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Abstract
A recent report suggested Complement 4 (C4A) gene copy numbers (GCN) as risk factors for schizophrenia. Rodent
model showed association of C4 with synaptic pruning suggesting its pathophysiological significance (Sekar, A. et al.
(2016)). We, therefore, predicted that C4A GCN would be positively correlated with neuropil contraction in the human
brain among schizophrenia patients showing more prominent correlations in ventral regions among young adults and
dorsal regions among adolescents since neuromaturation progresses dorsoventrally. Whole-brain, multi-voxel, in vivo
phosphorus magnetic resonance spectroscopy (31P MRS) assessed neuropil changes by estimating levels of membrane
phospholipid (MPL) precursors and catabolites. Increased MPL catabolites and/or decreased MPL precursors indexed
neuropil contraction. Digital droplet PCR-based assay was used to estimate C4A and C4B GCN. We evaluated two
independent cohorts (young adult-onset early-course schizophrenia (YASZ= 15) and adolescent-onset schizophrenia
(AOSZ= 12) patients), and controls matched for each group, n= 22 and 15, respectively. Separate forward stepwise
linear regression models with Akaike information Criterion were built for MPL catabolites and precursors. YASZ cohort:
Consistent with the rodent model (Sekar, A. et al. 2016)), C4A GCN positively correlated with neuropil contraction
(increased pruning/decreased formation) in the inferior frontal cortex and inferior parietal lobule. AOSZ cohort: C4A
GCN positively correlated with neuropil contraction in the dorsolateral prefrontal cortex and thalamus. Exploratory
analysis of C4B GCN showed positive correlation with neuropil contraction in the cerebellum and superior temporal
gyrus among YASZ while AOSZ showed neuropil contraction in the prefrontal and subcortical structures. Thus, C4A
and C4B GCN are associated with neuropil contraction in regions often associated with schizophrenia, and may be
neuromaturationally dependent.

Introduction
Schizophrenia is a severe brain disorder which costs over

$155 billion a year in the United States1. Available

treatments are symptomatic leading to poor long-term
social outcome2–5. A better understanding of pathophy-
siology may help develop new treatments. One of the
neurodevelopmental models that propose excessive loss of
synapses6 may be one such mechanism. Convergent ani-
mal7,8, human developmental9, neuroimaging10,11, post-
mortem12,13, and computational modeling14,15 data suggest
that increased neuropil loss predates16–23 and continues
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after the onset of psychosis24,25, and may predict short-term
outcome26. The genetic underpinnings of excessive synaptic
pruning are poorly understood in humans.
Recently, independent lines of evidence suggest that

Complement 4 (C4A) gene copy numbers (GCN) are
associated with schizophrenia risk and synaptic pruning.
This is important because a number of prior studies
reported altered peripheral blood complement protein
levels in schizophrenia but the results were incon-
sistent27–36 and the pathophysiological significance of
such alterations was unclear since the peripheral com-
plement proteins may not cross blood brain barrier37.
Persuasive results from a study by Sekar et al. (2016)38

demonstrated that a copy number variant (CNV) accounts
for a portion of the risk in Human Leukocyte Antigen
(HLA) region reported repeatedly in genetic association
studies of schizophrenia39–42. This CNV consists of ‘cas-
settes’, denoted by ‘R-C-C-X’ that comprises STK19
(RP1), C4 (C4A or C4B), CYP21A1 or CYP21A2, and
TNXB43. The C4 sequences can encode C4A or C4B,
which are isotypes of C4 with > 99% sequence homology;
however, the translational products differ in antigen affi-
nities and hemolytic activity44–46. A recombination site at
CYP21A2 leads to mono-, bi-, and tri-modular RCCX
cassettes (and rarely, 4 modules) that can generate
multiple functional copies of C4A/C4B, while retaining
just one functional copy of the remaining genes47. Thus,
each chromosome commonly has 1–3 functional copies of
C4A/C4B, (rarely, 0 or 4 copies), for a typical total of 0–6
copies/individual; further, transcription of C4A/C4B can
be impacted by an intronic human endogenous retroviral
(HERV) sequence48. Sekar et al.38 found that C4A, but not
C4B GCN are associated with higher risk for schizo-
phrenia. In post-mortem brain samples of schizophrenia
patients, the expression of C4A and C4B genes was
proportional to the number of C4 GCN with higher
expression in 5 brain regions (namely the frontal cortex,
cingulate cortex, parietal cortex, cerebellum, corpus
callosum and orbitofrontal cortex) by approximately
40% among schizophrenia patients compared to con-
trols38. A rodent model showed decreased synaptic
pruning in C4-deficient mice. The RCCX CNV is also
associated with risk for auto-immune disorders that have
altered prevalence among schizophrenia patients44,49,50.
Recently, C4 mRNA levels in plasma have been correlated
with severity of psychopathology in schizophrenia51.
Another study found correlations between predicted
C4A transcription and impairment in memory52. Com-
plement proteins were also associated with risk for
schizophrenia53, and with thinning of superior frontal
cortex54. Thus, in humans, the complement system serves
diverse immune and neural functions55,37 and suggest that
abnormal C4A function contributes to schizophrenia
pathogenesis.

We examined the relationship of C4 GCN with neuropil
contraction/expansion in a human context within two
independent cohorts of schizophrenia patients and heal-
thy controls (HC). We examined neuropil because direct
examination of synapses in live human subjects is chal-
lenging as the synapses are embedded in the neuropil.
Neuropil is a synaptically dense region composed of
dendrites, unmyelinated axons and glial filaments with
relatively few cell bodies56,57. Phosphorus magnetic reso-
nance spectroscopy (31P MRS) is used to assess changes in
neuronal membrane expansion/contraction within the
neuropil by estimating the availability of membrane
phospholipid (MPL) precursors (phosphocholine, PC;
phosphoethanolamine, PE) and catabolites (glyceropho-
sphocholine, GPC; glycerophosphoethanolamine, GPE).
PC, PE, GPC, and GPE can be reliably measured in the
brain by 31P MRS58. Specificity of these measurements to
neuropil compared to gray matter measurements is sup-
ported by convergent data from animal lesion59, cellular
model60, human postmortem61 and neurodevelopmental
studies9,62. Greater sensitivity for age-related changes of
MPL metabolites to neuropil changes compared to gray
matter metrics is provided by human developmental
studies9,63. Thus, 31P MRS that assesses molecular bio-
chemistry of neuropil is superior to gray matter measures
that represent composite physical measurement of total
volume of interneurons, synapses, axonal terminals, den-
dritic arborization, neuronal soma, glia, microvasculature
and interneuronal space64,65.
The rationale for the superiority of 31P MRS has been

described in prior publications9,11,62. Briefly, synapse/
dendritic spine formation and dendritic branching
requires expansion of dendritic/axonal membranes. This
expansion requires increased MPL synthesis, with resul-
tant increase in MPL precursor levels (PC+ PE). This is
supported by elevation of PC+ PE at the time and site of
neuropil growth spurts59,62. Likewise, neuropil contrac-
tion or pruning are associated with breakdown of MPLs
leading to elevated GPC+GPE, which is, also, noted at
the time and site of synaptic pruning59,66. Since expansion
and contraction of neuronal membranes largely occurs at
the dendrites and axonal endings during neuropil growth/
contraction with a considerably smaller contribution from
changes in neuronal soma size, glial expansion and myelin
content67–69, changes in MPL metabolites are thought to
more specifically and sensitively index changes in axonal
endings, dendritic branches and synapses.
We examined two independent cohorts–young adult-

onset schizophrenia (YASZ) cohort (n= 15) and
adolescent-onset schizophrenia (AOSZ) patients (n= 12)-
and two HC cohorts age-matched for each group (n= 22
and 15, respectively). Examination of two cohorts helps
replicate the findings and explore the association of C4A
repeats with neuropil contraction in a developmental
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context. We selected MRS voxels from five of the six brain
regions that showed increased C4A and C4B expression in
postmortem tissue38. These included the frontal cortex
(the dorsolateral prefrontal cortex (DLPFC), inferior
frontal cortex (IFC), ventral PFC (VPFC)), cingulate cor-
tex (anterior cingulate cortex (ACC) and posterior cin-
gulate cortex (PCC)), parietal lobe (inferior parietal lobule
(IPL), superior parietal lobule (SPL)), orbitofrontal cortex
(OFC) and cerebellum but not corpus callosum because of
lower signal-to-noise ratio (SNR) of 31P MRS data for this
region. Since prior studies showed progression of brain
maturation from the dorsal (e.g., temporal-parietal
regions) to the ventral (e.g., prefrontal cortices) regions
involving elimination of overproduced synapses that is
prominent from late childhood to the third decade of
life70–75, we selected the superior temporal gyrus (STG) in
addition to the above regions. Subcortical structures
(thalamus, caudate, and ventral and dorsal hippocampus)
were, also, included because these structures show con-
tinued maturation from childhood to late adulthood76–78.
Thus, fourteen regions were selected on both hemispheres
so that we could examine neuropil alterations in regions
that showed increased C4 expression by Sekar et al., and
neurodevelopmental changes in the dorsal (STG, PCC,
IPL, SPL), ventral (DLPFC, ACC, OFC, IFC, VPFC) and
subcortical regions.
Our primary hypothesis was that the GPC+GPE levels

would be elevated with increasing C4A repeats in the
frontal (DLFPC, IFC, VPFC), cingulate (ACC, PCC),
parietal (IPL, SPL), the OFC and the cerebellum in both
cohorts. We, further, hypothesized that the GPC+GPE
levels would be elevated with increasing C4A repeats in
YASZ cohort in the ventral brain regions (DLFPC, IFC,
OFC, ACC, and VPFC) whereas the AOSZ would show
such elevations in the dorsal regions (STG, PCC, IPL, and
SPL). We predicted increased GPC+GPE in the hippo-
campus, caudate and thalamus in both cohorts because of
protracted maturation. We investigated whether the C4A
GCN would be associated with decreased PC+ PE (MPL
precursors) levels suggesting decreased neuropil expan-
sion, and explored whether C4B GCN would be similarly
correlated with GPC+GPE and PC+ PE levels in these
regions similar to C4A associations.

Methods
SAMPLE 1: YASZ and age-matched HC
Clinical evaluations
YASZ between 18–44 years of age with DSM-IV schi-

zophrenia/schizoaffective disorder and ≤ 5 years of illness
from the onset of psychotic symptoms were eligible to be
enrolled at the University of Pittsburgh Medical Center.
The diagnosis was confirmed in a consensus meeting of
experienced diagnosticians79 after reviewing the Struc-
tured Clinical Interview for DSM diagnosis (SCID-IV)80

data and clinical information. Total antipsychotic dose
and duration were collected. Substance abuse in the
previous month or dependence 6 months prior to
enrollment, mental retardation per DSM-IV, serious
neurological/medical illnesses were exclusion criteria.
After explaining the experimental procedures, informed
consents were obtained from the subjects. University of
Pittsburgh IRB approved the study.

Imaging procedures
Details of 31P MRS data acquisition and processing are

published11. Briefly, whole-brain, multi-voxel, in vivo 31P
MRS data in 3-dimensions was collected on a 3 T Siemens
Tim Trio system using a dual-tuned ¹H-³¹P volume head
coil and a conventional chemical shift imaging (CSI)
sequence. Acquisition parameters were: FOV= 310 ×
310 × 160mm, acquired phase-encoding steps= 14 ×
14 × 8 and zero-filled to 16 × 16 × 8 (nominal voxel
dimension= 1.94 × 1.94 × 2.0 cm3), TR= 0.54 sec, flip-
angle= 330 reflecting the Ernst angle where the average
T1 value of phosphocreatine (PCr), PE, PC was 3 sec,
complex data points= 2048, spectral bandwidth=
4.0 kHz, 24 averages of the CSI matrix in which the
averaging was weighted to the central k-space points
conforming to a 3D elliptical function and pre-acquisition
delay of 1.4 ms. T1-weighted MPRAGE images were col-
lected and used to guide the extraction of ³¹P MRS signal
of hypothesized voxels-of-interest using an innovative
procedure81. In the k-space domain of the ³¹P MRS data, a
75% Hamming window was applied, and modeled in the
time domain with 23 Gaussian-damped sinusoids (PE, PC,
GPE, and GPC as triplets, Pi, MPLbroad, PCr and dinu-
cleotides as singlets, and adenosine triphosphate (ATP)
(two doublets and a triplet)).
The post-processing and metabolite quantification of

extracted 31P MRS signal was 100% automated81. Due to
the lack of ¹H decoupling, the quantification of the indi-
vidual phosphomonoesters (PE and PC), and phospho-
diesters (GPE and GPC) were indistinguishable.
Therefore, summated measures (PE+ PC, GPE+GPC)
were obtained. The proportion of gray and white matter,
and CSF/extra-cortical space was estimated for each
voxel-of-interest using a fully automated procedure82–84.
Since the CSF concentration of ³¹P metabolites is below
the detection limit and the ³¹P metabolites are expressed
as a percentage relative to the total signal, the correction
for CSF fractions is not applicable and do not confound
the ³¹P MRS results.

SAMPLE 2: AOSZ and age-matched HC
Clinical evaluations
Early onset was defined as the first appearance of psy-

chotic symptoms before 18 years of age85,86. AOSZ were
between 14 and 21 years of age and on stable
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antipsychotic doses for longer than 1 month. SCID-IV80

for adults and K-SADS-PL87 for adolescents were admi-
nistered and reviewed for “consensus” diagnosis as noted
above. The exclusion criteria were (a) significant present/
past history of medical/neurological illness, e.g., epilepsy,
head injury, (b) Obstetric complications, e.g., neonatal
asphyxia, (c) Mental retardation per DSM-IV, (d)
Hyperbilirubinemia requiring transfusion/phototherapy >
2 days, (e) The Apgar score < 7 at 1 and 5min after birth,
(f) Gestational age < 37 or > 42 weeks, (g) Significant
substance use including cigarettes > ½ pack a day, alcohol
> 2 drinks/day during pregnancy, and h) Preeclampsia/
eclampsia during subject’s pregnancy. These data were
collected through mothers of subjects and their obstetric
records. After explaining the experimental procedures,
informed consents were obtained from adult subjects;
subjects below 18 years of age provided the assent and
then the consent was obtained from the parents or legal
guardians. University of Pittsburgh IRB approved the
study.

Imaging procedures
For this sample, 1H-decoupled 31P MRS data was

acquired. Scout images were acquired to prescribe 31P
MRS voxels. Initial maximization of the B0 field homo-
geneity in the 1H mode (shimming) and optimization of
the 31P reference radio frequency (RF) pulse amplitude for
a 33° flip angle was conducted. The acquisition sequence
includes a single slab-selective excitation RF pulse
followed by phase-encoding pulses to spatially encode in
3D. The axial slab was placed parallel to the AC-PC line
covering the whole brain. The scanning parameters: FOV
= 310 × 310 × 160mm, slab thickness= 140mm, phase-
encoding steps= 14 × 14 × 8, zero-filled to 16 × 16 × 8
(nominal voxel dimension= 1.94 × 1.94 × 2.0 cm3), TR=
0.54 sec, flip-angle= 33° where the average T1 value of
PCr, PE, PC, is 3 sec, complex data points= 2048, spectral
bandwidth= 4.0 kHz, 24 averages (weighted-average k-
space), which are validated88, elliptical k-space sampling.
To minimize the signal attenuation due to spin-spin
relaxation plus T2* within the pre-acquisition delay time,
the rise and fall time parameters and duration of the phase
encoding pulses are reduced giving a pre-acquisition delay
of 1.4 ms. T1 images were acquired to shift voxels. Post-
processing and quantification was similar to the non-
decoupled data.

Genetic assays
Subjects were chosen randomly from the larger YASZ

and AOSZ cohorts for genetic assays. Characterization of
C4 variants is challenging due to complex linkage dis-
equilibrium in the HLA region and the complexity of C4
locus. We used digital droplet PCR (ddPCR)38 assay to
estimate copy numbers of C4 structural elements (C4A,

C4B, C4L, and C4S). Briefly, AluI-digested genomic DNA
was mixed with primer-probe mix for C4 and a reference
locus (RPP30), and 2 × ddPCR Supermix for Probes (Bio-
Rad). The oligonucleotide primers and probes used for
assaying copy number of C4A, C4B, C4L, and C4S were
synthesized (IDT tech), and the master mix was emulsified
into droplets, using a micro-fluidic droplet generator (Bio-
Rad) that was subjected to PCR. After PCR, the fluores-
cence in each droplet was read using a QX100 droplet
reader (Bio-Rad), and the data analyzed using the Quan-
taSoft software (Bio-Rad) and copy numbers deduced.
To discriminate the compound structural forms of C4

(AL, AS, BL, BS), we amplified a 5.2 kb product that spans
the C4A/B by long-range PCR. The diluted 5.2 kb PCR
product was further PCR amplified with primers specific
for C4AS and C4BS. The ratio of C4AS to C4BS was used
to determine C4AS and C4BS copy numbers.

Statistical analysis
We used Student’s t tests to examine differences in age,

and χ2 or Fisher’s exact tests to examine distribution of
sex and C4 GCN between schizophrenia and controls.
Since the number of univariate tests (2 sides × 2 metabo-
lites × 14 regions) would overwhelm hypothesis testing in
this relatively small sample, we used multivariate linear
modeling within SPSS 25 controlling for age and sex that
would require one model for each group. Multivariate
models would also account for correlation among the
MPL metabolites in the hypothesized regions. Separate
regression models were built for GPC+GPE and PC+
PE levels for AOSZ and YASZ by including these meta-
bolite levels for all hypothesized regions, diagnosis, age,
sex and education as covariates. Since antipsychotic dose
did not significantly contribute to MPL metabolite
alterations11, we did not covary for medications. To test
primary hypothesis on the association of GPC+GPE
levels with C4A GCNs, we built two separate forward
stepwise regression models with Akaike Information
Criterion (AIC) for the YASZ and the AOSZ cohorts.
Smallest AIC was used to guide model selection. The AIC
was used as an additional parameter because it penalizes
model complexity, similar to other criterion such as
Bayesian Information Criterion. We followed a similar
approach to test the secondary hypothesis on the rela-
tionship of C4A repeats with PC+ PE, and to explore the
association of C4B repeats with GPC+GPE and PC+ PE
levels.

Results
Demographic and clinical characteristics
Sample 1: YASZ and age-matched HC
Although the eligibility of subjects to enter the study

was 18–44 years, mean age of enrolled YASZ (25.74 ± 8.46
years) did not differ from HC (27.07 ± 7.14 years)(t= 0.52,
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p= 0.61) (range 18.24 to 43.98 years for YASZ, and 18.60
to 42.10 years for HC with 3 subjects above 35 years in
both groups). Mean duration of illness was 2.37 ± 1.62
years. C4A (Fisher’s exact test, p= 0.69) and C4B (Fisher’s
exact test, p= 0.23) GCN did not show schizophrenia-HC
differences (Table 1). We recapitulated our earlier pub-
lished results on differences in MPL metabolites in a
larger YASZ and HC cohort11.
The quality of MRS data was measured as SNR, mean

Gaussian linewidths of PCr and Cramer-Rao Lower
Bound (CRLB) values. Gaussian linewidth of PCr repre-
sents the resolution of spectra, where narrower linewidths
indicate higher resolution of spectra, and lower CRLB
value is the lower bound on the variance of spectral
measurements. Our larger cohort, published previously,
did not show case-control differences in the mean SNR
and mean Gaussian linewidths of PCr, and CRLB values
for the PC+ PE and GPC+GPE11. This sample that was
derived from the larger cohort11 showed significant dif-
ferences for PCr Gaussian linewidth for left caudate,
hippocampus, DLPFC, thalamus, and the right ACC, IFC
and caudate (all p < 0.05). However, the CRLB and the
SNR values did not differ between the groups for these
regions except for the CRLB of GPC+GPE of the left
hippocampus (p= 0.028).

Sample 2: AOSZ and age-matched HC
Age at onset of psychosis in the AOSZ was 15.60 ± 0.8

years. Age at scan was not significantly different between

AOSZ (n= 12; 19.59 ± 1.60 years) and HC (n= 15;
19.16 ± 1.29 years) (t= 0.76, p= 0.47). AOSZ were sig-
nificantly younger than YASZ (t= 2.74, d. f= 25, p=
0.011) (range 15.33 to 20.92 in both groups). We did not
observe AOSZ-HC differences in C4AL (Fisher’s exact
test, p= 1.00) and C4BL (Fisher’s exact test, p= 0.27)
distribution in this sample, as well (Table 1).
Quality of the 1H-decoupled 31P MRS was high pro-

viding improved spectral resolution and peak separation
to enable clear separation of PE, PC, GPC, and GPE. The
mean SNR of PCr, the mean Gaussian linewidths of the
PCr and the CRLB for the PC, PE, GPC, and GPE did not
show significant case-control differences except for the
CRLB of PC and GPC of the left ventral hippocampus (p
= 0.025), and the CRLB of PE of the right anterior cin-
gulate (p= 0.037). These regions did not show differences
associated with C4 GCN.

C4A variants and MPL metabolites
Sample 1: YASZ and age-matched HC
In the combined sample of YASZ and HC, increasing

C4A GCN were associated with elevated GPC+GPE
levels in the ACC while IFC showed a concurrently
decreased GPC+GPE and PC+ PE levels. The smallest
AIC for model selection was −46.20 for GPC+GPE and
−43.69 for PC+ PE.
Among YASZ, increasing C4A GCN was associated

with elevated GPC+GPE levels in a ventral brain region,
namely the right IFC with a large effect size (Cohen’s d=

Table 1 Demographic and clinical characteristics

Young adult-onset

schizophrenia (n= 15)

Healthy controls

(n= 22)

Statistics Adolescent-onset

schizophrenia (n= 12)

Healthy controls

(n= 15)

Statistics

Age (in years) 25.74 ± 8.46* 27.07 ± 7.14* t= 0.52, p= 0.61 19.59 ± 1.52* 19.16 ± 1.32* t= 0.76, p= 0.47

Sex

Male 11 5 Fisher’s exact test,

p= 0.006

10 7 Fisher’s exact test,

p= 0.11

Female 4 17 2 8

C4AL repeats

1 copy 4 4 Fisher’s exact test,

p= 0.69

1 2 Fisher’s exact test,

p= 1.00

2 or more copies 11 18 11 13

C4BL repeats

0 copy 8 15 Fisher’s exact test,

p= 0.23

7 4 Fisher’s exact test,

p= 0.27

1 copy 5 2 4 9

2 or more copies 2 5 1 2

Duration of illness

(in years)

2.37 ± 1.62 – – 3.99 ± 0.90 – –
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1.15) but not among HC. We, also, observed decreased
GPC+GPE levels in the ventral regions among YASZ
(the left OFC; Cohen’s d= 0.85) and HC (left IFC;
Cohen’s d= 0.52); however, HC showed a concurrent
decrease in the left IFC (Cohen’s d= 0.57). YASZ patients
showed decreased GPC+GPE levels (the right SPL;
Cohen’s d= 1.8) and decreased PC+ PE levels (left IPL;
Cohen’s d= 0.84) in relation to increasing C4A repeats.
Overall model AIC was −23.87 for GPC+GPE and
−19.72 for PC+ PE (Table 2; Fig. 1).

Sample 2: AOSZ and age-matched HC
Because there was one AOSZ and two controls with 1

copy of C4A, we examined the association of C4A repeats
in the entire sample of AOSZ and HC. We noted elevated
GPC+GPE levels in the DLPFC (Cohen’s d= 0.46) but
decreasing GPC+GPE levels in the left anterior cingulate
with increasing C4A GCN.
In the same combined sample, we noted decreasing PC

+ PE levels in the right thalamus associated with
increasing C4A GCN (Cohen’s d= 0.57). Overall model
AIC was −44.78 for GPC+GPE and −36.52 for PC+ PE
(Table 2; Fig. 1).

Post hoc tests for the association of C4BL repeats with MPL
metabolite changes
Sample 1: YASZ and age-matched HC
Combined sample of YASZ+HC showed increased

GPC+GPE levels in the left IPL with increasing C4BL
repeats. Right ventral hippocampus showed elevated PC
+ PE and right DLFPC showed decreased PC+ PE. The
AIC for overall model selection was −77.07 for GPC+
GPE and −18.13 for PC+ PE. YASZ subjects showed
elevated GPC+GPE levels in the cerebellar vermis and
the left STG along with decreased PC+ PE levels in the
left IPL and OFC with increasing C4BL repeats. HC
showed increased GPC+GPE levels in multiple regions
with decreased PC+ PE levels in the DLPFC and caudate.

The lowest AIC for model selection was 10.92 for GPC+
GPE and −13.89 for PC+ PE for within YASZ and HC.

Sample 2: AOSZ and age-matched HC
Because of small n in each cell, AOSZ and HC groups

were not examined separately. MPL metabolite changes in
relation to C4B GCN were observed in the prefrontal and
subcortical regions in the combined sample of AOSZ and
HC. PC+ PE levels did not differ between with C4BL
repeats (Table 3; Fig. 2). AIC for overall model selection
was −53.13 for GPC+GPE.

Discussion
This is the first study, to our knowledge, to demonstrate

the association of C4A repeats with increased neuropil
contraction as shown by elevated GPC+GPE levels and/or
decreased PC+ PE levels in two independent cohorts of
schizophrenia patients. Neuropil contraction was observed
in the prefrontal and parietal regions among adult-onset
schizophrenia patients whereas adolescent subjects (AOSZ
and controls) showed neuropil contraction in the prefrontal
and thalamic regions. Our hypothesis that the GPC+GPE
levels would be elevated with increasing C4A repeats in the
frontal (DLFPC, IFC, VPFC), cingulate (ACC, PCC), parietal
(IPL, SPL), the OFC and the cerebellum in both cohorts was
partly supported. Our second hypothesis was, also, partly
supported for the YASZ cohort in that the YASZ showed
elevated GPC+GPE and/or decreased PC+ PE levels in a
ventral region (IFC) but not all hypothesized regions.
Likewise, AOSZ+HC group showed decreased PC+ PE
levels in the thalamus. Overall, our results on patients and
controls support the association of C4 deficiency with
synaptic pruning observed in the rodent model, although
the pattern of associations are intriguing. Further, this study
extends Sekar et al.38 rodent model findings to human
subjects with schizophrenia and for C4B associations with
neuropil contraction although C4B was not associated with
risk for schizophrenia.

Table 2 Association of C4AL copy number repeats with MPL metabolite levels among young adult-onset schizophrenia
(YASZ) and matched healthy controls

GPC+GPE ↑ GPC+ GPE ↓ PC+
PE↑

PC+ PE↓

Sample 1: Young adult-onset schizophrenia and age-matched HC

YASZ+
HC

L. Anterior Cingulate Cortex (AIC=−45.70; β
= 0.45, t= 2.62, p= 0.013) (d= 0.43)

L. Inferior Frontal Cortex (AIC=−43.48; β=
−0.27, t= 3.48, p= 0.001) (d= 0.57)

– L. Inferior Frontal Cortex (AIC=−43.69; β=
−0.11, t= 2.26, p= 0.03) (d= 0.37)

YASZ R. Inferior Frontal Cortex (AIC=−20.73; β=
0.37, t= 3.81, p= 0.007) (d= 1.15)

R. Superior Parietal Lobule (AIC=−15.82; β
=−0.58, t= 5.98, p= 0.001) (d= 1.8)
L. Orbitofrontal Cortex (AIC=−23.87; β=
−0.15, t= 2.83, p= 0.03) (d= 0.85)

– L. Inferior Parietal Lobule (AIC=−18.06; β=
−0.88, t= 3.26, p= 0.007) (d= 0.84)

HC – L. Inferior Frontal Cortex (AIC=−25.90; β=
−0.17, t= 2.42, p= 0.026) (d= 0.52)

– L. Inferior Frontal Cortex (AIC=−29.06; β=
−0.17, t= 2.72, p= 0.014) (d= 0.57)

Sample 2: Adolescent-onset schizophrenia and age-matched HC

AOSZ+
HC

R. Dorsolateral Prefrontal Cortex (AIC=−44.78;
β= 0.019, t= 2.40, p= 0.024) (d= 0.46)

L. Anterior Cingulate Cortex (AIC=−41.49;
β=−0.088, t= 5.05, p < 0.001) (d= 0.99)

– R. Thalamus (AIC=−35.54; β=−0.096, t=
2.96, p= 0.007) (d= 0.57)

Increased GPC+ GPE suggest increased neuropil contraction while decreased PC+ PE suggest decreased neuropil expansion
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Changes in MPL metabolite levels measured through
31P MRS reflects expansion/contraction of membranes
that contain the MPLs (phosphatidylcholine, PtdC;
phosphatidylethanolamine, PtdE). Expansion/contraction
of cell membranes that primarily occurs at the axonal
endings and dendritic branches during neuropil forma-
tion/contraction are associated with elevated MPL pre-
cursors (PE, PC) and catabolites (GPC, GPE), respectively.
Changes in myelination, neuronal soma size and glial cells
contribute considerably less to MPL metabolite signals on
31P MRS59. Thus, major source of MPL metabolite signals
is likely to be the synaptically dense neuropil68,69 (see our
prior publication for details11). Since postmortem studies
have not consistently reported atrophy of neuropil89,
observed changes in MPL metabolites are unlikely to be
due to general neuropil atrophy.
The first in vivo evidence of altered neuropil develop-

ment in first-episode neuroleptic-naïve schizophrenia was
provided by 31P MRS data (decreased PC+ PE and
increased GPC+GPE), later supported by postmortem
neuropil morphology data90–92. Neuropil reduction may
be linked to dendritic spine loss91,93–95 and decreased

neuronal soma size96,97 as observed in postmortem brain
tissue of schizophrenia patients. Since dendritic spines
receive majority of cortical excitatory synapses, dendritic
spine loss may suggest loss of cortical excitatory synapses.
Thus, the association of C4A repeats with neuropil con-
traction may support synaptic pruning in the rodent
model38. However, other factors may also contribute to
neuropil reduction, e.g., peripheral blood inflammatory
mediators C-reactive protein (CRP) and Interleukin-6 (IL-
6) levels11 but unlikely to be due to long-term adminis-
tration of antipsychotics. Association of changes in MPL
metabolites with antipsychotic medications has been
examined in several studies. These studies show that MPL
metabolites were altered with short-term but not long-
term treatment98–101. Given short duration of illness of
both cohorts and lack of association of medications with
MPL metabolites, antipsychotics may not have con-
tributed a major variance to MPL metabolite differences
in this study. Therefore, genetic influence of a variant that
showed genomewide significance on neuropil changes
exemplify an attempt to explore in vivo biological sig-
nificance of such variants.

Fig. 1 MRS voxels that showed significant MPL metabolite changes among adult-onset schizophrenia (YASZ)
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Among six brain regions that showed increased C4A
and C4B RNA expression associated with C4 repeats in
postmortem brain tissue of schizophrenia patients38, we
found neuropil alterations associated with C4A GCN in
four of five regions examined. While the frontal (DLPFC
and the IFC) and parietal (IPL) regions showed increased
neuropil contraction, the ACC and the OFC showed
decreased neuropil contraction without altered neuropil
formation. HC showed decreased neuropil turnover in the
IFC. Further, the thalamus (that was not examined in the
previous postmortem study38) showed decreased neuropil
formation in the AOSZ+HC cohort. Cerebellum did not
show neuropil contraction associated with higher C4A
GCN. Taking our in vivo 31P MRS data with the published
data on increased RNA expression in these regions sug-
gests that abnormal function of C4 GCN contributes to
neuropil changes in schizophrenia. However, YASZ
showed variations in widespread cortical regions with
greater heterogeneity in neuropil contraction/expansion
compared to HC. Precise reasons for such heterogeneous

associations are unclear. Data on differential expression of
C4A in various regions of the brain within the context of
illness course or neurodevelopment are not available.
Examination of whole brain 31P MRS data allowed us to
identify brain regions beyond those examined in the
postmortem study that suggests that C4AL may be asso-
ciated with decreased neuropil synthesis, as well as neu-
ropil contraction, both of which may be observed as
dendritic spine loss–a proxy measure of synaptic pruning
in postmortem studies. In the combined AOSZ+HC
sample, C4AL showed neuropil changes in the ventral and
subcortical regions. Partial support for both hypothesis
may possibly be because our YASZ were not in the third
decade and AOSZ were not in early adolescence where
the neurodevelopment would be more active such as in
early to mid-adolescence. Future postmortem and animal
studies should examine these issues.
Furthermore, since the AOSZ cohort was significantly

younger than the YASZ, our prediction that the AOSZ
and YASZ would show regionally distinct patterns of MPL

Fig. 2 MRS voxels that showed significant MPL metabolite changes among adolescent-onset schizophrenia (AOSZ) in relation to C4AL repeats
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metabolite changes in relation to C4 GCNs broadly
reflecting neurodevelopmental trajectory was not sup-
ported. This may be because the age at scan was about 19
years and the neurodevelopment might have progressed
beyond dorsal regions into the ventral regions. Another
reason may be inadequate power of our sample size to
detect such differences. Further studies are needed to
investigate developmental effects of C4A and C4B repeats.
We did not observe increased neuropil contraction

among young adult HC although a concurrent reduction
in PC+ PE and GPC+GPE was observed in relation to
C4AL. Exploratory analysis on the association of C4BL
with MPL metabolites showed significant associations
with increased neuropil contraction among young-adult
HC compared to YASZ patients. Precise reasons are
unclear; however, it is possible that the pattern of
expression of C4A and C4B proteins may be different in
patients compared to healthy subjects.
This study supported our secondary hypothesis of

decreased neuropil expansion. It can be postulated that
C4 GCN may affect each brain region through increased
neuropil contraction or decreased formation. Although
postmortem examination allows direct examination of
spines, differentiation of decreased spine formation from
increased pruning by cross-sectional examination is
challenging. Unique advantage of in vivo MRS data is its
ability to distinguish between increased contraction and
diminished formation to the neuropil density. Thus, the
findings of this study, if replicated, raises the possibility of
the contribution of C4 GCN to decreased neuropil for-
mation for future cellular and animal studies.
C4BL GCN were associated with MPL metabolite

changes in the dorsal and subcortical regions among
adult-onset schizophrenia patients. However, controls
showed a similar pattern but in a distinct set of regions
and were more extensive compared to patients. The
associations were noted in the ventral and subcortical
regions among adolescent cohort contrary to our pre-
dictions. One likely reason is that nearly half of subjects in
both groups did not have any copies of C4BL, effectively
making it a comparison between subjects with and with-
out C4BL GCN. Further studies with larger samples are
required.
The quality of the spectral data acquired with (AOSZ)

and without (YASZ) 1H-decoupling was reasonably good,
although the 1H-decoupled MRS data was expectedly of
higher quality. The SNR and CRLB values of 31P MRS
data without decoupling did not show significant differ-
ences but the PCr Gaussian linewidth was longer for
selected voxels suggests that the variability among the
groups was within reasonable limits. The higher quality of
1H-decoupled data suggests that higher strength magnets
may be able to offer better peak separation and quantifi-
cation of spectral components.

The strengths of our study include examination of two
independent schizophrenia cohorts and HC groups mat-
ched for each group that shows consistency of association
of C4A repeats with neuropil contraction, and extends the
findings to decreased neuropil formation. Examining 31P
MRS data acquired with and without 1H-decoupling show
predicted associations with neuropil contraction sup-
porting robustness of the findings. Innovative ddPCR
assays with excellent quality control adds to these
strengths. Demonstrating the associations of C4 GCN
within the human context is important because C4A is
human-specific and supplements the rodent model
observations. Examining early course patients minimizes
the confounds of prolonged medication exposure, illness
chronicity, and comorbid illnesses and their treatment
that may affect postmortem data. Limitations of our study
include relatively small sample sizes. Temporal changes
could not be inferred in this cross-sectional study. 31P
MRS data suggests changes in the neuropil that is a
synaptically dense region with few cell bodies but does not
directly measure changes in synapses, dendritic arbor-
ization or spine density.
In summary, our study reports association of increased

contraction and decreased formation of neuropil with the
GCN of C4 variants. Although data from gene expression
studies on postmortem brain tissues and animal models
are persuasive, corroboration with live human patients is
critical to advance the knowledge of biological sig-
nificance of gene variants observed in repeatedly repli-
cated GWA studies. Although C4B was not associated
with schizophrenia risk in Sekar et al. study, it is likely that
C4B may contribute to neuropil alterations that requires
further studies. Larger sample sizes need to be examined
to replicate our findings.
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