactions. An important achievement on in vivo system 

began with the development of scid-hu PBL mouse through the injection of human 

peripheral blood leukocytes (PBL) into C.B-17 scid mice that lack B and T cells because of 

the severe combined immunodeficiency (SCID) phenotype [83, 84]. Later, another scid-hu 

thy/liv mouse was generated by implanting fetal thymus, liver cells, and fetal lymph nodes 

into C.B-17 scid mice [85]. However, these mice have obvious shortcomings of generated 

graft versus host disease and transient immune responses [86]. Subsequently, a new series of 

mice models were generated to overcome the preceding disadvantages by transplanting 

human hematopoietic stem cells (HSCs) into various mice such as NOD/Shi-scid Il2rgnull 

(NOG) [87], BALB/c Rag2−/−Il2rg−/− (BRG) [88], and NOD/LtSz-scid Il2rg−/− (NSG) [89]. 

These transplanted HSCs reconstituted the human immune system by differentiating into 

diversified cells, including B cells, T cells, natural killer (NK) cells, dendritic cells (DCs), 

monocytes, and macrophages [86].

Given the great improvement in mouse models, it is possible to further study the 

mechanisms of EBV-associated lymphomagenesis in vivo using humanized mice. Previous 

studies have shown that EBV could infect humanized BALB/c Rag2−/−Il2rg−/− mice and 

induce specific T-cell response [88]. A mouse model for EBV infection was established by 
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transplanting only CD34+-depleted human cord blood mononuclear cells into NOD/LtSz-

scid Il2rg−/− (NSG) mice [90]. The results from this EBV-infected mouse model indicated 

that the PD-1/CTLA-4 blockade will induce strong specific T-cell responses and inhibit the 

outgrowth of EBV-associated lymphomas [90].

To further support human T cells which demonstrate HLA-restricted cytotoxic functions in 

mouse models, an immunodeficient NSG-HLA-A2/HHD mouse was created through the 

introduction of HLA-A2 allele into CD34+CD38− HSC- transplanted NSG mice [91]. The 

new mouse model showed a relatively complete immune system that expresses HLA class I 

heavy and light chains, promotes human T-cell development, and produces functional CD4+ 

and CD8+ T cells. In this mouse model, EBV infection will result in B-cell-associated 

lymphoproliferative diseases, which can be inhibited by HLA-restricted CTL cytotoxicity 

[91]. What’s more, NK cells are necessary to control infectious mononucleosis (IM) 

symptoms by targeting EBV lytic antigens and so control lytic infection [92]. Furthermore, 

NOD/SCID-hu BLT mice (or BLT mice) are developed by transplanting scid-hu thy/liv mice 

with autologous CD34+ cells which combines the advantages of scid-hu thy/liv mice model 

and CD34+ cell-transplanted NOD/SCID mice model [36]. BLT mice were shown to have a 

more complete human immune system, of which the T cells generate long-term, specific 

adaptive immune responses after EBV infection via human major histocompatibility 

complex (MHC) class I and II [36].

In 2011, an improved humanized mouse model was developed through the transplantation of 

human fetal CD34+ hematopoietic stem cells and thymus/liver tissue into NOD/LtSz-scid 
Il2rg−/− (NSG) mice [93]. The mouse model supports long-term EBV latent infection and 

lymphoma development. Further experiments showed that EBV lytic infection was critical 

for B-cell lymphomagenesis with limited help of the immune system [93]. The following 

application of this mouse model with wild-type EBV or LMP1-deficient EBV infection 

demonstrated that LMP1 may not be essential for EBV-mediated lymphomagenesis but that 

T cells may substitute LMP1 function for development of B-cell lymphomas [94].

Different from the application of humanized mouse model, a recent study reported 

establishment of a transgenic mouse model with conditional LMP1/2A coexpression in 

germinal center (GC) B cells [95]. In this mouse model, LMP1/2A showed very limited 

function in immunocompetent mice, while they promote B-cell lymphoproliferative diseases 

in the context of T-cell or NK-cell deficiency [95].

5.4 Treatment of B-Cell Lymphomas

Diffuse large B-cell lymphoma (DLBCL) continues to be one of the few lymphomas that 

remain curable due to advancements made over the last decade. More than half of the 

patients can be cured using treatments that include chemo-, radio-, or immunotherapeutic 

regimens [96]. However, approximately 30–40% of patients diagnosed will develop relapsed 

or refractory disease after being treated for DLBCL [97, 98]. Treatment of these patients has 

become extremely difficult due to the resistance that has grown with the disease [99]. The 

improved outcome in patients with DLBCL and relapsed-refractory DLBCL (RR-DLBCL) 

is largely attributed to the incorporation of rituximab into standard regimens [99, 100]. With 

further findings and introduction of novel specific anticancer agents and therapeutic 
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approaches, treatment and survival of affected patients are likely to improve tremendously 

[101].

DLBCL is commonly treated with R-CHOP, a combination of rituximab, cyclophosphamide, 

doxorubicin, vincristine, and prednisone, and it has shown great benefits for patients [102]. 

Tolerance in patients of all ages has been demonstrated, and survival rates have increased, 

specifically in patients diagnosed with non-Hodgkin’s lymphoma [103]. Recent findings 

indicate that in combination with rituximab or R-CHOP, drugs lenalidomide and 

epratuzumab could be effective in not only first-line treatment of DLBCL but also RR-

DLBCL [96]. Other novel agents such as ibrutinib, bortezomib, CC-122, and pidilizumab 

have been shown to be successful in the first-line treatment of DLBCL as both single agents 

or in combination with rituximab-based chemotherapy [96]. Studies have also investigated 

the role of the NF-κB/Rel family, specifically nuclear factor kappa-B (NF-κB) and RelA 

(p65) in DLBCL. High p65 nuclear expression is a significant adverse biomarker in patients 

with early-stage (I/II) DLBCL [104]. Findings have shown that with p65 inactivation, cell 

growth and survival can be effectively inhibited. Furthermore, activation of the JAK-STAT 

and NF-κB pathways is characteristic of EBV-positive DLBCL [25]. Therefore, 

development of therapies targeting these pathways would be of potential benefit for these 

patients and lead to an improvement in their post-therapy outcomes.

Another major development in the treatment of DLBCL is CAR T-cell therapy. This therapy 

utilizes chimeric antigen receptor (CAR)-engineered T cells specifically engineered to 

recognize their target antigen through the scFv-binding domain [105]. This recognition 

results in the activation of T cells in a major histocompatibility complex (MHC)-

independent manner [106]. Investigation of this therapy has demonstrated promising 

outcomes by targeting CD19, CD20, or CD30 which is significant for B-cell malignancies 

such as B-cell non-Hodgkin’s lymphoma (B-NHL) and Hodgkin’s lymphoma (HL) [106]. 

Though still in development, success has been shown in treatment of patients, and with a 

deeper understanding of its functional role, the future of this novel therapy will likely prove 

to be promising for many diseases.

Research has led to the discovery that B-aggressive lymphoma-1 protein and ADP-

ribosyltransferase BAL1/ARTD9 may serve as a novel potential drug target for treatment 

[96, 107]. Combining a drug(s) targeting STAT1 or the macrodomains of BAL1/ARTD9 

with common day therapeutic treatments might be a successful strategy toward increasing 

the sensitivity of HR-DLBCL to classic therapy [107]. Several other potential therapies have 

been identified through other ongoing investigations including the targeting of Deltex-3-like 

E3 ubiquitin ligase (DTX3L) and the BET Bromodomain Protein BRD4 [1, 96, 108]. 

Preliminary studies indicate that DTX3L controls CXCR4, a chemokine receptor [108]. 

Further studies would need to be done to identify the link, if any, of DTX3L via CRCX4 

with DLBCL. However, a therapy involving this control mechanism shows great potential 

[108]. Regarding BRD4, studies have shown that the BET inhibitors have the ability to 

inhibit oncogenic NF-κB activity through decreased expression of the NF-κB target genes 

IL6 and IL10 [1]. These findings, along with the developments in understanding the 

functions of NF-κB and RelA (p65), highly support the need for further research into 

developing a therapeutic drug targeting NF-κB complex.
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Further investigation on these therapies, with or without standard immunochemotherapy, 

would provide major insights and pave the way to developing successful treatments for 

patients suffering from more aggressive types of DLBCL or RR-DLBCL or even different 

types of lymphomas. It is also believed that acquired drug resistance is mediated by a finite 

set of pathways. If these pathways can be identified and the targets that need to be 

suppressed or activated can be determined, sensitivity could be restored to drugs that were 

used successfully in a prior line of therapy or optimize the efficiency of the available 

therapeutic personalized regimens [13, 96].

5.5 Conclusions

EBV was discovered more than 50 years ago, but a large body of questions remain 

unanswered. Although EBV infects more than 90 % of the world’s population, only a subset 

of the related infections results in lymphomagenesis. The lifelong relationships between host 

and EBV suggest the importance of the immune system in normal individuals. For many 

immunodeficient patients, EBV-induced lymphomagenesis is a frequent occurrence. 

Although EBV-associated lymphomas have been studied for many years, the precise roles of 

EBV in these processes are still unclear. EBV can infect B cells and establish latent 

infection, further inducing them toward lymphomagenesis under specific conditions in the 

microenvironment. Although the in vitro model of EBV infection has been established for 

many years, the detailed strategies of EBV infection, which includes latent and lytic 

infection, are not completely understood. The complex regulatory network is associated with 

regulation of numerous transcription factors, viral lytic/latent antigens, and their associated 

relationships. In addition, the development of NPC or GC after EBV infection has not been 

completely investigated because of the limitation of an efficient in vitro and in vivo model 

system. It is anticipated that the combined application of high-throughput next-generation 

sequencing technologies and in vivo mouse models will significantly improve our 

understanding of EBV biology in the near future and the development of potential 

therapeutic intervention strategies.
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Fig. 5.1. 
EBV latent antigen-associated cellular signaling pathways from the current high-throughput 

sequencing data during EBV-mediated lymphomagenesis. (a) EBNA2 regulates target genes 

expression through the recruitment of transcription factors RBPJκ and EBF1. (b) EBNA3s 

and EBNA2 bind with partially the same RBPJκ genomic sites. The interaction between 

RBPJκ and EBNA3s or EBNA2 will result in different effects of downstream gene 

expression, which are also associated with other EBNA-interacting cell transcription factors. 

(c) EBNA2 activates the three clusters of upstream enhancers of MYC promoter with 

increased H3K27Ac and BRG1 binding, and then EBNA2 mediates MYC activation through 

promoting the interaction of MYC promoter and the activated upstream enhancers. (d) 

EBNA3A and EBNA3C repress BCL2L11 expression by inactivating the upstream 

enhancers of its promoter. The inactivation is associated with increased H3K27me3 and 

EZH2 binding as well as the inhibition of interactions between BCL2L11 promoter and its 

enhancers. (e) EBNA3C binds to the promoters through BATF/IRF4, SPI1/IRF4, and RUNX 

and further recruits Sin3A to inhibit CDKN2A expression. (f) EBNA-LP regulates the 

derepression of target genes by removing NCOR repression complex from the promoters 

with the help of HA95 and further promotes the long-distance enhancer-promoter interaction 

through CTCF, RAD21, and SMC3 proteins. EBV latent antigens are highlighted by colorful 

patterns, while cellular factors are labeled with colorless patterns
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Table 5.1

The transcription factors (TFs) identified in ChIP-seq analysis

Associated TFsa Targets Cell lines References

EBNA1 Human genome, Raji [4]

EBV latent promoter

EBNA2, RBPJG, CTCF, EBF, RELA, H3K9ac, H3K4me1, Pol II, P300 Human genome GM12878 [51]

EBNA2, EBF1, RBPJk Human genome, LCL, [52]

EBV latent promoter Mutu III

EBNA2, H3K27Ac Human genome GM12878, [53]

Mutu III

EBNA-LP, EBNA2 Human genome GM12878 [54]

EBNA3C, Sin3A, REST, EBNA2, RBPJG, IRF4, BATF, SPI1, RUNX3, p300, Pol II, 
H3K4me1, H3K4me3, H3K9ac

Human genome GM12878 [55]

EBNA2, RBPJG, H3K27ac, H3K4me1, BRD4, P300, Pol II, BATF, EBF1, PAX5, SPI1, 
Sp1, NFAT, STAT5, ETS1, IRF4, CTCF, RAD21, SMC3, YY1; EBNA3A, EBNA3C, 
EBNA-LP, RelA, RelB, cRel, p50, p52

Human genome GM12878 [60]

Notch1, RBPJG, ZNF143 Human genome GM12878 [109]

EBNA3A, EBNA3C, EBNA2, RBPJG, BATF, IRF4, SPI1, RUNX3, NF-GB, MEF2A, 
PAX5, POU2F2, MAX, MYC, POL2, SIN3A, H3K27ac

Human genome GM12878 [110]

CHD2, CFOS, BRCA, EGR1, PBX3, BCL3, GCN5, p300, TBP, TAF1, CTCF, Pol II, 
TCF12, EBF1, SP1, PU.1, PAX5, BATF, JUND, SMC3, RAD21, H3K27ac

Human genome, GM12878 [111]

EBV latent promoter

CTCF, RAD21, RPB1 EBV genome Raji [112]

Cohesin, RNA Polymerase II

EBNA3A, EBNA3B, EBNA3C Human genome LCL [113]

a
EBV latent antigens are underlined
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