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Abstract

Objective Improving medication adherence among children with B-cell precursor acute lympho-
blastic leukemia (B-ALL) has the potential to reduce relapse rates but requires an investment in
resources. An economic evaluation is needed to understand the potential costs and benefits of
delivering adherence-promotion interventions (APIs) as part of standard clinical care. Methods A
Markov decision analytic model was used to simulate the potential incremental cost-effectiveness
per quality-adjusted life year (QALY) to be gained from an API for children with B-ALL in first con-
tinuous remission compared with treatment as usual (TAU, no intervention). Model parameter esti-
mates were informed by previously published studies. The primary outcome was incremental cost
(2015 US$) per QALY gained for APl compared with TAU. Results The model predicts the API to
result in superior health outcomes (4.87 vs. 4.86 QALYs) and cost savings ($43,540.73 vs.
$46,675.71) as compared with TAU, and simulations indicate that, across a range of plausible pa-
rameter estimates, there is a 95% chance that the APl is more effective and less costly than TAU.
The APl was estimated to remain more effective and less costly than TAU in situations where the
prevalence of nonadherence exceeds 32% and when APl improves baseline adherence in at least
3% of patients. Conclusions Providing APIs to children with B-ALL may improve health out-
comes and save costs over a 6-year period.
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Each year, over 2,900 children (0-19 years of age) are
diagnosed with acute lymphoblastic leukemia (ALL),
making ALL the most common type of childhood can-
cer (Hunger & Mullighan, 2015; National Cancer
Institute, 2013). While overall survival rates have in-
creased from 10 to 90% since 1960, 5-year survival

rates remain low (21-53%) for the 20% of children
with ALL who relapse (Hunger & Mullighan, 2015;
Nguyen et al., 2008). As a result, novel efforts to
maintain remission may be critical to further improv-
ing outcomes in pediatric ALL (Nguyen et al., 2008).
One promising avenue for reducing relapse rates is to
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target nonadherence to oral mercaptopurine during
maintenance therapy, which accounts for an estimated
59% of pediatric ALL relapses but can be modified
with behavioral intervention (Bhatia et al., 2012;
Kahana, Drotar, & Frazier, 2008; Pai & McGrady,
2014). Meta-analyses of adherence-promotion ran-
domized clinical trials (RCTs) for children with a med-
ical condition (i.e., cancer) suggest that monitoring
medication adherence and providing behavioral inter-
ventions increases adherence, improves health out-
comes, and reduces health care utilization (McGrady
et al., 2015; Pai & McGrady, 2014).

Given the potential of adherence-promotion efforts
to improve health outcomes among children with
ALL, multiple professional organizations (i.e., Society
of Pediatric Psychology, Children’s Oncology Group
[COG]) have endorsed the routine assessment and
monitoring of medication adherence throughout can-
cer treatment as a standard of clinical care (Pai &
McGrady, 2015). For many pediatric oncology clinics,
implementing this standard of care will require an in-
vestment from the hospital and/or insurance company
in additional resources to assess adherence (e.g., elec-
tronic monitors) and reimburse trained providers (e.g.,
psychologists, social workers) to deliver interventions
(Wu et al., 2013). Observational studies of adults with
cancer suggest that increasing medication adherence
may reduce medical costs, but the relative magnitude
of economic outcomes and their association with clini-
cal benefits among children with ALL remain un-
known (Darkow et al., 2007; Dieng, Cust, Kasparian,
Mann, & Morton, 2016; McCowan, Wang,
Thompson, Makubate, & Petrie, 2013).

One method of advocating for resources to support
a new clinical initiative (such as providing an
adherence-promotion intervention [API] to children
with ALL) is to provide the relevant decision-maker
(e.g., hospital, insurance company) with a cost-
effectiveness analysis describing the costs and health
outcomes of implementing the proposed program.
Cost-effectiveness analyses may include data from a
single clinical trial (hereafter referred to as “trial-
based analyses”) or use decision analytic modeling to
synthesize the best available data from multiple sour-
ces (Buxton et al., 1997). Trial-based analyses produce
reliable estimates of costs and health outcomes with
high internal validity (Buxton et al., 1997; Petrou &
Gray, 2011). However, trial-based analyses often fail
to meet many of the criteria necessary to ensure the
resulting data are relevant to the decision-maker
(Sculpher, Claxton, Drummond, & McCabe, 2006).
Specifically, to be generalizable to the current situa-
tion, the clinical trial must have tested an intervention
that is identical (i.e., in setting, format, content, effi-
cacy) to the planned intervention; tested the interven-
tion with a patient population identical to the

population of interest; and collected data on final end
points and for a time period that is sufficient to detect
changes in health outcomes (Brennan & Akehurst,
2000; Sculpher et al., 2006). When psychologists are
interested in delivering an intervention in a manner or
setting that deviates even slightly from the trial proto-
col or to a population whose demographic and/or clin-
ical characteristics do not match those enrolled in the
trial, trial data cannot accurately estimate the costs
and health outcomes of implementing such an inter-
vention (Brennan & Akehurst, 2000; Sculpher et al,
2006). Because the full health benefits of interventions
delivered by pediatric psychologists are often not real-
ized until several years or decades after the interven-
tion, the trial follow-up period is also often too short
to capture the long-term health benefits of the inter-
vention, and thus unable to accurately estimate the
costs and health outcomes of the intervention
(Sculpher et al., 2006).

To provide the data necessary to advocate for
adherence-promotion efforts for children with ALL,
an important next step is to conduct a cost-
effectiveness analysis to simultaneously consider the
costs and health outcomes of integrating adherence-
promotion efforts into standard clinical care. While
Kato et al. (2008) published a clinical trial of an API
for adolescents and young adults with cancer, the trial
population differs from the current population of in-
terest (trial includes older patients with a range of can-
cer diagnoses vs. population of interest, which
includes children with ALL) and did not include cost
or long-term health outcome data. As a result, it is not
currently possible to conduct a trial-based cost-effec-
tiveness analysis. Thus, like the majority of cost-
effectiveness analyses published in the broader health
economic evaluation literature (Weinstein, 2006), this
study used a decision analytic model. Specifically, a
Markov model was used to estimate the potential in-
cremental cost-effectiveness per quality-adjusted life
year (QALY) to be gained from an API for children
with B-cell precursor ALL (B-ALL) compared with
treatment as usual (TAU, no intervention).

Because pediatric psychology is a relatively new
field in which there remain several gaps regarding in-
tervention efficacy (Palermo, 2014), there will likely
be other instances in which pediatric psychologists are
interested in evaluating the cost-effectiveness of an in-
tervention in the absence of economic data resulting
from an RCT. As a result, while the primary aim of
this manuscript is to evaluate the potential costs and
health outcomes of integrating an API into standard
clinical care for children with B-ALL, it is also hoped
that this manuscript can serve as an exemplar as to
how pediatric psychologists can synthesize existing
data to inform model-based analyses evaluating the
cost-effectiveness of various behavioral interventions.
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Methods

A decision analytic model was developed to compare
the 6-year outcomes associated with two strategies of
clinical care (API and TAU) for children with B-ALL
receiving care at a U.S. children’s hospital. This model
was developed using published data and is exempt
from institutional review board approval.

The hypothetical cohort included children (0-
19years of age at diagnosis) with B-ALL in first
continuous remission prescribed daily oral mercapto-
purine as part of maintenance therapy (Hunger &
Mullighan, 2015). As prognosis and treatment proto-
cols differ by ALL lineage type (B-ALL vs. T-cell ALL)
and B-ALL accounts for approximately 80-85% of
pediatric ALL diagnoses, the proposed cohort was as-
sumed to include only children with B-ALL (Nguyen
et al.,, 2008). The age range was selected to mirror
that used by the Surveillance, Epidemiology, and End
Results registries (National Cancer Institute, 2013).
Maintenance therapy was selected as nonadherence to
oral mercaptopurine prescribed during this phase of
treatment has been linked with relapse and earlier
treatment blocks primarily consist of intravenous
medications administered in a hospital setting (Bhatia
et al., 2012). The cohort’s sociodemographic and clin-
ical characteristics were assumed to be consistent with
those of U.S. children with B-ALL (Hunger &
Mullighan, 2015). Based on published clinical trials, it
was estimated that 60% of children who relapsed
would be classified as “high” risk and 40% would be
classified as “low” risk (per relapse site, time to re-
lapse, and minimal residual disease [MRD] presence
at the end of reinduction; Nguyen et al., 2008;
Oskarsson et al., 2016; Raetz & Bhatla, 2012).

Comparators

In a cost-effectiveness analysis, the two (or more)
interventions or strategies being compared are termed
“comparators.” In this model, the two comparators
are the APT and TAU.

The hypothetical first comparator, API, was as-
sumed to be a 6-month intervention similar to those
shown to be effective in published meta-analyses
(Kahana, Drotar, & Frazier, 2008; Pai & McGrady,
2014) and is reflective of the clinical practices, resour-
ces, and structure of our children’s hospital. The API
was assumed to reflect a hypothetical intervention
rather than any single AP, as the only published API
in pediatric oncology includes a videogame delivered
without intervention by a trained professional to ado-
lescents and young adults with a range of cancer diag-
noses (Kato et al., 2008). This intervention is unlikely
to reflect the type of intervention for which psycholo-
gists would need to advocate for coverage and
includes a population that is older and more heteroge-
neous in terms of diagnosis than our target

population. Similar to published pediatric APIs
(Kahana, Drotar, & Frazier, 2008; Pai & McGrady,
2014), the hypothetical API was assumed to include 6
monthly intervention sessions with the patient, care-
giver(s), and psychologist. Sessions were assumed to
include the most common behavior change techniques
from published pediatric APIs (McGrady, Ryan,
Brown, & Cushing, 2015) and target self-monitoring
(via use of an electronic pill box to monitor adherence
to oral mercaptopurine), knowledge, problem-solving
skills, and environmental and social influences.

The second hypothetical comparator, TAU, repre-
sents the current state of adherence-promotion efforts
in many pediatric oncology clinics in which adherence
is not routinely assessed and APIs are provided only
following referral.

Description of Simulation Model

Researchers evaluating the cost-effectiveness of alter-
native interventions using decision analytic modeling
have many modeling approaches from which to
choose. For a thorough overview of decision analytic
modeling options and a guide for model selection,
readers are encouraged to refer to Brennan &
Akehurst  (2000). A Markov state transition model
was selected for this analysis as these models are ideal
to capture clinical situations like ALL in which
patients progress through multiple health states over
time (e.g., induction — consolidation — mainte-
nance), risk of a poor health outcome (e.g., relapse) is
ongoing, and a given event (e.g., relapse) may occur
more than once (Sonnenberg & Beck, 1993). With
each 1-month “tick of the clock,” patients move from
one health state to another based on the chance that
given events occur (Siebert et al., 2012). Readers inter-
ested in an introduction to Markov modeling are re-
ferred to Sonnenberg & Beck (1993).

The Markov model for this manuscript was devel-
oped in consultation with experts in pediatric ALL,
adherence, and decision-making (co-authors) to reflect
the health states through which patients can transition
in the 6 years following the beginning of maintenance
therapy. The model reflects the standard arms of the
current comprehensive treatment protocol for first re-
lapse of pediatric B-ALL (COG AALL1331,
NCT02101853; Children’s Oncology Group, 2017).
A 6-year time horizon was selected to capture the
period over which adherence to oral mercaptopurine
has been linked to relapse status (Bhatia et al., 2015).
Transitions could occur monthly as detailed below
and in Figure 1.

All patients began in maintenance 1 and were as-
sumed to remain in that state for 6 months while they
received API or TAU unless they died. Following API
or TAU (at the end of Month 6), patients were classi-
fied as adherent (>95% of doses of mercaptopurine)
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Figure 1. Simplified Markov model. All patients start the
Markov simulation in “Maintenance 1.” Arrows represent
transitions that may occur with each 1-month “tick of the
clock.” Rounded arrows represent health states in which
patients can remain for >1 cycle (1 month). Values in paren-
theses represent the maximum number of months that can
be spent in a given health state.

or nonadherent (<95% of doses) (Bhatia et al., 2015).
Starting at month 7, patients could remain in mainte-
nance 1 (for up to 24 months), die, or relapse. Patients
completing the entire 24 months of maintenance 1
then transitioned to post-treatment, where they could
remain or transition to relapse or death. Probability of
relapse during maintenance or post-treatment was de-
pendent on adherence status at month 6. Consistent
with ongoing therapeutic trials, patients with relapsed
B-ALL were assumed to receive re-induction chemo-
therapy (Blocks 1-3) followed by continuation chemo-
therapy or stem cell transplant (SCT) dependent on
risk status (Parker et al., 2010; Raetz & Bhatla,
2012). Patients with low-risk relapse receiving chemo-
therapy without SCT could transition through 4
months of continuation, 17 months of maintenance,
and to post-treatment.

At any point post-relapse, patients could also die.
Patients with high-risk relapse could transition
through SCT, an 11-month post-SCT period, and to
post-treatment, or die at any point. The probability of

death post-relapse was not related to adherence status
at month 6 and thus equivalent across API and TAU.
Multiple simplifying assumptions were made in
model development. First, given the variation in
off-protocol therapy and low S-year survival rates fol-
lowing a second relapse (9-15%), all patients
experiencing second relapse were classified as dead
(Ko et al., 2010; Reismiiller et al., 2009). In addition,
the model assumed that all high-risk patients would be
deemed eligible for and undergo SCT. Additional
assumptions are detailed in Supplementary Table S1.

Review of Data Used in Model

Once the structure of the Markov model has been de-
veloped, model parameter estimates (also termed
“base case estimates,” see Base Case column of
Table 1) are added. This model required estimation of
the following parameters: the costs associated with
each health state, the health-related quality of life as-
sociated with each health state (termed “health utili-
ties” and used to calculate QALYs), the probability of
a patient being adherent or nonadherent post-API and
TAU (intervention efficacy), and the probability of
transitioning from each health state to all other health
states (termed “transition probabilities”). Model pa-
rameter estimates were informed by manuscripts iden-
tified via PubMed searches (Supplementary Table S2).
Data were extracted from articles meeting inclusion
criteria (Supplementary Tables S3-S7). Articles with
the highest level of evidence per the Oxford Centre for
Evidence-Based Medicine Levels of Evidence were
used for parameter estimates and are described below
(Oxford Centre for Evidence-Based Medicine Levels
of Evidence Working Group, 2016).

Costs

The analysis was performed from the health care sys-
tem perspective, and direct medical and induced costs
were included (Cohen & Reynolds, 2008). Costs are
expressed in 2015 U.S. dollars. Medicare payments for
both facility and professional services were used as a
proxy for costs (Table I). Direct nonmedical costs
(e.g., transportation to and from clinic appointments/
hospitalizations, lodging for family during hospitaliza-
tions, home health services such as health aides) were
assumed to be equivalent across both interventions
and were not included.

With the exception of SCT, medical therapy costs
for each health state were calculated according to in-
patient admissions, outpatient visits, laboratory tests,
and medications included in current B-ALL treatment
protocols (Supplementary Table S8; Raetz & Bhatla,
2012). Cost data sources included the Centers for
Medicare and Medicaid Services (CMS) Physician Fee
Schedule, CMS Clinical Laboratory Fee Schedule, and
CMS Average Sales Price Drug Pricing Files. When
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Table |. Base Case Parameter Values and Clinically Plausible Ranges

Outcome variable Base case Range for sensitivity analyses

Minimum Base case

Monthly transition probabilities

Adherent post-TAU 0.58 (Bhatia et al., 2015) 0.29% 0.70°¢
Adherent post-API (API efficacy) 0.71 (Pai & McGrady, 0.595¢ 0.80°
2014)
High-risk relapse 0.60¢ 0.504 0.704
Relapse if non-adherent 0.00208 (Bhatia et al., 0.00203° 0.00213°
2015)
Relapse if adherent 0.00067 (Bhatia et al., 0.00064" 0.00069°
2015)
Dying during maintenance therapy 0.00006 (Bhatia et al., 0.00003* 0.00008*
2015)
Dying during induction post-relapse 0.05273 (Parker et al., 0.02390¢ (Ko et al., 2010)  0.32000¢ (Raetz et al.,
2010) 2008)
Dying during chemotherapy post-relapse 0.00371 (Eckert et al., 0.00235°¢ (Eckert et al., 0.00796°¢ (Lew et al.,
2013) 2013) 2014)
Dying following SCT post-relapse 0.01987 (Oskarsson 0.00464° (Eckert et al., 0.02568° (Oskarsson
et al., 2016) 2013) etal., 2016)
Health state utilities
Maintenance 0.87 (Rae et al., 2014) 0.44% 0.90°
Relapse
Block 1 0.66 (Rae et al., 2014) 0.33% 0.90°¢
Block 2 0.66 (Rae et al., 2014) 0.33° 0.90¢
Block 3 0.66 (Rae et al., 2014) 0.33? 0.90°¢
Continuation (Weeks 1-4) 0.79 (Rae et al., 2014) 0.40° 0.90°¢
Continuation (Weeks 5-8) 0.79 (Rae et al., 2014) 0.40% 0.90°¢
SCT: Initial hospitalization (Mo. 1) 0.60 (Barr et al, 1996) 0.30% 0.90°¢
SCT: Short-term follow-up (Mos. 2-3) 0.63 (Felder-Puig et al., 0.32% 0.90°¢
2006)
SCT: Long-term follow-up (Mos. 4-12)  0.73 (Felder-Puig et al., 0.37° 0.90°¢
2006)
Post-treatment (no relapse) 0.90 (Rae et al., 2014) 0.45% 1.00°¢
Post-treatment (relapse) 0.90 (Rae et al., 2014) 0.45° 1.00¢
Monthly costs
Maintenance $803.37" $401.69* $1,205.06"
Relapse
Block 1 $49,706.16° $24,853.08" $74,559.24*
Block 2 $21,871.34f $10,935.67° $32,807.01°
Block 3 $26,345.30F $13,172.65* $39,517.95%
Continuation (Weeks 1-4) $610.37" $305.19° $915.56°
Continuation (Weeks 5-8) $3,264.47° $1,632.24° $4,896.71°
SCT: Initial hospitalization (Mo. 1) $256,448.00 (Lin et al., $0.01>¢ $664,244.50°
2010)
SCT: Short-term follow-up (Mos. 2-3)  $63,458.00 (Lin et al., $0.015¢ $212,489.90°
2010)
SCT: Long-term follow-up (Mos. 4-12)  $16,985.00 (Lin et al., $0.01>¢ $56,324.36°
2010)
Post-treatment (Year 1) $149.79° $74.90* $224.69%
API $149.308 $74.65% $223.95%

Note. APl =adherence-promotion intervention; MO = month; SCT = stem cell transplant; TAU = treatment as usual.

Estimate represents: *50% (for minimum) or 150% (for maximum) of base case, bupper or lower 95% CI of base case, “most extreme (high-
est or lowest) published value, Yexpert synthesis of previously published literature. “Total 50 or 150% of base case estimate fell outside the
minimum (e.g., $0 for costs) or maximum possible value (e.g., 1.00 for health utility), so minimum or maximum possible value was used.
fEstimated from treatment protocol (Supplementary Table $8). 5See Supplementary Table S10.

CMS medication cost data were not available, phar-  including 110 children with ALL who underwent SCT
macy estimates were used. Costs associated with the  (Supplementary Table S9; Lin et al., 2010). Cost esti-
management of adverse events (e.g., hospitalization =~ mates were similar to those in a recent economic eval-
for febrile neutropenia) were assumed equivalent  uation of MRD testing for pediatric ALL (Health
across treatment arms and not included. Costs associ-  Quality Ontario and the Toronto Health Economics
ated with SCT were obtained from a cost analysis,  and Technology Assessment Collaborative, 2016).
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Personnel costs associated with API development
and delivery were obtained from National
Occupational Employment and Wage Estimates and
the CMS Physician Fee Schedule (Supplementary
Table S10). Electronic monitor device and adherence
data transmission costs were obtained from the manu-
facturer. Costs were adjusted to 2015 US$ according
to the medical care component of the Consumer Price
Index, and future costs were discounted at an annual
rate of 3% (U.S. Department of Labor, 2016).

Quality-Adjusted Life Years

Health utility assessments (Health Utilities Index,
HUI) from a cohort of 317 children with ALL treated
on the Dana-Farber Cancer Institute protocol
(Supplementary Table S7; Rae et al., 2014) were used
to estimate the QALYSs associated with the time spent
in the maintenance therapy and post-treatment health
states. In the absence of studies describing health utili-
ties post-relapse, HUI estimates for post-relapse
reinduction, continuation, and post-treatment were
also obtained from the Dana-Farber Cancer Institute
cohort (Rae et al., 2014; van Litsenburg et al., 2014).
HUI estimates for post-relapse SCT were extracted
from studies of adults with ALL and children with a
range of oncological diagnoses undergoing SCT (Barr
et al., 1996; Felder-Puig et al., 2006). QALYs were
discounted at an annual rate of 3% (Weinstein, Siegel,
Gold, Kamlet, & Russell, 1996).

Prevalence of Nonadherence

Because adherence is a continuous construct ranging
from no missed doses to no doses taken, classifying
patients as adherent or nonadherent requires a clini-
cally significant cut point. Thus, to inform the param-
eter estimate, a search was conducted to identify
original research articles that reported on the preva-
lence of nonadherence (as a dichotomous variable) in
children with ALL (Supplementary Table S3). Using
the cut point of 95% of prescribed doses taken as
assessed via electronic monitor, Bhatia et al. (2015)
found that 42% of children were nonadherent to oral
mercaptopurine during maintenance therapy. These
children were at a higher risk of relapse than adherent
patients (Bhatia et al., 2015). Thus, 42% was used as
the prevalence of nonadherence or the probability of
nonadherence post-TAU.

API Efficacy

In the absence of an RCT of an API for children ages
0-19 years with B-ALL, the effect of APIs on electroni-
cally monitored medication adherence was obtained
from a meta-analysis of pediatric APIs (d=0.31,
Supplementary Table S4; Pai & McGrady, 2014). A 2
x 2 contingency table was used to compute the proba-
bility of API success assuming a treatment effect of

d=0.31, resulting in a parameter estimate of 71% ad-
herent post-API.

Transition Probabilities

Transition probabilities were estimated for each possi-
ble transition from a given health state to another
health state (each arrow included in Figure 1).
Beginning at the top of the model, the probability of
relapse (arrows from “Maintenance 1” to “Relapse:
Block 1 Chemotherapy” and “Post-Treatment: No
Relapse”) was obtained from a COG study of 742
children with ALL (Supplementary Table S5; Bhatia
et al., 2012, 2015). The cumulative risk of relapse was
2.7 times higher among patients classified as non-
adherent (M [SD] risk=13.9% [2.6%]) than those
classified as adherent (4.7% [1.3%]; Bhatia et al.,
2015).

The probability of surviving induction post-relapse
(arrows from “Relapse: Block 1 Chemotherapy”
through  subsequent chemotherapy blocks to
“Continuation Chemotherapy 1,” “SCT,” and
“Death”) was obtained from a study of 103 children
with first relapse ALL enrolled on ALLR3 (mitoxan-
trone arm, Supplementary Table S6; Parker et al.,
2010). Patients surviving reinduction were assumed to
receive continuation chemotherapy (40%) or undergo
SCT (60%) based on risk classification (arrows from
“Block 3  Chemotherapy” to “Continuation
Chemotherapy 1”7 and “SCT”; Nguyen et al., 2008;
Oskarsson et al., 2016; Parker et al., 2010).

The probability of survival for low-risk patients re-
ceiving continuation chemotherapy (70%) was
obtained from POG 9412 for late isolated extramedul-
lary relapse, and COG AALL0433 and ALL-REZ BFM
2002 in which patients with intermediate-risk marrow
relapse ALL and an MRD level <102 at the end of in-
duction therapy received chemotherapy (arrows from
“Continuation Chemotherapy 1” through other treat-
ment blocks to “Post-Treatment: Relapse and
Chemotherapy” and “Death”; Barredo et al., 2006;
Eckert et al., 2013; Lew et al., 2014, Supplementary
Table S6). The probability of 5-year event-free survival
following SCT was estimated to be 30% based on a
study of children with high-risk relapse ALL treated
according to NOPHO ALL-92 and ALL-2000 proto-
cols and a retrospective study of children treated on
COG frontline trials who experienced first relapse
(arrows from “SCT” through other treatment blocks to
“Post-Treatment: Relapse and SCT” and “Death”;
Nguyen et al., 2008; Oskarsson et al., 2016,
Supplementary Table S6). As the impact of non-
adherence on outcomes post-relapse remains unknown,
transition probabilities post-relapse were assumed to be
equivalent for adherent and nonadherent patients.
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Analyses

Incremental Cost-Effectiveness Ratio

The primary outcome of a cost-effectiveness analysis
(and this study) is the incremental cost-effectiveness
ratio (ICER), defined as the differences in costs di-
vided by the differences in health outcomes of the two

comparators. The ICER for this study was defined as:

ICER = ((QCZZ;{ ﬁ%:gjﬂfﬁ])- In the primary analy-

sis, costs and QALYs over a 6-year time horizon were
estimated for the API and TAU groups and used to
compute the ICER. Costs (numerator) were measured
in 2015 US$ as detailed above. Health outcomes (de-
nominator) were assessed using QALYs calculated
from health utility values. While the denominator of a
cost-effectiveness analysis may include any health out-
come, QALYs offer the benefit of capturing both the
quality of life associated with a given health state and
the time spent in that state (see Weinstein, Torrance,
and McGuire, 2009 for an overview of QALYs).

Sensitivity Analyses

Because base case estimates are obtained from multi-
ple sources, uncertainty is inherent in model-based
analyses. Deterministic and probabilistic sensitivity
analyses were used to examine the impact of uncer-
tainty in parameter estimates on model results. The
range of values tested in the sensitivity analysis for
each parameter was obtained from the published 95%
confidence interval (CI) and when a published CI was
not available, from either the extreme values (lowest
and highest for each parameter) identified via litera-
ture review or upper and lower limits as calculated as
50 and 150% of base case values (see Table I, Range
for Sensitivity Analyses).

Deterministic sensitivity analyses were performed
for each variable separately by systematically varying
each parameter across the clinically plausible range
detailed in Table I. For example, as it is possible that
d=0.31 (which translates to a probability of adherent
post-API of 0.71) is not an accurate estimate of API ef-
ficacy, the model was rerun across the 95% CI of
d=0.02-0.59 (Pai & McGrady, 2014; which trans-
lates to a probability of adherent post-API of 0.59-
0.80). The results of this deterministic sensitivity
analysis indicate the degree to which model results
would be expected to change as a result of variations
in API efficacy. In sum, deterministic sensitivity analy-
ses were used to explore the robustness of model results
to potential variations in any parameter estimate.

Similar to the manner in which p values capture un-
certainty within clinical studies, probabilistic sensitiv-
ity analyses estimate the likelihood that a given
intervention will be “cost-effective” in decision ana-
lytic modeling (Cohen & Reynolds, 2008). Results of
a probabilistic sensitivity analysis provide a model-
level understanding of the impact of uncertainty in

parameter estimates by “vibrating” the values of all
model parameters simultaneously. We conducted a
probabilistic ~ sensitivity analysis by performing
10,000 second-order Monte Carlo simulations to sam-
ple parameter values from their distributions and esti-
mate outcomes. The results of the probabilistic
sensitivity analysis were used to calculate the percent-
age of simulations in which the API was predicted to
be “cost-effective” relative to TAU (Briggs & Fenn,
1998). Additional details regarding the probabilistic
sensitivity analysis (i.e., parameter distributions) are
available from the authors on request.

Analyses were conducted using Windows Decision
Maker® (Boston, MA). As recommended by the
World Health Organization, the annual U.S. per cap-
ita gross domestic product was used as the
willingness-to-pay threshold (Marseille, Larson, Kazi,
Kahn, & Rosen, 2015). Using this criterion, ICER val-
ues <$55,200 per QALY are considered “cost-
effective” (The World Bank Group, 2016). Results are
reported in accordance with Consolidated Health
Economic Evaluation Reporting Standards (Husereau
etal., 2013).

Results

Base Case

The Markov model predicted that 6 years after begin-
ning API or TAU, 95% of adherent patients were in
post-treatment (no relapse), 1% were in post-treat-
ment following chemotherapy for relapse, 1% were in
posttreatment following SCT for relapse, and 2%
were deceased (<1% in another health state). Of non-
adherent patients, 86% were in post-treatment (no re-
lapse), 3% were in post-treatment following
chemotherapy for relapse, 3% were in post-treatment
following SCT for relapse, and 6% were deceased
(<1% in another health state, Supplementary Figure
S1). As the only difference between the API and TAU
groups was the probability of being adherent, the dif-
ferent health state distributions across adherent and
nonadherent patients led to superior health outcomes
in the API group (4.87 QALYs vs. 4.86 QALYs for
TAU). The lower rates of relapse in API also resulted
in lower average costs compared with TAU
($43,540.73 vs. $46,675.71, Table 1I). As the API
strategy was both superior in health outcomes and less
costly, it dominated the TAU strategy (ICER is not cal-
culated, as it would result in a negative value).

Sensitivity Analyses

Results of deterministic sensitivity analyses indicate
that the model was not sensitive to variations in out-
comes post-relapse (i.e., probability of dying during
reinduction, chemotherapy, or SCT), health state utili-
ties, or costs. Across the range of clinically plausible
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Table ll. Base Case Cost-Effectiveness Analysis

Strategy Cost Effectiveness ICER
APIL $43,540.73 4.87 -
TAU $46,675.71 4.86 Dominated

Note. API=adherence-promotion intervention; ICER = incre-
mental cost-effectiveness ratio; TAU = treatment as usual.

values for each parameter, API remained more effec-
tive and less costly than TAU. The model was sensitive
to variations in nonadherence prevalence (p adherence
post-TAU) and API efficacy (p adherence post-API).
The ICER was <0 when the probability of adherence
post-TAU was <.68, suggesting that the API is more
effective and less costly than TAU when the prevalence
of nonadherence is at least 32% (1-.68, see
Supplementary Figure S2). The probability of adher-
ence post-TAU was .69 at the willingness-to-pay
threshold of $55,200, suggesting that the API could be
considered “cost-effective” if the prevalence of non-
adherence is at least 31% (1-.69). The API was also
estimated to be more effective and less costly than
TAU when at least 61% of children were adherent
post-API (ICER < $0) and “cost-effective”
(ICER < $55,200) when at least 60% of children were
adherent post-API versus 58% in TAU (see
Supplementary Figure S2).

The results of the 10,000 second-order Monte
Carlo simulations (probabilistic sensitivity analysis)
are depicted in Figure 2. Each diamond in the figure
represents the result of a single Monte Carlo simula-
tion. As demonstrated in the scatter plot of differences
in health outcomes and costs between API and TAU,
API was more effective and less costly than TAU in the
95% of simulations (lower right quadrant). Thus, the
API has a 95% probability of being more effective and
less costly as compared with TAU. In addition, as
97% of simulations were below the ICER of $55,200,
the API has a 97% probability of being either cost
saving or “cost-effective” as compared with TAU.

Conclusions

To our knowledge, this study is the first to evaluate
the cost-effectiveness of an API in any pediatric popu-
lation and exemplifies the integral role of pediatric
psychologists in national efforts to improve health
outcomes and reduce costs. Model results predict that
investing $150 a month per child with B-ALL to rou-
tinely assess and monitor medication adherence, as
recommended by the Psychosocial Standards of Care
for Children with Cancer and Their Families, has a
95% probability of improving outcomes and saving
costs over a 6-year period (Pai & McGrady, 2015).
Even though these results were based on a decision an-
alytic model, our results were robust to sensitivity

Differences in Effects (QALYs)
-0.04 -0.02 0 0.02 0.04 0.06

APl is less effective amd
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-§400
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-$1,000

Figure 2. Cost-effectiveness plane depicting the differences
in costs and QALYs between the APl and TAU resulting
from 10,000 simulations. The black square represents the
base case scenario.

analyses of 29 variables including costs, health state
utilities, and outcome probabilities, with API remain-
ing more effective and less costly than TAU across
each analysis.

In addition, the API was more effective and less
costly when the prevalence of nonadherence among
children with B-ALL was as low as 32%, well below
documented nonadherence rates of 42-44% (Bhatia
et al., 2012, 2015). This suggests that the API may im-
prove outcomes and save costs if delivered to all chil-
dren as part of standard clinical care versus only those
with identified nonadherence. Even if API efficacy is
small (61% adherent post-API), compared with usual
care (58% adherent), the API remains more effective
and less costly than TAU. For example, if the API was
delivered to 200 children with B-ALL, only six
patients would have to transition from nonadherent to
adherent for the API result in improved health out-
comes and cost savings as compared with TAU.

In contrast to health care payers in other countries
(i.e., England, Australia, Canada), health care payers
in the United States do not routinely consider cost-
effectiveness analyses when making funding decisions
(Eddama & Coast, 2008). The specific data needed to
convince a health care payer to cover a service (such
as an API) are likely to vary across payers and cost-
effectiveness analyses such as this one often represent
just one component of the required evidence base. As
a result, pediatric psychologists advocating for cover-
age for their services are encouraged to partner with
relevant health care payers to determine the data of in-
terest to the payer. Even when health care payers re-
quest data other than those from a cost-effectiveness
analysis, it is still imperative that pediatric psycholo-
gist continue to produce data resulting from economic
models that abide by best practice guidelines
(Husereau et al., 2013; Siebert et al., 2012). The meth-
odological and scientific rigor inherent in these
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guidelines will ensure that our field is producing high-
quality data in support of our services in addition to
the payer-specific data requested to influence a given
coverage decision. Such efforts are particularly timely
given the uncertainty regarding the future structure of
health care in the United States.

Advancing this clinically significant line of research
requires studies addressing limitations of our model.
First, in the absence of RCTs of APIs for children ages
0-19 years with B-ALL in maintenance therapy, the
API effect size was estimated from a meta-analysis of
pediatric APIs (Pai & McGrady, 2014). Sensitivity
analyses indicate that the proposed API can demon-
strate an effect size (d =0.04) smaller than the lower
95% CI estimated by multiple meta-analyses of pedi-
atric APIs ([d=0.23, 95% CI: 0.17-0.19], [d = 0.20;
95% CI: 0.08-0.31]; Kahana et al., 2008; Pai &
McGrady, 2014) to result in improved health out-
comes and cost savings. However, the duration, com-
plexity, demands, and associated side effects of
various treatment regimens differ across chronic ill-
ness populations, and the majority of the studies in-
cluded in the meta-analysis included populations other
than cancer (asthma, diabetes). As a result, RCTs of
APIs designed specifically for children with B-ALL in
maintenance therapy are needed to obtain effect size
data to improve model accuracy. These data would
also address our limitation of including parameter esti-
mates from samples with different demographic and
clinical characteristics. In addition, these data would
enable researchers to estimate the cost-effectiveness of
the API as compared with TAU for different age
groups, a question of particular relevance given the
higher prevalence of nonadherence and poorer health
outcomes among adolescents and young adults as
compared with younger children (Barr, Ferrari, Ries,
Whelan, & Bleyer, 2016). Second, to maximize repli-
cability and transparency, only costs for treatment
and minimal required laboratory observations on the
current COG trial for first relapse B-ALL (COG
AALL1331, NCT02101853) were included. Costs for
additional routine labs, supportive care measures, red
cell or platelet transfusions, anesthesia for invasive
procedures, unexpected medical care, or treatments re-
quired by only some patients were not included.
Third, patients experiencing a second relapse were
classified as “dead,” while in reality such patients may
receive multiple subsequent treatment attempts (i.e.,
novel immune and cellular therapies such as chimeric
antigen receptor T cells) likely to dramatically increase
costs (Maude et al., 2014). Future models including
cost data collected in API RCTs, thus, may predict
even greater cost savings resulting from the relapses
prevented by APIs.

Investing in APIs during maintenance therapy for
children with B-ALL may result in improved health

outcomes and significant cost savings for health care
payers. Further model refinement is needed to inform
decisions by clinicians, administrators, and policy
makers interested in optimizing health outcomes and
maximizing cost containment.

Supplementary Data

Supplementary data can be found at: http://www.jpepsy.
oxfordjournals.org/.
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