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Abstract

Anorexia nervosa (AN) is a serious eating disorder characterized by self-starvation and extreme 

weight loss. Pseudoatrophic brain changes are often readily visible in individual brain scans, and 

AN may be a valuable model disorder to study structural neuroplasticity. Structural magnetic 

resonance imaging studies have found reduced gray matter volume and cortical thinning in acutely 

underweight patients to normalize following successful treatment. However, some well-controlled 

studies have found regionally greater gray matter and persistence of structural alterations 

following long-term recovery. Findings from diffusion tensor imaging studies of white matter 

integrity and connectivity are also inconsistent. Furthermore, despite the severity of AN, the 

number of existing structural neuroimaging studies is still relatively low, and our knowledge of the 

underlying cellular and molecular mechanisms for macrostructural brain changes is rudimentary. 

We critically review the current state of structural neuroimaging in AN and discuss the potential 

neurobiological basis of structural brain alterations in the disorder, highlighting impediments to 

progress, recent developments, and promising future directions. In particular, we argue for the 

utility of more standardized data collection, adopting a connectomics approach to understanding 

brain network architecture, employing advanced magnetic resonance imaging methods that 

quantify biomarkers of brain tissue microstructure, integrating data from multiple imaging 

modalities, strategic longitudinal observation during weight restoration, and large-scale data 

pooling. Our overarching objective is to motivate carefully controlled research of brain structure in 

eating disorders, which will ultimately help predict therapeutic response and improve treatment.
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Anorexia nervosa (AN) is an eating disorder that typically develops during adolescence and 

affects more women than men (8:1 ratio) (1). It is the third most common chronic illness in 

adolescents with the highest mortality ratio of all psychiatric disorders (2). The diagnostic 

criteria include energy-intake restriction, significantly low body weight, fear of gaining 

weight, and a distorted body image (3). Clinically, a restricting type marked by food 

restriction can be distinguished from an impulsive binge-eating/purging type, where affected 

individuals eat large amounts of food in a short time period (bingeing) and/or attempt to 

counteract weight gain by vomiting or laxative use (purging). In fact, impulse control may 

serve as a trait-based model to characterize individuals with eating disorders along a 

continuum (4). The pathophysiology remains unknown, with many interacting 

developmental, genetic, environmental, and neurobiological factors (1,5,6). Understanding 

the underlying neurobiology will be key for developing more effective treatments (7–9).

Researchers have long searched for clues in brain structure (10). Advances in neuroimaging, 

including the analysis of T1-weighted (11–13) and diffusion-weighted magnetic resonance 

images (14,15) have yielded important insights (16,17). One well-established finding is that 

gray matter (GM) reduction associated with acute malnutrition is largely reversible with 

weight restoration, at least in nonchronic cases in younger patients (Figure 1) (18–20). Other 

studies have found regionally specific GM alterations (21–23) and compromised white 

matter (WM) integrity or connectivity independent from acute malnourishment (24,25), but 

findings are inconsistent (26–30). Relationships with clinical variables are similarly diverse 

(31,32). These discrepancies may be due to differences in methods and cohorts. Compared 

with other psychiatric disorders, few large-scale studies exist, and our understanding of the 

microstructural basis for macrostructural brain changes in AN is still rudimentary.

The main goals of this review are to 1) critically appraise the current state of structural 

neuroimaging in AN, 2) discuss cellular and molecular processes that may underlie 

morphological alterations in AN, and 3) outline a blueprint for future research elucidating 

the structural architecture of the brain in the disorder. While AN can be seen as a model 

disorder for understanding neuroadaptation to changing metabolic situations, the primary 

objective of this article is to motivate well-controlled research to help predict therapeutic 

response and eventually improve treatment. A cornerstone of this endeavor is promoting 

more standardized study protocols and large-scale data pooling and encouraging future 

studies with advanced technologies that integrate endocrine, metabolic, and (epi)genetic 

biomarkers.

STRUCTURAL NEUROIMAGING TECHNIQUES IN AN RESEARCH

Brain imaging can evaluate the structure and function of the living brain, pointing to 

mechanisms related to pathophysiology. A benefit of studying brain structure is that it tends 

to be more stable and less dependent on acute emotional and motivational states compared 
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with functional neuroimaging. While early computed tomography studies in AN (33) were 

limited in their ability to detect localized alterations, recent structural magnetic resonance 

imaging (MRI) studies employed more sophisticated scanning and analysis procedures.

Volumetry based on T1-weighted MRI is one of the most frequently used techniques to 

study brain macrostructure. The introduction of voxel-based morphometry revolutionized 

structural neuroimaging, as it enabled automated quantification of GM and WM density 

from MRI intensity gradients (11). Most studies of AN focused on cortical and/or 

subcortical volume (26–29). However, cortical GM volume is a composite measure 

comprising two independent components: cortical thickness and surface area (34). Recent 

AN studies evaluated cortical thickness (20,35), folding, or gyrification (36,37).

Brain WM volume is often altered in psychiatric disease, including AN (28,29), but little is 

known about specific alterations in various disorders (38). Going beyond WM volume, 

several recent AN studies (39–41), including longitudinal observations (42–44), employed 

diffusion tensor imaging (DTI) (Supplemental Table S1), which provides information on 

WM integrity by quantifying water diffusivity along axons (45). The most common metric is 

fractional anisotropy (FA), a scalar value that describes the degree of anisotropic and/or 

directional diffusion associated with axon diameter, fiber packing density, membrane 

permeability, and myelination. FA is typically interpreted as a marker for WM integrity, but 

it is affected by several processes and cannot provide a definitive mechanistic explanation 

(46). To better characterize dynamic (pathological) microstructural abnormalities, DTI 

studies often include additional measures, including mean diffusivity—an overall measure of 

water diffusion—and measures of diffusion perpendicular or parallel to WM tracts (radial 

and axial diffusivity). Recent studies used DTI tractography to investigate WM fiber 

connectivity (25,43,47) measured by so-called streamlines that identify connection density 

and quality.

CURRENT STATE OF STRUCTURAL NEUROIMAGING RESEARCH IN AN

The increasing number of structural neuroimaging studies in AN (Figure 2) have been 

qualitatively reviewed and quantitatively meta-analyzed (Supplement) (26–30). The most 

comprehensive meta-analysis (28,29) concluded that globally reduced GM and WM volume 

in acutely underweight patients with AN normalizes during weight restoration, suggesting 

that alterations may merely reflect malnourishment. However, some well-controlled studies 

found larger frontal and subcortical volumes (22,39,48,49), and some regions, including 

cingulate gyrus (21,48,50) and cerebellum (31,32,51–53), appear to be altered more 

frequently than others. Furthermore, adolescents and adults may differ in the persistence and 

prognostic implications of structural alterations. Reports relating GM differences to clinical 

variables or cognitive function (19,22,32,54,55) are also heterogeneous—the only reliable 

predictor is body mass index (20,31,35,56). Similarly diverse findings from the small DTI 

literature in AN (Supplemental Table S1) hint at altered anisotropy and/or diffusivity in a 

range of WM tracts, including the cingulum, corpus callosum, superior longitudinal 

fasciculus, and, most frequently, fornix (17,30). However, the fornix is particularly 

susceptible to artifacts (57,58). Moreover, some studies report both increased and decreased 

FA in varying brain regions (40,42) or no differences at all (41).
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Thus, further research, particularly in weight-recovered individuals and accounting for 

potential differences between clinical subtypes, is needed (25,43,59,60). Recent analyses of 

WM structural and effective connectivity (43,44,47,60) point to alterations in reward-

regulating frontostriatal circuitry, but a coherent pattern has yet to emerge (Figure 3). As 

discussed below, these inconsistencies are likely due to several factors, some of which are 

methodological, which should be addressed in future studies.

Sample Size

Most studies have had small sample sizes (n < 20 patients) and low statistical power, 

inflating the likelihood of false-positive and false-negative results (61,62). A few recent 

studies compiled samples including more than 40 patients with AN (19,20,31), but none 

have conducted power calculations to determine sample sizes needed to detect reliable 

effects. Some studies have minimized the threat of unreliable findings by controlling for 

potential confounds (discussed below) and using stringent statistical thresholds controlled 

for multiple comparisons. Although the diverse results to date may reflect true heterogeneity 

in AN, progress will likely come from better-powered studies. As large samples are hard to 

recruit in a disorder often characterized by lack of illness insight and compliance, 

researchers should consider pooling data (see Advancing the Neuroscience of AN Through 

Collective Analysis below).

Nutritional Status

Modern neuroimaging can detect day-to-day changes in brain structure (63), and diet can 

influence brain morphometry (64). Studies should therefore carefully control and assess 

dietary intake, for example, by scanning at the same time of day after a standardized 

nutritional regimen. While some studies are vague regarding the nutritional status (37,40), 

others report scanning within the first days of patient care in a highly controlled environment 

(19,20,41–43), and still others report scanning after initial realimentation (1–2 weeks) 

(22,35,39). The former strategy captures AN in the natural disease state, but the latter 

reduces the effects of extreme malnutrition. Both strategies offer advantages, but future 

research should clarify the impact of initial realimentation by tracking body mass index 

change before scanning and longitudinal observation. Reversal of pseudoatrophy after 

weight restoration may be more rapid than previously thought (20,65).

Hydration

Hydration affects brain structure (66), and fluid intake is often abnormal in patients with AN 

(67). Three studies asked whether brain abnormalities in acute AN may reflect dehydration 

(22,24) by measuring urine specific gravity but found no evidence of dehydration or 

relationships with brain morphology (19,20,42). However, since self-induced dehydration 

and hyperhydration, together with impaired osmoregulation (68), are common in AN, and 

patients may “cheat the scale” by drinking excessively, targeted study is still needed, for 

instance, of water content (69).
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Brain Development

The brain undergoes plastic changes across the life span (70), and it is challenging to 

disentangle developmental effects from insults due to malnutrition or neuroendocrine 

dysregulation in AN (71–73). Neurodevelopmental trajectories may be interrupted in AN, 

but the effects of malnutrition are at least one order of magnitude faster than age-related 

changes (20). While many AN studies attempt to account for maturation affects by 

covarying for age, others have adopted the often favorable strategy of focusing on 

homogeneous age ranges in separate analyses (19,22,39,41).

Extraneous Variables

In addition to controlling for eating disorder–specific factors, including clinical subtype (and 

subtype history), age of illness onset, and illness duration, future studies should control for 

other potential confounds, such as comorbidity (1,5), medication (74) including oral 

contraceptives (75), menstrual cycle (76), physical activity (77), and, in adolescents, pubertal 

stage (78). For analyses, use of covariates should be kept to a minimum to avoid overfitting 

statistical models. Depending on specific research questions, subanalysis of the influence of 

variables that are present only in the clinical group is important, both within-group (e.g., 

duration of illness) and between-(sub) group (e.g., medication) analyses.

Enhancing Reproducibility and Generalizability

Researchers are encouraged to follow best practices in neuroimaging (79) and to take 

proposed guidelines (Table 1) into consideration, many of which apply generally to eating 

disorders.

POTENTIAL NEUROBIOLOGICAL MECHANISMS UNDERLYING 

STRUCTURAL BRAIN ALTERATIONS IN AN

Alterations in brain structure may result from multiple processes, but the underlying 

mechanisms remain poorly understood (80). In this section, we discuss possible explanations 

for brain morphological changes in AN, including 1) intracellular fluid moving into 

extracellular spaces because of altered oncotic (colloid osmotic) pressure or dehydration 

(81); 2) loss of glial or neuronal cells (e.g., apoptosis); 3) macronutrient and/or 

micronutrient deficiency (82,83); and 4) suppression of leptin (84), reduction of gonadal and 

thyroid hormones as well as neurotrophins, and cortisol increase (72). The last-mentioned 

possibilities could contribute to inadequate protein biosynthesis, which may lead to a) 

changes in or loss of dendritic spines, fiber reorganization, and delayed synaptogenesis 

(neuronal remodeling) and b) increased lipid catabolism and/or decreased myelination and 

shrinkage of glial cells (glial remodeling).

Dehydration and Oncotic Pressure

As noted above, targeted studies are needed to confirm preliminary evidence indicating that 

dehydration may not explain GM reduction in acute AN (19,20,42). Additional measurement 

methods, such as bioelectrical impedance analysis (with vector analysis), may also be 

helpful (85). It would also be important to differentiate between hypovolemia that is due to 
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dehydration and hypovolemia that is due to loss of electrolytes, and researchers need to take 

into account that hemoconcentration that is due to volume depletion in AN can be masked 

by anemia (86). Fluctuations in GM and/or WM characteristics might also be explained by 

changes in oncotic pressure related to fluid shifts between the circulatory system and the 

interstitial space. Indeed, free abdominal fluid and pericardial effusion are often found in 

acutely underweight patients with AN (87). Although serum protein values are normal in 

AN (88,89), albumin levels have been associated with alterations in MRI signal intensity 

(90), and exploration of relationships with morphological changes may be worthwhile.

Apoptosis of Brain Cells

Postmortem histological data from an AN case study suggest an abnormally slender neuron 

type with a long basal dendritic field and reduced spine density and/or altered spine 

morphology indicative of cellular degeneration (91). Animal models of AN show reduced 

proliferation of brain cells but not massive cell loss (92). If apoptosis were the underlying 

cause of GM loss in acute AN, normalization following weight restoration would be unlikely 

unless neurogenesis occurred. However, the rapid GM increase during therapy (roughly 4% 

globally in only 3 months) (20) is hardly compatible with the comparatively sluggish 

turnover rate documented in select neuronal subpopulations in adults (1%–2% annually) 

(93). Preliminary findings from studies using neuronal and glial damage and/or activation 

markers, such as neuron-specific enolase and glial fibrillary acid protein (GFAP) (94), speak 

against a massive acute loss of brain cells. However, the normal age-dependent increase in 

peripheral GFAP (95), which may reflect expansion of mature, differentiated astrocytes (96), 

is absent in acute AN. Thus, reductions in size or changes in morphology of glia or neurons 

and dendrites seem more likely candidates for brain changes in AN.

Dietary Intake: Macronutrients and Micronutrients

Patients with AN disproportionally avoid consuming fats (97,98). Consequently, plasma 

concentrations of several lipids (including essential fatty acids) are lower or altered in 

patients with acute (99,100) but normal in recovered patients (101). Lipids (especially 

cholesterol, glycerophospholipids, and sphingolipids) are major components of brain 

structure (102). Many fatty acids can be produced endogenously, but some polyunsaturated 

fatty acids that are crucial for fluidity of neuronal membranes and for modification of the 

number and affinity of membrane bound enzymes, receptors, and ionic channels must be 

provided by diet (103). Deficiency of polyunsaturated fatty acids has been associated with 

structural brain alterations (64), but such relationships have yet to be explored in AN.

Insufficient intake of fats and other macronutrients may also be associated with inadequate 

micronutrient intake. Few studies have investigated intake or plasma levels of vitamins and 

trace elements (including iron), but there may be a reduction of several micronutrients, 

especially vitamin B12 and zinc (104). Zinc deficiency has been suggested to play a causal 

role in AN (105), but a recent large study found reduced levels in only 3% of the adult 

patients, and other vitamin or mineral deficiencies were found in only approximately 45% of 

patients—less than expected given frequent dermatological symptoms in AN suggestive of 

micronutrient deficiency (106).
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Similarly, iron deficiency is surprisingly uncommon in AN (107). Iron is one of the many 

constituents of myelin, and iron concentration is related to WM fiber integrity (108). For 

example, higher serum transferrin levels are associated with lower fractional anisotropy in 

various WM tracts (109). Although the consequences of micronutrient deficiencies on 

neurological function have long been known (e.g., vitamin B1 and Wernicke 

encephalopathy), the study of how nutrients affect brain structure is relatively new 

(82,83,110) and has been neglected in AN research. Because evaluating micronutrient intake 

using questionnaires may be unreliable (111), measuring plasma levels may be preferable.

Endocrine System

The hypothalamic-pituitary-adrenal axis is hyperactive in AN, and the “hunger hormone” 

ghrelin is elevated, whereas the hypothalamic-pituitary-thyroid and hypothalamic-pituitary-

gonadal axes and the adipocyte-derived hormone leptin is suppressed (71,72). Cortisol 

concentrations are elevated in AN (112), and cortisol is known to impact brain structure 

(113). Suppression of the hypothalamic-pituitary-thyroid and hypothalamic-pituitary-

gonadal axis in AN has been attributed to restricted energy intake or increased energy 

expenditure and may be an adaptation to low energy availability—i.e., sexual reproduction 

would cost energy required for vital body functions. Beyond their role in sexual 

differentiation, gonadal steroids are critical for brain development, especially during 

adolescence (114). Estradiol, for example, protects neurons from excitotoxins and oxidative 

stress (115) and promotes dendritic growth, neurotransmitter synthesis, and neuronal 

depolarization (116). Despite endocrine dysregulation in AN, few studies have investigated 

relationships with brain structure. One computed tomography study (117) found associations 

between the width of cortical sulci and hypercortisolemia and hypogonadotropic 

hypogonadism, which is compatible with an MRI study reporting a link between follicle-

stimulating hormone and regional GM volumes (51). Another study found an increase in 

global GM volume following weight recovery to correlate negatively with blood cortisol 

levels (54). Given established relationships between leptin and GM volume in healthy 

individuals (118), future studies might seek to clarify the relative contribution of leptin 

deficiency to structural brain anomalies in AN.

NEUROTROPHIC FACTORS

Neurotrophin brain-derived neurotrophic factor (BDNF), nerve growth factor, and glial-

derived neurotrophic factor are proteins that modulate neuronal or glial development or 

regeneration and have been repeatedly related to brain changes. BDNF promotes the growth, 

differentiation, and survival of neurons (119) and plays a role in synaptic plasticity (120) as 

well as food intake and weight regulation (121). Reduced BDNF levels in acute AN are well 

established (122,123), as are variations in GM and WM morphometry as a function of 

BDNF polymorphisms (124). However, studies testing associations between circulating 

BDNF (and nerve growth factor and glial-derived neurotrophic factor) and brain structure in 

AN are lacking. Future studies should control for phasic effects of exercise on BDNF levels 

(125), as up to 70% of patients with AN report excessive exercise (126).
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Glial and/or Neuronal Remodeling

Even if the factors discussed above do not cause apoptosis, they may contribute to structural 

brain alterations in AN by affecting the size or shape of neurons and glia. This hypothesis is 

supported by findings of deficits in somal size and density as well as dendritic branching and 

spine density of hippocampal pyramidal cells in protein-malnourished rats (127). Similarly, 

short apical dendrites, fewer spines, and dendritic spine abnormalities have been found in 

infants with severe malnutrition (128). Such mechanisms of neuronal remodeling have been 

demonstrated to underlie MRI-detectable brain volume increases following cognitive 

training in rodents (129). Thus, neuronal-glial remodeling seems to be a plausible 

explanation of structural brain changes in AN.

The most established animal model, the activity-based anorexia model (130,131), offers 

clues to specific mechanisms in AN. As noted above, one study showed decreased cell 

proliferation suggestive of reduced gliogenesis (92). Also in line with the glial remodeling 

hypothesis, another study (132) found chronically starved rats to have reduced cerebral 

cortex and corpus callosum volumes and a lower immunoreactive surface area for GFAP-

positive astrocytes but not neurons or oligodendrocytes. Similarly, using an alternative AN 

rat model, acute dehydration-induced anorexia, another study found a reduced number of 

GFAP-positive astrocytes in the corpus callosum (133). Although most research focuses on 

neurons, astrocytes also regulate neuronal activity, protect against inflammation, support the 

blood-brain barrier, and supply energy to neurons (134). Smaller or less mature (remodeled), 

fewer, and less functional astrocytes may thus worsen the already precarious metabolic 

situation of neurons in acutely underweight patients with AN.

FUTURE DIRECTIONS OF STRUCTURAL NEUROIMAGING RESEARCH IN 

AN

Controlling for confounds is critical, but progress will likely be driven by exploring brain 

network architecture—the so-called structural connectome (135,136)—employing 

acquisition methods that quantify biomarkers of brain tissue microstructure (quantitative 

MRI [qMRI]) (137), integrating data from multiple modalities (multimodal imaging) (138) 

as well as longitudinal observation during weight restoration and large-scale data pooling. 

Conventional analytic approaches neglect the network complexity of the underlying 

neurocircuitry. Investigating interregional correlations of GM morphology (139) or systems-

level changes in connectivity by modeling the neural network architecture of GM brain 

regions (nodes) highly interconnected by WM fiber bundles (edges) (135) may be a 

promising way to bring clarity to the diverse regional abnormalities in GM and WM 

integrity reported in AN. Several recent studies have adopted a connectomics approach to 

both DTI (Figure 3) (25,43,47,60) and functional MRI data (140,141), but we are far from a 

comprehensive understanding of altered connectivity in AN.

As T1-weighted MRI data are uninformative regarding underlying tissue properties and DTI 

data in AN are inconclusive (Supplemental Table S1), more sensitive measures are needed. 

Rapidly developing qMRI methods are promising in this respect. By decoupling different 

contrast mechanisms from the overall MRI signal, qMRI directly measures surrogate 
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markers of microscopic tissue properties (137). For example, quantitative mapping of R1 

(water proton relaxation rate) indexes myelination (142) and may help in understanding 

changes in WM volume and integrity in AN. Similarly, qMRI methods might clarify the 

potential contribution of hydration and/or dietary intake as noted above by assessing, for 

instance, water (69) and iron content (108). The only known qMRI study in AN found, in 

addition to both increased and decreased fractional anisotropy in a number of WM tracts, 

reduced R1 in several tracts, suggesting that impaired WM integrity reflects myelin loss 

(40).

Combining and integrating data obtained with different modalities such as qMRI and DTI 

(40) promises to foster a greater understanding of the underlying mechanisms of structural 

brain changes in AN than can be achieved using one method alone (138). For example, two 

recent multimodal imaging studies combining diffusion tractography and functional MRI 

found evidence linking alterations in WM structural connectivity and functional and 

effective connectivity between brain regions implicated in aberrant reward processing in AN 

(Figure 3) (43,47). To date, no AN studies have capitalized on the cross-information 

provided by integrating data from multiple modalities (e.g., GM density and WM integrity) 

as enabled, for instance, with joint independent component analysis (143).

Whereas the majority of previous structural neuroimaging studies in AN have been cross-

sectional, a positive recent development has been the increase of longitudinal studies (20,42–

44), which can be particularly informative regarding the biological mechanisms underlying 

morphological alterations associated with weight rehabilitation. For example, the rapid 

increase of cortical thickness following brief weight restoration therapy (3–4 months) speaks 

against hypotheses of apoptosis and neurogenesis and for a neuronal and/or glial remodeling 

explanation (20). Studying brain structure in AN at multiple time points during recovery is 

also potentially informative regarding therapeutic response, which may help find better 

treatments.

ADVANCING THE NEUROSCIENCE OF AN THROUGH COLLECTIVE 

ANALYSIS

As noted above, sample sizes in the structural neuroimaging literature on AN are typically 

small and do not, on their own, have adequate statistical power to answer more subtle 

research questions. For example, no study to date has compiled samples including 

individuals across the entire eating disorder spectrum to account for the transdiagnostic 

nature of AN and how brain structure might be related to symptom fluctuation along a 

restrictive-impulsive continuum or based on subtype history (4,144). Data from different 

studies are also often difficult to compare owing to methodological heterogeneity, but they 

are nonetheless invaluable because they provide clinical phenotyping. In 2009, researchers 

expert in large-scale neuroimaging or genetics formed a network called Enhancing 

NeuroImaging Genetics through Meta-Analysis (ENIGMA) (http://enigma.usc.edu/) (145). 

ENIGMA has now pooled MRI and genome-wide genotyping data from greater than 30,000 

individuals to discover more than 20 genetic loci affecting brain structure. In psychiatric 

disorders, ENIGMA has completed some of the largest collaborative neuroimaging studies 
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to date including well over 3000 datasets each, with studies in progress in 18 conditions 

(146).

ENIGMA has used both a mega-analysis model, where all phenotypic data are analyzed at a 

central site, and a meta-analysis model, where analyses are run cooperatively across 

consortia sites with a pre-agreed protocol. For example, universal pre-processing, including 

quality control and analysis of T1-weighted MRI, is run locally using FreeSurfer (http://

freesurfer.net/) with pre-agreed covariates. Subsequently, site-specific regression coefficients 

are combined and meta-analyzed, weighting the results based on the sample sizes of each 

contributing cohort. Once a network is established, all members can submit proposals with 

new research questions.

In 2016, an ENIGMA AN consortium (http://enigma.usc.edu/ongoing/enigma-anorexia/) 

dedicated to understanding structural brain changes in patients over the course of weight 

restoration and recovery was founded. While harmonizing acquisition and analysis of 

neuroimaging data across different scanners is generally challenging, and it is unclear, for 

instance, how cultural factors might influence brain structure in different AN subtypes, 

increased statistical power achieved by data pooling will allow for the examination of the 

contributing or modulating factors discussed in this review as well as the specificity of 

morphological alterations compared with other (eating) disorders.

The ENIGMA screen of genetic loci that affect the brain has revealed overlap between loci 

associated with brain morphometry and schizophrenia (147). The Psychiatric Genetics 

Consortium recently identified a genome-wide significant locus in AN on chromosome 12 

(148). Additional analysis suggests positive genetic correlations with schizophrenia, 

educational achievement, and neuroticism and negative correlations with high body mass 

index and metabolic markers (148–150). Future studies could jointly screen the genome for 

loci associated with AN and brain measures, allowing, for the first time, causal inferences 

about brain differences related to genetic risk for AN.

CONCLUSIONS

Progress in understanding structural brain alterations in AN (and eating disorders generally) 

has been hindered by small sample sizes, methodological heterogeneity, and inadequate 

control for confounding variables (Table 1). In addition to outlining some steps future 

studies should take to avoid the shortcomings in the previous literature, this review focused 

on the largely overlooked question of what neurobiological mechanisms (e.g., glial 

remodeling) may underlie macromorphological changes in AN. Recent momentum in the 

field, including the application of innovative technologies and advanced analysis, is 

encouraging. The quest to identify brain regions and biological processes involved in AN 

will be further expedited by collective pooling of imaging, clinical, and genetic data. 

Harmonized global data pooling as in ENIGMA offers a new source of power to test 

associations between brain measures, treatments, and outcomes and to establish the 

reproducibility and generality of findings, which is especially important in a severe illness 

such as AN with low prevalence.
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Figure 1. 
Rapid macrostructural brain changes in anorexia nervosa during weight restoration. Selected 

sagittal (top panel), coronal (middle panel) and axial (bottom panel) T1-weighted magnetic 

resonance images of (A) an acutely underweight adolescent patient with anorexia nervosa at 

admission to an inpatient eating disorder treatment (age, 15.6 years; body mass index, 16.2) 

and (B) the same patient 14 weeks later at discharge following weight restoration therapy 

(body mass index, 19.5). The images demonstrate widespread sulcal enlargement and 

marked ventricle dilation in illness and rapid normalization following nutritional 

rehabilitation. To illustrate the dynamic alteration in brain structure in anorexia nervosa 

objectively, this patient was chosen from the longitudinal sample from Bernardoni et al. (20) 

based on her standardized body mass index change score between admission and discharge, 

which was equal to the sample mean. Note that changes apparent in single-subject raw 

magnetic resonance images may not be representative of changes detected in group analyses 

of processed images, which may include regionally increased brain mass both in the 

underweight stage and after long-term recovery (22,49).
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Figure 2. 
Structural magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) studies in 

anorexia nervosa. Graph depicts the increasing number of structural MRI and DTI studies in 

anorexia nervosa samples (n > 2 patients) published since the first known study in 1990 until 

July 2017 as identified with systematic PubMed and Scopus searches using the following 

terms: anorexia nervosa, eating disorders, MRI, magnetic resonance imaging, neuroimaging, 

DTI, diffusion tensor imaging, diffusion-weighted imaging. References for all studies 

counted in the graph are presented in the Supplement.
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Figure 3. 
State-of-the-art structural neuroimaging research in anorexia nervosa (AN). (A) Using a 

connectomics approach (135,136) to compare network modularity (139) in diffusion tensor 

imaging data (whole-brain white matter tractography) acquired from weight-restored 

patients with AN (n = 24) and healthy control (HC) subjects (n = 31), Zhang et al. (60) 

found abnormal community structure in AN in a network composed of the caudate, 

pallidum, nucleus accumbens, and rostral and caudal anterior cingulate and posterior 

cingulate (orange regions). (B) In a longitudinal multimodal analysis (138,143) of diffusion 

tensor imaging and resting-state functional magnetic resonance imaging data collected in 

acutely underweight patients with AN (n = 22) and HC subjects (n = 18), Cha et al. (43) 

found increased structural connectivity, increased white matter fractional anisotropy, and 

increased functional connectivity as well as altered effective connectivity in a reward-related 

frontoaccumbal network in AN before treatment. Structural connectivity between the 

nucleus accumbens (NAcc) and left orbitofrontal cortex (lOFC) (top) continued to be 

abnormally increased relative to HC subjects following weight restoration (bottom left), and 

fractional anisotropy remained elevated (bottom right; red region). (C) In another 

multimodal analysis of diffusion tensor imaging and functional magnetic resonance imaging 

data during taste processing collected in acutely underweight patients with AN (n = 26), 

Frank et al. (47) found altered (increased and decreased) structural connectivity in food 

reward–regulating circuitry in patients with AN relative to HC subjects (n = 26) and an 

inverted pattern of effective connectivity between the hypothalamus and ventral striatum 

driven by the anterior cingulate. (D) In a longitudinal investigation of acutely underweight 

patients with AN (n = 35), Bernardoni et al. (20) found a global increase of cortical gray 

matter thickness (84% of the cortical surface) following brief weight restoration therapy (≈3 

months following admission to a specialized nutritional rehabilitation program) and relative 

normalization compared with both long-term weight recovered patients with AN (n = 34) 

and HC subjects (n = 75). The heat map depicts regions of the lateral (top) and medial 
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(bottom) surface of the brain in both hemispheres showing significantly increased cortical 

thickness between baseline (within 96 hours after admission) and follow-up measurement 

after a minimum 10% body mass index increase. ACC, anterior cingulate cortex; mOFC, 

medial orbitofrontal cortex.
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Table 1

Factors to Consider in AN Structural Neuroimaging Research (Author Consensus)

Category Variable

Demographic Variables Sample size (sufficient statistical power)

Age range (control for age effects and/or pairwise matching or restrict age range in analysis)

In adolescents: pubertal stage (e.g., via self-report based on Tanner stage)

Clinical Variables AN subtype and subtype history (restricting vs. binge-eating/purging type)

Duration of illness

Psychiatric and severe medical comorbidities (standardized assessment)

Medication including oral contraceptives

Time and weight gain between start of realimentation and scanning

Nutritional regimen (e.g., scan before breakfast and after standard meal and/or dietary intake assessment)

Hydration (e.g., by measuring urine specific gravity or using bioelectrical impedance analysis)

Physical activity (self-report)

Menstrual cycle (self-report)

Study Design and 
Technology

Scan at standardized time of day

Analyze and control for head motion during MRI (especially for DTI)

Use up-to-date MRI sequences (resolution, signal-to-noise)

Control for different scanner platforms and changes in MRI sequences if applicable

Statistics Use up-to-date image analysis software

Systematic quality control of imaging data and outlier analysis (raw images and post-processing)

Conservative use of covariates and appropriate analysis of potential confounds that occur only in the clinical 
group

Control for multiple comparisons

AN, anorexia nervosa; DTI, diffusion tensor imaging; MRI, magnetic resonance imaging.

Biol Psychiatry. Author manuscript; available in PMC 2019 February 01.


	Abstract
	STRUCTURAL NEUROIMAGING TECHNIQUES IN AN RESEARCH
	CURRENT STATE OF STRUCTURAL NEUROIMAGING RESEARCH IN AN
	Sample Size
	Nutritional Status
	Hydration
	Brain Development
	Extraneous Variables
	Enhancing Reproducibility and Generalizability

	POTENTIAL NEUROBIOLOGICAL MECHANISMS UNDERLYING STRUCTURAL BRAIN ALTERATIONS IN AN
	Dehydration and Oncotic Pressure
	Apoptosis of Brain Cells
	Dietary Intake: Macronutrients and Micronutrients
	Endocrine System

	NEUROTROPHIC FACTORS
	Glial and/or Neuronal Remodeling

	FUTURE DIRECTIONS OF STRUCTURAL NEUROIMAGING RESEARCH IN AN
	ADVANCING THE NEUROSCIENCE OF AN THROUGH COLLECTIVE ANALYSIS
	CONCLUSIONS
	References
	Figure 1
	Figure 2
	Figure 3
	Table 1

