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Abstract

Background: Digenic inheritance is the simplest model of oligenic disease. It can be observed when there is a
strong epistatic interaction between two loci. For both syndromic and non-syndromic hearing impairment, several
forms of digenic inheritance have been reported.

Methods: We performed exome sequencing in a Pakistani family with profound non-syndromic hereditary hearing
impairment to identify the genetic cause of disease.

Results: We found that this family displays digenic inheritance for two trans heterozygous missense mutations, one
in PCDH15 [p.(Arg1034His)] and another in USH1G [p.(Asp365Asn)]. Both of these genes are known to cause
autosomal recessive non-syndromic hearing impairment and Usher syndrome. The protein products of PCDH15 and
USH1G function together at the stereocilia tips in the hair cells and are necessary for proper mechanotransduction.
Epistasis between Pcdh15 and Ush1G has been previously reported in digenic heterozygous mice. The digenic mice
displayed a significant decrease in hearing compared to age-matched heterozygous animals. Until now no human
examples have been reported.

Conclusions: The discovery of novel digenic inheritance mechanisms in hereditary hearing impairment will aid in
understanding the interaction between defective proteins and further define inner ear function and its interactome.
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Background
Over the last decade, genetic studies have taught us that
there is a continuous spectrum of genetic influences be-
tween monogenic and oligogenic diseases. The simplest
model of multifactorial inheritance is digenic, where in
its original definition, two loci are necessary to express
or extremely modify the severity of a phenotype. Com-
pared to monogenic disease inheritance, digenic inherit-
ance does not follow Mendelian segregation and is
probably underdiagnosed due to the difficulty in verify-
ing true digenic effects. However, several convincing

cases of digenic inheritance have been found in genetic-
ally heterogeneous disorders including hearing impair-
ment (HI) [1–4]. These findings encouraged researchers
when analyzing exome and genome sequence data to
consider variants in related genes or similar pathways
that fit a digenic disease model as candidates, which has
led to additional promising reports [5–9].
Several putative digenic recessive interactions causing

non-syndromic (NS) HI and syndromic HI, e.g. Usher
and Pendred syndromes have been described [1–9].
Digenic GJB2 (Cx26) and GJB6 (Cx30) heterozygous var-
iants are an often observed cause of HI in humans [4, 5].
A 309-kb deletion, also referred to as del
(GJB6-D13S1830), which involves GJB6, causes HI in the
homozygous state, or in the compound heterozygous
state with a large variety of GJB2 mutations. However,
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this example should be considered as monogenic GJB2
autosomal recessive NSHI and not truly digenic in its
underlying molecular nature, since the GJB6 deletion in-
activates GJB2 [10, 11], which is its neighboring gene on
chromosome 13.
There are several examples of true digenic inheritance

for HI. For example, digenic inheritance of CDH23 and
PCDH15 is well established [1], and has been shown to
cause age-related HI in mice, and Usher Syndrome Type
I in humans. Both proteins interact closely and are cru-
cial for the normal organization of the stereocilia bundle.
Digenic heterozygous mice showed degeneration of the
stereocilia and a base-apex loss of hair cells and spiral
ganglion cells [1]. Other described digenic cases include
SLC26A4 and FOXI [2], which causes Pendred syndrome
or HI associated with enlarged vestibular aqueducts
(EVA) in humans or EVA in the mouse mutant, and
SLC26A4 and KCNJ10 [3], which have been observed to
cause HI and EVA in humans. In addition, some putative
digenic inheritances have been suggested but still require
further evidence or need to be replicated, such as GJB2
and TMPRSS3 [7] and MYO7A and PCDH15 [8],
amongst others.
For HI, dominant ‘digenic’ additive effects of two

genes have also been described, which leads to a more
severe hearing loss than the effect of a single variant.
For example, for a Swedish family, an additive effect of
linked loci DFNA2 and DFNA11, resulted in a more se-
vere phenotype for which the causative variants and
genes have yet to be identified [12].
Digenic inheritance can refer to different scenarios

[13, 14], and there is currently no clear consensus re-
garding the definition of digenic inheritance. The most
commonly used definition, requires two loci for expres-
sion or extreme modification of the severity of a similar
phenotype. There is a thin line between the digenic
modification definition and genetic modifiers, as both
are often used in a similar context.
The Digenic Diseases Database (DIDA) [13] classifies

digenic cases into two classes which are simplifications
of the original definitions provided by Schäffer [15]: 1)
The first class is referred to as the ‘true digenic’ class, i.e.
variants at both loci are required for expression of the
disease, and neither variant alone displays a phenotype.
2) The second class is a composite class as it includes
different possibilities, such as Mendelian variants plus
modifiers that vary the phenotype, or dual molecular
diagnoses, wherein Mendelian variants at each of the
two loci segregate independently and results in a com-
bination of both phenotypes [13]. However, there are a
spectrum of scenarios possible that can blur these de-
fined borders [14]. In OMIM (Online Mendelian Inherit-
ance in Man), digenic inheritance is classified into two
categories: Digenic dominant inheritance is defined as

heterozygous mutations in two genes, while digenic re-
cessive inheritance signifies a homozygous or compound
heterozygous mutation in one gene and a heterozygous
mutation in a second gene.
The digenic inheritance described in this article entails

a true digenic model, in which two trans heterozygous
mutations in two genes (on different chromosomes)
whose protein products function closely together at the
stereocilia tips in the hair cells (PCDH15 and USH1G)
are required for the expression of a phenotype.

Methods
The study was approved by the Institutional Review
Boards of the Quaid-i-Azam University and the Baylor
College of Medicine and Affiliated Hospitals (H-17566).
Written informed consent was obtained from all partici-
pating members.
DNA samples were collected from five family members

of a consanguineous family with hereditary non-syndromic
hearing loss (Family 4667; Fig. 1a) from the Khyber Pakh-
tunkhwa province in Pakistan. These samples include DNA
from two affected siblings (IV:3 and IV:4), two unaffected
siblings (IV:1 and IV:2) and their mother (III:2) (Fig. 1a).
Genomic DNA was extracted from peripheral blood

using a phenol chloroform procedure [16]. Exomic li-
braries were prepared from one affected individual (IV:4)
with the Roche NimbleGen SeqCap EZ Human Exome
Library v.2.0 (~ 37 Mb target), following the manufac-
turer’s protocol. Sequencing was performed by 70 bp
paired-end sequencing on a HiSeq2500/4000 instrument
(Illumina Inc., San Diego, CA, USA). Reads were aligned
to the Human genome (Hg19/GRC37) using the
Burrows-Wheeler transform (BWA-MEM), PCR dupli-
cates were removed with Picard MarkDuplicates, and
indel realignment was performed (GATK IndelRea-
ligner). Single nucleotide polymorphisms (SNP) s and
small insertions/deletions (Indels) variants were recali-
brated with BaseRecalibrator and called jointly with
HaplotypeCaller (GATK), annotated with dbNSFP and
ANNOVAR for further filtering and interpretation [17].
Copy number variants (CNVs) were called using CoNI-
FER [18] and XHMM [19].
Variants were further filtered based on location

(coding region and splice region +/− 12 bp), and fre-
quency [minor allele frequency (MAF) Genome Aggre-
gation Database (gnomAD) < 0.005 in all populations].
Variants with a predicted damaging functional effect
were identified (e.g., splice-site, non-synonymous, non-
sense, etc.), and conservation scores (e.g., PhastCons,
GERP), and the Combined Annotation Dependent
Depletion (CADD) score were evaluated prior to testing
for segregation within the pedigree. We selected both
heterozygous and homozygous variants for segregation
testing in the pedigree, assuming several modes of
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inheritance possible in this pedigree: autosomal recessive
(homozygous or compound heterozygous), X-linked,
germline mosaicism or parental mosaicism, and digenic.
Sanger sequencing was used to validate variants and

verify segregation with the HI phenotype in the family.
Primers surrounding region of interest were designed
using primer3 software [20]. PCR amplified products
were treated with ExoSAP-IT™ PCR Product Cleanup
Reagent (ThermoFisher Scientific, Sugerland, TX) and
sequenced using the BigDye terminator v3.1 cycle se-
quencing kit (Applied Biosystems, Foster City, CA) on
an ABI 3130 Genetic Analyzer (Applied Biosystems,
Foster City, CA).

Results
Clinical evaluation
Pure-tone audiometry showed bilateral profound HI in
both affected persons (Fig. 1b). An external eye exam,
visual acuity and ophthalmoscopy, showed no vision
problems. Other causes of HI, including infections,
trauma and ototoxic medications were evaluated and ex-
cluded. Tandem gait and Romberg tests were performed
to evaluate for gross vestibular deficits. No vestibular
problems were identified. Careful physical examinations
revealed no other problems in addition to HI in the fam-
ily members, supporting that the HI is non-syndromic.

Exome and Sanger sequencing
Exome sequencing revealed several variants of interest
(Additional file 1: Table S1), which were all tested for
segregation by performing Sanger sequencing using
DNA from all available family members. None of the
variants in genes previously associated with HI
segregated with the HI phenotype with the exception of
the PCDH15 [GRCh37/hg19; chr10:55719513C > T;
NM_033056: c.3101G > A; p.(Arg1034His)] and USH1G
[GRCh37/hg19; chr17:72915838C>T; NM_173477:c.1093G>
A; p.(Asp365Asn)] variants which displayed digenic inherit-
ance (Fig. 1a).
The PCDH15 variant [NM_033056: c.3101G > A;

p.(Arg1034His)] has a CADD score of 23.9, is predicted
damaging according to MutationTaster, and is conserved
amongst species (GERP++ RS 4.53 and PhyloP20way
0.892). The variant is not present in the gnomAD data-
base of 123,136 exomes and 15,496 whole-genomes of
unrelated individuals, which includes 15,391 South
Asian exomes [21]. In addition, the variant is not present
in the Greater Middle East (GME) Variome Project that
contains 1111 unrelated individuals from the Greater
Middle East, including 168 Iranian and Pakistani individ-
uals [22]. The variant was not observed in 81 in-house
Pakistani exomes which had other Mendelian Traits but
not NSHI or syndromic HI. This variant, in the

Fig. 1 Pedigree drawing for family 4667 and audiograms for the affected family members. Panel a Pedigree drawing displaying family members
with NSHI as filled symbols and unaffected family members as clear symbols. Males are represented by squares and females by circles. For the
three unaffected and two affected family members genotypes for the PCDH15 variant NM_033056:c.3101G >A and USH1G variant NM_173477:c.1093G >A
are shown under each family member and demonstrate digenic inheritance. The DNA sample from Individual IV:4 was exome sequenced.
Panel b Audiograms for affected family members IV:3 (top) and IV:4 (bottom). Pure-tone audiometry was performed between 250 and 8000 Hz
and x represents the results for the left ear and o for the right ear. Affected individual IV:3 was 34 years old, and affected individual IV:4 was
22 years old at the time of pure-tone audiometry and physical examination
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homozygous state, was previously been described as
pathogenic in an Iranian family with NSHI [23].
The USH1G [NM_173477:c.1093G > A; p.(Asp365Asn);

rs538983393] variant has a CADD score of 22.9, is pre-
dicted damaging according to MutationTaster, and is
conserved amongst species (GERP++ RS 4.53 and Phy-
loP20way 1.000). It has a low frequency in gnomAD
(3.3 × 10− 5 overall; 2.3 × 10− 4 South Asian), with no ho-
mozygotes reported, and is not present in the GME Var-
iome Project nor our in-house exomes. The PCDH15 and
USH1G variants are available in ClinVar (accession
SCV000608345) [24].
Additionally for family 4667, we identified a heterozy-

gous variant in CDH23
[NM_022124:c.C2263T:p.(His755Tyr); rs181255269] via
exome sequencing. It was tested for segregation and is
present in a heterozygous state in all individuals with an
available DNA sample (III: 2, IV: 1, IV: 2, IV: 3 and IV:
4). Although this variant was originally suggested to be
pathogenic [25], based upon recent evidence in ClinVar,
and a high population frequency in certain populations
(2.2% MAF in the Turkish Peninsula [22]; Additional file
1: Table S1), this variant is likely benign. This variant
also does not fit a digenic inheritance model with known
digenic partner PCDH15 in this family.
To find any other potentially missed pathogenic vari-

ants in this family, we examined the BAM files for indi-
vidual IV:4 using Integrative Genomics Viewer
(IGV2.3.97) to try to detect any variants that were not
called and/or regions with no reads or low read depth
(<= 8× coverage). All low and/or uncovered exonic and
splice regions of USH1G and PCDH15 were Sanger se-
quenced, and no additional variants were found. We also
performed a CNV analysis on the exome data, and only
one heterozygous deletion was called in the sequenced
exome of individual IV: 4 by both CoNIFER and XHMM
(GRCh37/hg19; chr13:100511115–100,915,087). This re-
gion does not contain any known HI genes. Additionally,
no other CNVs in this region have been reported in the
Database of Genomic Variants (DVG) associated with
any disease [26].

Discussion
Hair cells of the inner ear are mechanosensors for the
detection of sound and balance/movement. At the apical
surface of each hair cell is its mechanically sensitive or-
ganelle, the hair bundle, which consists of dozens of ste-
reocilia. Mechanotransduction channels are located near
stereociliary tips and open or close on deflection of the
stereocilia. Tip-links stretch from the tips of stereocilia
in the short and middle rows to the sides of neighboring,
taller stereocilia. These Tip-links on stereocilia are made
of cdh23 and pcdh15 [27]. In the Ames waltzer mice, re-
cessive mutations of Pcdh15 cause deafness due to

disorganized stereocilia bundles and degeneration of
inner ear neuroepithelia [28].
Sans, the protein coded by Ush1g, interacts with the

cytoplasmic domains of cdh23 and pcdh15 in vitro and
is absent from the hair bundle in mice defective for ei-
ther of the two cadherins [27]. Sans (Ush1g) localizes
mainly to the tips of short- and middle-row stereocilia in
vivo, and plays a critical role in the maintenance of mo-
lecular complex at the lower end of the tip-link [27].
Thus, Sans locates at stereocilia tips, near the location of
Pcdh15. In Ush1g−/− mice, the cohesion of stereocilia is
also disrupted, and both the amplitude and the sensitiv-
ity of the transduction currents are reduced [27].
Interaction between USH1G and PCDH15 is further dem-
onstrated in digenic heterozygous mice. +/Pcdh15av-3J

+/Ush1gjs double heterozygous mice display hearing loss,
with highly significant elevated auditory brainstem re-
sponse (ABR) thresholds at 3–4 months [29], suggesting
Pcdh15-Ush1g epistasis [29].
In the traditional definition, epistasis describes the

interaction of two or more genetic loci, which can sub-
stantially modify disease severity or result in an entirely
new phenotype. In the literature within and between dif-
ferent fields, there are contradictions in the definitions
and interpretations of epistasis [30]. Adopting the ori-
ginal definition of epistasis, a non-linear interaction, we
describe a family where the hearing impaired members
carry trans heterozygous variants in PCDH15 and
USH1G and have profound HI and single variant carriers
have normal hearing (Fig. 1). We cannot, confirm epista-
sis in vitro, i.e. biochemical epistasis [31]. We
hypothesize that the biochemical function of their net-
work is severely affected by these two variants and re-
sults in a profound HI, because both proteins function
together at the stereocilia tips in the hair cells and are
necessary for proper mechanotransduction. Since each
gene separately is known to cause autosomal recessive
HI, reduced activity/functioning of both proteins in the
same close interacting network is a likely disease model.

Conclusions
In this study, we suggest epistasis between PCDH15 and
USH1G in humans, through the study of a consanguin-
eous family with profound hereditary HI, segregating a
heterozygous and predicted damaging mutation in both
PCDH15 and USH1G (Fig. 1). Digenic inheritance of
hearing impairment in mice and humans suggest that
the proteins interact or perform co-dependent functions
in hair cells. The study of digenic diseases can help us
understand more about the complex interaction within
the inner ear and is an initial step towards the under-
standing of more complex oligogenic diseases, such as
age-related hearing loss.
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Additional file 1: Supplementary data associated with this manuscript
consists of Table S1. Variants of interest identified by exome sequencing.
This list includes variants in this study that were tested for segregation.
Annotations and population frequencies are listed. (XLSX 12 kb).
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