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ABSTRACT

Carotenoids are orange, yellow, and red lipophilic pigments present in many fruit and vegetables, as well as other food groups. Some carotenoids
contribute to vitamin A requirements. The consumption and blood concentrations of specific carotenoids have been associated with reduced
risks of a number of chronic conditions. However, the interpretation of large, population-based observational and prospective clinical trials is often
complicated by the many extrinsic and intrinsic factors that affect the physiologic response to carotenoids. Extrinsic factors affecting carotenoid
bioavailability include food-based factors, such as co-consumed lipid, food processing, and molecular structure, as well as environmental fac-
tors, such as interactions with prescription drugs, smoking, or alcohol consumption. Intrinsic, physiologic factors associated with blood and tissue
carotenoid concentrations include age, body composition, hormonal fluctuations, and variation in genes associated with carotenoid absorption
and metabolism. To most effectively investigate carotenoid bioactivity and to utilize blood or tissue carotenoid concentrations as biomarkers of
intake, investigators should either experimentally or statistically control for confounding variables affecting the bioavailability, tissue distribution,
and metabolism of carotene and xanthophyll species. Although much remains to be investigated, recent advances have highlighted that lipid co-
consumption, baseline vitamin A status, smoking, body mass and body fat distribution, and genetics are relevant covariates for interpreting blood
serum or plasma carotenoid responses. These and other intrinsic and extrinsic factors are discussed, highlighting remaining gaps in knowledge and
opportunities for future research. To provide context, we review the state of knowledge with regard to the prominent health effects of carotenoids.
Adv Nutr 2018;9:465–492.
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Introduction
Carotenoids are a diverse class of colorful red, orange, and
yellow terpenoid pigments found in fruit, vegetables, eggs,
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meats, milk, and some fish and crustacean seafoods. Among
the >700 carotenoids found in nature, ∼50 are found in
the human diet, with approximately half of those being de-
tected in human blood and tissues [reviewed in Krinsky and
Johnson (1)]. The major carotenoids in human serum are
β-carotene, α-carotene, lycopene, lutein, zeaxanthin, and β-
cryptoxanthin (Figure 1) (1). Specific carotenoids can con-
tribute to vitamin A requirements, supporting vision, ep-
ithelial cell regeneration, and controlling gene expression
via the vitamin A metabolite retinoic acid [reviewed in
Tanumihardjo et al. (2)]. Epidemiologic studies have sug-
gested other roles related to the reduction in risk of chronic
diseases such as cancers, cardiovascular diseases (CVDs),
and age-relatedmacular degeneration (AMD), and improved
cognitive and visual functions [reviewed in (3–10)]. Con-
trolled clinical and preclinical trials are required to establish
causal relations between carotenoid intake and bioactivity;
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FIGURE 1 Structures of dietary carotenoids discussed in this review.

however, the interpretation of both observational and exper-
imental studies is complicated by the numerous intrinsic and
extrinsic variables affecting blood and tissue carotenoid con-
centrations, and therefore bioactivity, in response to a given
carotenoid intake.

To accelerate the pace of carotenoid and health research,
and to improve the utility of blood or tissue carotenoids con-
centrations as biomarkers of exposure, the many factors af-
fecting internal carotenoid exposuremust be considered. The
primary goal of this review is to highlight the recent advances
in defining the factors influencing the absorption, distribu-
tion, and metabolism of the major circulating carotenoids in
healthy adults, in the context of the major potential health
impacts of carotenoids.

Current Status of Knowledge
General overview
Carotenoids can be classified into 2 major types: carotenes
and xanthophylls. Carotenes, which include β-carotene,
α-carotene, and lycopene as well as other less-studied
species such as phytoene, phytofluene, zeta-carotene,
and neurosporene, are unoxygenated terpenes, whereas
xanthophylls, which include lutein, zeaxanthin, and β-
cryptoxanthin, are oxygenated (Figure 1) [reviewed in
Krinsky and Johnson (1)]. Carotenoid bioavailability varies
by cooking and processing of the food as well as the amounts
of dietary fat, fiber, and competing compounds in the meal
[reviewed in Bohn et al. (11)]. Upon ingestion, carotenoids

are released from the food matrix and are emulsified with
fat and incorporated into lipid micelles in the small intestine
for absorption by intestinal enterocytes. Once thought to be
taken up strictly via passive diffusion, carotenoid absorption
is facilitated via membrane proteins [reviewed in Bohn et al.
(11)].

Inside of the enterocyte, carotenoids are packaged into
chylomicrons along with lipids and fat-soluble nutrients,
which enter the lymphatic system for delivery to the liver
[reviewed in Krinsky and Johnson (1)]. En route, some
carotenoids may be taken up by peripheral tissues as lipopro-
tein lipase (LPL) degrades chylomicrons. The resulting chy-
lomicron remnants are taken up by the liver via LDL recep-
tors. Once in the liver, some carotenoids may be stored while
the rest are repackaged into lipoproteins and released into the
bloodstream. In the circulation, xanthophylls are primarily
carried in HDL cholesterol and carotenes in LDL cholesterol
(12). Scavenger receptor class B type 1 (SCARB1), expressed
on the surface of many different cell types, participates in the
transfer of carotenoids between lipoproteins and target tis-
sues, as well as other proteins such as cluster of differentia-
tion 36 (CD36) and NPC1L1 (Niemann-Pick C1–like 1) [re-
viewed in Bohn et al. (11)]. Figures 2 and 3 summarize the
enzymatic metabolic pathways of carotenoids.

Structural, dietary, genetic, and physiologic variables
affecting carotenoid kinetics and biodistribution
Overview of carotenoid bioavailability, serum or plasma
half-life, and metabolism. Knowing the bioavailability and
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FIGURE 2 Overview of the current understanding of metabolism of major carotenes. α-Carotene can also be metabolized in a similar
manner as β-carotene but leads to 1 molecule of retinaldehyde and 1 molecule of α-retinaldehyde upon central cleavage. Not all of the
metabolic products are shown. ADH, alcohol dehydrogenase; ALDH1, aldehyde dehydrogenase 1; BCO1, β-carotene-15,15′-oxygenase;
BCO2, β-carotene-9,10-oxygenase; CHO, carbohydrate; LRAT, lecithin-retinol acyl transferase; RALDH, retinaldehyde dehydrogenase; RDH,
retinol dehydrogenase; REH, retinyl ester hydrolase. Adapted from references 35–38 with permission (but not endorsement).

plasma or serum half-life of carotenoids provides a basis
for understanding their physiologic relevance as well as the
basis for the design and interpretation of interventions. β-
Carotene and lycopene are the most extensively studied. For
a comprehensive review of β-carotene absorption and bio-
conversion to vitamin A, see Haskell (13), but key points are
highlighted here. First, the bioavailability of pure β-carotene
in oil ranges from 9% to 65%, being greater (42–65%) when
provided as amicrodose (270–540 ng) of 14C-β-carotene (13)
and lower (11–35%) when provided as larger doses of unen-
riched β-carotene (3–40 mg) [reviewed in Haskell (13)]. The
bioavailability of β-carotene from vegetables ranges from
5% to 65%, depending on the specific food and its prepara-
tion method (13). The absorption of purified 13C-lycopene
in oil (10 mg) was 23% and was 34% from tomato paste
mixed with water and oil (14, 15), whereas absorption of a
larger (38 mg) purified dose was 2.6% (16). The bioavailabil-
ity of purified 13C-phytoene (a lycopene precursor found in
tomatoes; 3.2 mg) in oil was 58% (17). Although there are

very limited data on xanthophyll bioavailability, one esti-
mate of percentage of lutein absorption was published to be
55% of a 14C-lutein microdose (125 nmol) in 1 subject (18),
which agreed with a previous publication of 45–54% lutein
absorption from spinach (19). In general, absorption esti-
mates are variable, and subsequent sections will focus on po-
tential causes for this variability.

Serum or plasma carotenoid half-lives can be used to es-
timate how long the compound resides in circulation, the
dosing interval needed to maintain a particular circulat-
ing concentration, and the time required to reach steady
state (20). Table 1 summarizes published serum and plasma
β-carotene, lycopene, and phytoene half-lives. In general,
plasma carotene half-lives range from 1 to 11 d (14, 17, 21–
25), although additional tracer studies might refine these es-
timates. Fewer studies have been performed to determine
the half-life of xanthophylls in adults (Table 2). Serum and
plasma depletion studies indicate wide variability in xan-
thophyll half-lives, ranging from 15 to 76 d for lutein and
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FIGURE 3 Overview of current understanding of metabolism of major xanthophylls. Not all metabolic products are shown. BCO1,
β-carotene-15,15-oxygenase; BCO2, β-carotene-9,10-oxygenase; CHO, carbohydrate. Adapted from reference 36 with permission (but not
endorsement).

zeaxanthin and 12 to 39 d for β-cryptoxanthin (21, 26, 27),
whereas studies with either labeled or unlabeled doses have
found the half-life of lutein to be 4.6–14.5 d and of zeaxanthin
to be 5.6–12 d (28–32). As with carotenes, causes of this wide
variability may be due to differences in study design (e.g., du-
ration, sum of lutein and zeaxanthin compared with analyz-
ing separately) and the subject populations who were ana-
lyzed (e.g., age range, healthy compared with diseased, sex).
In the serum and plasma depletion studies, lutein had the
longest half-life of all carotenoids. Currently, the half-life of
β-cryptoxanthin in healthy adults is unknown. Overall, ad-
ditional studies are needed to better estimate the half-lives of
dietary xanthophylls in healthy adults.

Carotenoid metabolism, enzymatic or nonenzymatic, is
a central determinant of circulating and tissue carotenoid
concentrations, vitamin A status, and generation of po-
tentially bioactive non–vitamin A metabolites [reviewed
in Lobo et al. (33) and Mein et al. (34)]. Carotenoids
in humans are believed to be primarily cleaved by 2
enzymes (Figures 2 and 3) (35–38). β-Carotene-15,15′-
oxygenase (BCO1; with the aliases BCMO1, CMO1, and
CMOI) is a dioxygenase responsible for the central cleav-
age of provitamin A carotenoids to yield retinal (vitamin A)
(37, 39). This enzyme is expressed in a number of tissues in-
cluding the gastrointestinal tract and liver (40). Upon up-
take by the intestinal mucosa, provitamin A carotenoids
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TABLE 1 Serum or plasma carotene half-lives from feeding or depletion studies1

Carotenoid and
intervention/study design

Number and
sex of

subjects Age, y

Study
duration,

wk
Food/agent (carotenoid

dose× duration) Cmax, µmol/L T1/2, d Year (ref)

β-Carotene
Postserial-dosing depletion 9 women 18–42 10 β-Carotene powder (1.5 mg/d

× 4 d) followed by low
carotenoid (0.07 mg/d)
depletion

0.56 ± 0.12 37 ± 52 2001 (21)

Serial dosing; half-life
calculated from cumulation
curve

4 men/group 20–40 6 Carrot juice cocktail (6 mg/d ×
6 wk)

1.32 ± 0.52 Could not
calculate

2002 (22)

Carrot juice cocktail (18 mg/d
× 6 wk)

2.36 ± 0.64 9.2 ± 2.6

Water-dispersible β-carotene
powder (7.2 mg/d × 6 wk)

4.95 ± 1.15 6.4 ± 0.9

Water-dispersible β -carotene
powder (21.6 mg/d × 6 wk)

5.60 ± 0.99 11.4 ± 3.7

Postserial-dosing
monitoring (self-selected
diet period)

5 men/group 20–45 4 β-Carotene supplement
(12 mg × 6 wk)

3.6 ± 0.71 7–143 1992 (23)

β-Carotene supplement
(30 mg × 6 wk)

7.9 ± 1.4

Carrots (30 mg × 6 wk) 1.4 ± 0.8
Lycopene
Postserial-dosing
monitoring (self-selected
diet period)

5 men/group 20–45 4 Tomato juice (12 mg lycopene) 0.03 ± 0.3 11–143 1992 (23)

Postsingle-dose clearance 5 men/group 18–45 4 Tomato paste drink 0.08 ± 0.01 1.2 ± 0.43 2004 (24)
(10–120 mg) –0.21 ± 0.02 –2.6 ± 0.6

Postserial-dose clearance 6 men/group 18–45 4 Tomato soup (20 mg/d × 8 d) 0.823 6.3 ± 1.72 2004 (25)
Lycopene tablet (20 mg/d ×

8 d)
0.963 5.6 ± 1.32

Postsingle-dose clearance 4 women,
4 men

24 ± 12 4 13C-Lycopene in oil (10 mg ×
1 d)

0.14 ± 0.022 6.2 ± 0.32 2015 (14)

α-Carotene
Postserial-dosing
monitoring (self-selected
diet period)

5 men 20–45 4 Carrots (30 mg × 6 wk) 1.0 ± 0.4 7–143 1992 (23)

Phytoene
Postsingle-dose clearance 2 women,

2 men
28 ± 22 4 13C-Phytoene in oil (3.2 mg ×

1 d)
0.06 ± 0.0062 2.3 ± 0.22 2016 (17)

1 Values are means ± SDs unless otherwise indicated. Cmax, maximal plasma or serum concentration attained; ref, reference; T1/2, plasma or serum half-life.
2 Mean ± SE.
3 Error term not provided.

(β-carotene, α-carotene, and β-cryptoxanthin) are partially
converted to retinal by BCO1, reduced to retinol, esteri-
fied, and then packaged into chylomicrons along with intact
carotenoids and secreted in the lymph for distribution to pe-
ripheral tissues and the liver [reviewed inHarrison (41)]. The
liver is a major storage site of vitamin A and carotenoids,
and hepatic stellate cells are a site of BCO1-facilitated con-
version of β-carotene to retinoids (42–44). Carotenoids are
found throughout the body (45), with the major portion of
lycopene, for example, residing in adipose tissue (46). Reti-
nal is metabolized in tissues by retinol dehydrogenases or al-
cohol dehydrogenases to the circulating form of vitamin A
(i.e., retinol) or by retinal dehydrogenase to the nuclear re-
ceptor ligand retinoic acid [reviewed in Mein et al. (33) and
Harrison (41)]. Although BCO1 cleaves lycopene in vitro as
efficiently as β-carotene (37, 39), lycopene does not accu-
mulate in tomato- or lycopene-fed mice lacking Bco1, sug-
gesting that it may not be metabolized by BCO1 in vivo
(47). Similarly, other acyclic carotenes, such as phytoene or

phytofluene, do not accumulate in mice lacking Bco1, and
therefore may not be BCO1 substrates (47).

A number of current reports have elucidated the role
of a second mammalian carotenoid cleavage enzyme, β-
carotene-9′,10′-oxygenase (BCO2; also presented in the
literature as CMO2, CMO-II, and BCDO2), in carotenoid
cleavage. BCO2 cleaves eccentrically at the 9′,10′ position
yielding an apo-10′-carotenoid and an ionone (Figure 2) [re-
viewed in Mein et al. (33)]. This enzyme is expressed in car-
diac and skeletal muscle tissue, prostate, endometrial con-
nective tissue, and the pancreas [reviewed in Lietz et al.
(48)]. Mice lacking Bco2 accumulate dietary lycopene, lutein,
and zeaxanthin (49–51). Isolated ferret BCO2 cleaved cis ly-
copene isomers (38), a major form of lycopene found in tis-
sues (45). Alternatively, all-trans lycopene was not cleaved
in vitro by chicken BCO2. Although the cleavage efficiency
for cis lycopene is unknown, chicken BCO2 cleaved α-
carotene, β-carotene, and β-cryptoxanthin, as well as lutein
and zeaxanthin (36), suggesting that mammalian, but not
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TABLE 2 Half-lives of xanthophylls in serum depletion and supplementation studies1

Intervention/study
design and carotenoid

Number of
participants
(health, sex) Age, y

Study
duration, wk

Food/agent
(carotenoid dose×

duration) Cmax, µmol/L T1/2, d Year (ref)

Controlled low-carotenoid
diet during controlled
low-carotenoid diet

12 (healthy men) 25–43 13 ≤0.4 mg total
carotenoids/d ×
13 wk

— — 1992 (26)

Lutein/zeaxanthin — — — — 0.28 ± 0.052 33–613

β-Cryptoxanthin — — — — 0.22 ± 0.042 ≤123

Serum carotenoid
depletion during
controlled
low-carotenoid diet

19 (healthy
women)

18–42 10 0.07 mg total
carotenoids/d ×
10 wk

— — 2001 (21)

Lutein — — — — L/Z: 0.44 ± 0.042 76 ± 172

Zeaxanthin — — — — 38 ± 72

β-Cryptoxanthin — — — — 0.31 ± 0.052 39 ± 42

Serum carotenoid
depletion

2002 (27)

Lutein 10 (T1D, both) 24 ± 6 3 0.05–0.07 mg/d ×
3 wk

0.153 (control) ≥153

8 (controls, both) 27 ± 3 3 0.05–0.07 mg/d ×
3 wk

0.163 (T1D) ≥153

Daily oral lutein
supplement4

19 (healthy, 50%
men)

20–35 9 Oral lutein
supplement: 4.1 or
20.5 mg/d × 6 wk

4.1 mg/d: 0.4 ± 0.2;
20.5 mg/d:
1.3 ± 0.8

4.1 mg/d: 5.5 ± 2.1;
20.5 mg/d:
6.1 ± 1.0

2005 (28)

Daily oral lutein
supplement

2 (healthy men) 42, 51 52 Oral lutein
supplement:
30 mg/d × 20 wk

1.85; 3.3 ∼14.56 1997 (29)

13C-Lutein in kale 7 (healthy, both) 46 ± 14 3 (single dose) 13C-Lutein in kale,
19 mg

0.38 ± 0.08 ∼4.66 2005 (30)

14C-Lutein extracted from
spinach

1 (healthy women) 45 9 (single dose) 14C-Lutein extracted
from spinach,
0.071 mg

0.003 9.85 2005 (31)

1 Values are means ± SDs unless otherwise indicated. Cmax, maximal plasma or serum concentration attained; L/Z, lutein/zeaxanthin; ref, reference; T1/2, plasma or serum half-life;
T1D, type 1 diabetes.

2 Mean ± SE.
3 Error term not provided.
4 Supplement contained 8.3% zeaxanthin relative to lutein.
5 One value is provided for each subject.
6 Half-life estimated from published data for this publication.

avian, BCO2 cleaves cis lycopene isomers. Whether BCO2
cleaves phytofluene, ζ -carotene, or phytoene is less clear at
this time (47, 50, 51). The role and regulation of xanthophyll
metabolism by BCO2 are controversial. Consistent with the
in vitro chickenBCO2 results (36),Bco2 knockoutmice accu-
mulate xanthophylls (49), and Bco2 expression was inversely
associated with lutein and zeaxanthin concentrations in non-
human primate brain (52). Alternatively, 1 group found that,
in vivo, a lack of macular BCO2 activity in the primate eye
underlies macular accumulation of lutein and zeaxanthin
(53), but the exact structural causes of this inactivation are
unclear (53–55).

Extrinsic dietary or environmental variables.

Molecular structural variables affecting carotene responses.
Carotenoids are found in many isomeric conformations,
which may affect bioavailability and metabolism. In foods,
lycopene, α-carotene, and β-carotene are primarily present
as all-trans isomers, whereas phytoene is present primarily as
the 15-cis isomer (56, 57). Phytofluene, ζ -carotene, and neu-
rosporene are also present as cis isomers in plant tissues (57,

58). In human tissues, cis lycopene constitutes 35–79% of to-
tal lycopene (45, 59, 60), whereas all-trans β-carotene is gen-
erally the major isomer found in human serum and tissues,
although there are also measurable amounts of 9- and 13-cis
(45, 61). Recent findings suggest that all-trans lycopene is iso-
merized after absorption (14), with in vitro studies suggest-
ing that lycopene cis isomers are thermodynamically favor-
able upon dissolution in a nonpolar solvent or oil (58, 62).
Alternatively, the prominence of all-trans β-carotene in tis-
sues and serum (61) suggests that it may be the favored form
of β-carotene.

The geometric conformation of lycopene has been asso-
ciated with bioavailability from foods. Tomato food prod-
ucts with greater proportions of cis lycopene result in greater
lycopene absorption than all-trans lycopene–rich foods (63,
64). cis Lycopene isomers were also found to be more eas-
ily micellarized and taken up than all-trans lycopene in
vitro and in a ferret model of lycopene absorption (65, 66).
However, all-trans and cis 13C-lycopene provided to humans
in oil were absorbed at equal rates (14). These disparate
findings may suggest that, when dissolved in oil, lycopene’s
isomeric configuration has less impact on bioavailability than
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when embedded in a food matrix, or that model systems do
not fully recapitulate human lycopene absorption. Inherent
challenges in controlling and delivering equimolar amounts
of lycopene isomers in a food matrix for bioavailability com-
parisons warrant complementary studies of purified isomers.

Alternatively, a current in vitro study (66) supports previ-
ous in vitro and in vivo findings that all-trans β-carotene is
more bioavailable than cis isomers (67–70). Aswith lycopene,
cis β-carotene from foods micellarizes more efficiently (41–
45%) than all-trans β-carotene (30–34%), but cellular up-
take of all-trans and cis isomers was similar (27–30%) (66).
In vitro, all-trans β-carotene absorption was 11% compared
with 2–3% for 9-cis and 13-cis β-carotene (66).

The isomeric conformation of β-carotene may also affect
its bioconversion to vitamin A. For example, 9-cis and 13-
cis β-carotene had 38% and 62% of the bioefficacy (ability
to be bioconverted to vitamin A), respectively, of all-trans in
gerbils when doses of 141–418 nmol were provided for 7 d
(71). A more recent gerbil study found that daily provision
of 15 or 30 nmol of 13-cis or 9-cis β-carotene for 21–28 d
increased liver retinol stores to be intermediate to, but not
different from, an equimolar all-trans β-carotene or vehicle
only (72). Together, these data suggest that dose and duration
influence the bioefficacy of different β-carotene isomers.

The impact of geometric configuration on the bioavail-
ability and metabolism of other carotenes and xanthophylls
has not been investigated thoroughly. For phytoene, the all-
trans isomer was relatively enriched in rat tissues compared
with what was found in the diet (73). Findings from current
studies investigating the bioaccumulation of lutein into neu-
ral tissue indicate that uptake and accumulation of circulat-
ing trans lutein into the retina and brain are favored over cis
isomers (74–76).

Lutein in most fruit and vegetables is in the free form
(77), whereas both free and esterified lutein are available
in commercial dietary supplements. Earlier studies found
esterified and free lutein to be similarly bioavailable (78,
79). More recently, it was found that serum lutein and
macular pigment optical density (MPOD) responses were
similar between either free or esterified lutein supplemen-
tation for 3 mo (80). However, a larger 4-wk supplementa-
tion study found greater serum lutein responses from free
lutein than from lutein ester supplements (81). These dis-
parate results may be due to different amounts of lipid pro-
vided with the intervention, with greater amounts (>20 g)
(78, 79) yielding similar bioavailability of free and esterified
lutein, whereas lesser amounts (∼5 g) were associated with
greater bioavailability of free lutein (81). One randomized,
single-dose, crossover study found the bioavailability of es-
terified and free β-cryptoxanthin to be comparable (82).

Carotenoid mass consumed. Although the mass of
carotenoid consumed may seem to be an obvious deter-
minant of the amount of carotenoid found in the blood
and tissues, evidence suggests that this relation is complex.
The percentage of lycopene absorbed from a single tomato-
based beverage providing 10–120 mg lycopene was found to

decrease with increasing dose, from 34% of the 10-mg dose
to 5% of the 120-mg dose (15). The amount of lipid provided
was held constant (5 mL olive oil), which may have limited
micellarization and bioavailability of the higher doses (15).
Alternatively, doubling a purified tracer β-carotene dose
from 20 to 40 mg nearly doubled absorption (83). At this
point, one cannot generalize how dose amount will affect
carotene absorption because oil amount and delivery matrix
are likely modulators.

Lutein supplementation increases blood, tissue, and
breast-milk carotenoids in a dose-response manner. In a cur-
rent 140-d lutein supplementation study, serum lutein and
MPOD changed positively, reaching a plateau that was lin-
early dependent on dose, across doses of 0, 5, 10, or 20 mg/d
(84). Lutein supplementation also increased breast milk as
well as infant and maternal plasma lutein concentrations in a
dose-dependent manner (85). Finally, a recent meta-analysis
concluded that lutein and zeaxanthin supplementation in-
creasesMPOD in patients withAMDand healthy individuals
in a dose-response manner (86).

Co-consumed lipid species and mass. Recent progress has
defined the role of co-consumed lipid amount on human
carotenoid absorption. Canola oil–containing salad dress-
ing added to raw vegetables increases carotenoid absorp-
tion (87, 88), with a linear increase in absorption across
0–32 g oil for α-carotene and lycopene and across 0–8 g for
β-carotene (88). Lutein absorption increased linearly across
0–4 g of added oil, with proportionately greater increases in
absorption across the range of 8–32 g (88). Consumption
of lipid-rich foods, such as avocados or eggs, also increased
carotenoid absorption from a meal (89–91).

Lipid source and type have differing effects on carotene
and xanthophyll absorption. A recent in vitro study found
that unsaturated FAs compared with SFAs promoted micel-
larization and cellular uptake of β-carotene and lycopene
during simulated digestion (92); however, in humans, lipid
type (canola oil, soybean oil, or butter) was less impactful
on carotene absorption from raw vegetable salads than lipid
mass (93). Like carotenes, increasing lipid mass increases
xanthophyll absorption (93); however, unlike carotenes, fat
source affected lutein absorption, with canola oil promoting
greater absorption than butter (93). This is consistent with
an earlier study suggesting that co-consuming corn oil leads
to greater plasma lutein increases than beef tallow (94). It
should be noted that, in the former study, β-cryptoxanthin
was better absorbed than lutein and zeaxanthin regardless of
fat type and amount (93).

Just as dietary lipids enhance intestinal uptake of
carotenoids, the consumption of unabsorbable, fat-soluble
compounds may reduce carotenoid absorption (95). For ex-
ample, an earlier study found that olestra (sucrose polyester)
treatment for 16 wk significantly decreased circulating β-
carotene, lutein, and zeaxanthin concentrations by 21–29%
(96), consistent with another 8-wk study showing even
greater decreases (50–85%) in circulating carotenes and xan-
thophylls (97).
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Delivery/food matrix. A number of studies have shown
that food matrix is also an important determinant of
carotenoid bioavailability. For carotenes, lycopene from fresh
red tomatoes is generally less bioavailable than pure lycopene
in oil or processed tomato products, and tomato juice ly-
copene is less bioavailable than from other products, such as
tomato sauce and soup (25, 98–100). Lycopene in processed
products may bemore bioavailable than that in raw tomatoes
due to a softer food matrix. Lycopene in tomato juice may
be less bioavailable than from other processed products be-
cause of the lower lipid content in juice (99). Although cook-
ing, heating, ormechanical or enzymatic processingmay also
make xanthophylls more accessible by softening the tissue
matrix (101), this has been less studied in humans. However,
β-cryptoxanthin bioavailability was greater from pasteurized
orange juice than from fresh oranges (102).

A recent hypothesis suggests that carotene bioavailability
from foods is also affected by the storage form in the plant
tissue (103). Papaya carotenes, in which β-carotene is found
as “smaller liquid-crystalline deposits” and lycopene as “very
small crystalloids,” are more bioavailable than carotenes
from tomatoes or carrots, which accumulate carotenes in
larger crystals and may be more resistant to micellarization
(103).

Similarly, xanthophylls in lipid-rich food matrices seem
to have greater relative bioavailability. For example, egg-
borne lutein bioavailability is∼3 times greater than that from
spinach (104). Similarly, avocados are a highly bioavailable
source of lutein (90, 105). Both avocados and eggs lead to 2–4
times greater increases in serum and retina lutein and zeax-
anthin compared with other dietary sources (e.g., spinach)
and supplements (105–107). In addition to lipids, dietary
fibers (pectin, guar, alginate, cellulose, and wheat bran) were
found to significantly reduce the bioavailability of lutein by
40–74% (108) in an acute dose study in 6 healthy women.

Supplements compared with food-borne carotenoids. The
bioavailability of lutein and lycopene from foods compared
with supplements has been compared. The bioavailability of
lutein from supplements was similar to that of spinach and
lower than that from eggs (104). However, 2 earlier studies
found that a lutein supplement led to greater serum lutein
increases than did spinach (19, 109). These results may have
differed due to differences in the amount of co-consumed
lipid and the cooking method. The bioavailability of supple-
mental lycopene was greater than from tomato juice and sim-
ilar to that from tomato soup (25). Therefore, the relative
bioavailability of carotenoids from foods may be greater or
less than supplements depending on the specific food prod-
uct. Furthermore, the supplementmatrix formulation also af-
fects carotenoid bioavailability (110, 111).

Interactions with other carotenoids, nutrients, and di-
etary compounds. A series of human and cell culture stud-
ies have explored the impact of carotenoid–carotenoid and
carotenoid–nutrient interactions on carotenoid absorption.
In humans, lutein decreased the absorption of β-carotene by

34% in subjects provided with equal amounts (15 mg) of β-
carotene and lutein, whereas lycopene had no effect (112).
However, when modeled in vitro, lycopene provided in ex-
cess (5 μmol/L) of β-carotene (1 μmol/L) inhibited the ab-
sorption of β-carotene, whereas lutein and α-carotene had
no effect (113). In contrast, an in vitro study found that co-
administration of lutein and β-carotene at equal concentra-
tions (0.45 μmol/L) mutually decreased absorption by more
than half (114). At this point, it seems that ratios and concen-
trations of carotenoids may be important underlying factors
in carotenoid-carotenoid interactions for absorption.

Other nutrients and dietary compounds may also inhibit
carotenoid absorption. A recentmeta-analysis of 41 random-
ized controlled trials of plant sterol and stanol consump-
tion suggested that these compounds significantly decreased
plasma β-carotene, α-carotene, and lycopene by 12–16%,
and these reductions were not explained by changes in cir-
culating cholesterol (115). Dietary intake of divalent miner-
als (e.g., calcium, magnesium, and zinc) may also impede
carotenoid bioaccessibility by causing insoluble lipid-soap
complex formation and reducing carotenoid solubility (116).
However, the effect of calcium on carotenoid bioavailabil-
ity differed by food source and carotenoid, with supplemen-
tal calcium decreasing lycopene bioavailability from tomato
paste by 83% (117), whereas there was no effect on absorp-
tion of spinach-borne lutein, β-carotene, or β-cryptoxanthin
in another study (118).

Medications. Because carotenoids circulate exclusively in
lipoproteins (12), the effect of statins, a type of blood
cholesterol lowering–drugs, on blood carotenoid concen-
trations has been investigated. A current randomized,
double-blind, placebo-controlled study in middle-aged hy-
percholesterolemic men found that simvastatin treatment
(40 mg/d) for 6 wk significantly reduced total choles-
terol and LDL cholesterol and consequently reduced cir-
culating carotenes (β- and α-carotene and lycopene) by
5.2% (P = 0.05) and xanthophylls (lutein, zeaxanthin,
and β-cryptoxanthin) by 21% (P < 0.001) (119). How-
ever, when adjusted for blood cholesterol concentration,
the carotenes were markedly increased with simvastatin
treatment (P < 0.01 for all), whereas lutein increased
to a lesser degree and β-cryptoxanthin was unchanged.
A longer-term, open-label, uncontrolled study of 52 wk
involving simvastatin and atorvastatin (n = 104) in Fin-
land reported a short-term reduction in unadjusted plasma
β-carotene after 12 wk, but no effect by 52 wk (120). More
data are needed in order to generalize the effect of statins on
circulating carotenoids.

Drugs that block absorption of lipids from foods also re-
duce serum concentrations of carotenes. Orlistat, a lipase in-
hibitor, significantly reduced plasma α- and β-carotene after
4.5 mo of treatment by 45% and 32%, respectively, whereas
effects on lycopene were only seen at 3 mo (49% reduction),
and xanthophyll concentrations were unchanged (121).
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Smoking. Cigarette smokers generally have lower serum
carotenoid concentrations than nonsmokers, as a result of
lower fruit and vegetable consumption (122–126) and possi-
bly because tobacco smoke can directly degrade carotenoids
(127–129). In vitro studies indicate that cigarette smoke
can chemically modify carotenoids (127). Both serum and
plasma β-carotene have been reported to be lower in smok-
ers in a number of studies (129–135), but smoking is incon-
sistently associated with reduced blood lycopene concentra-
tions (129, 130, 134–139). Smokers have a greater ratio of
serum cis to trans lutein and zeaxanthin than do nonsmok-
ers (129), suggesting that smoking induces in vivo isomeriza-
tion of xanthophylls (77). Smoking remains a valid variable
for continued consideration in population and experimental
study design and analysis. The effect of vaporized nicotine in-
halation (“vaping”) on carotenoid status is unknown at this
time.

Alcohol intake. Alcoholic beverage consumption may af-
fect the rate of hepatic clearance of drugs and phytochem-
icals. Several epidemiologic studies have shown that alco-
hol consumption is generally associated with lower serum
carotenoids (129, 140–144). However, alcohol intake was
positively associated with serum α-carotene and lycopene in
healthy, postmenopausal women (145), but not with other
major carotenoids. Carotenoid intake is lower in alcohol
consumers (146–148), but alcohol intake may also affect
carotenoid status through biochemical interactions. Moder-
ate alcohol intake is associatedwith changes in blood lipopro-
tein concentrations, whereas chronic excessive alcohol intake
is associated with oxidative stress and a decrease in antioxi-
dant enzymes (149–152). Animal studies suggest that alco-
hol intake changes both vitamin A and carotenoid storage
and metabolism (153, 154). The evidence for the specific ef-
fect of alcohol consumption on carotenoid status in humans
is mixed at this time.

Intrinsic, physiologic variables.

Baseline vitamin A status. Recent evidence suggests that
provitamin A carotenoid absorption and bioconversion are
regulated by vitamin A status (155). Although the absorp-
tion of preformed dietary vitamin A is fairly constant in hu-
mans, ranging from 77% to 99% in healthy children (156),
carotenoid absorption is heterogeneous. For instance, the
bioavailability of pure 13C-lycopene in oil had a CV of 73%
(14), bioconversion of pure D6-β-carotene to vitamin A had
a CV of 44% in healthy adults (157), and absorption of crys-
talline β-carotene had a CV of 137% in adults (158). One
source of this variability may be linked to vitamin A status.
Mechanistic studies suggest that vitamin A status regulates
SCARB1-mediated uptake of β-carotene, as well as biocon-
version of β-carotene to vitamin A in the enterocyte (155).
Specifically, retinoic acid negatively regulates carotenoid ab-
sorption and bioconversion by binding to retinoic acid recep-
tor (RAR), which heterodimerizes with retinoid X receptor
to bind a response element–inducing expression of intestine

specific homeobox (ISX). ISX is a homeodomain transcrip-
tion factor that represses the expression of Bco1 by binding
its promoter. In addition, ISX expression is also associated
with repressed SCARB1 expression (155). Thus, low vitamin
A status reduces retinoic acid availability, increasing expres-
sion of SCARB1 to promote intestinal uptake of carotenoids
and of BCO1 to produce vitamin A.

One earlier clinical study provides support for this model
of product-mediated negative feedback regulation of β-
carotene absorption and bioconversion. Specifically, subjects
with greater prestudy intakes of vitamin A and β-carotene
absorbed less D6-β-carotene and bioconverted it to vitamin
A at a lower rate than subjects with lower prestudy vitamin A
andβ-carotene intakes (158). Thus, it is plausible that the low
responders had greater initial vitamin A status than the high
responders, resulting in lower β-carotene uptake and conver-
sion to vitamin A. However, prestudy blood β-carotene and
vitamin A, or prestudy vitamin A total body stores, were not
measured. Evidence of the regulation of β-carotene biocon-
version was also indicated in a more recent study in which
doubling the amount of deuterium-labeled β-carotene (from
20 to 40mg) doubled the plasmaAUC for β-carotene, a mea-
sure of absorption, but only increased the plasma-labeled
retinol AUC by 36% (83), suggesting that bioconversion of
high β-carotene doses is regulated.

Baseline carotenoid status. For clinical studies of
carotenoid absorption, it is common to have a “wash-out”
period, generally 2 wk in duration, to decrease circulating
carotenoid concentrations [see example in Allen et al. (159)].
This may be important, given that the degree of change in
blood carotenoidsmay be inversely correlated with the initial
blood concentrations. This was shown in an earlier study
in 56 breast cancer survivors who consumed a high-fruit
and -vegetable diet for 3 y, where the changes in blood
lycopene, α-carotene, and β-carotene were significantly in-
versely correlated with the subjects’ baseline blood carotene
concentrations (160). A recent analysis of prostate cancer
(PCa) patients’ blood carotene responses to a 3-wk tomato
juice intervention also showed that baseline blood lycopene,
phytoene, and phytofluene concentrations were significantly
(P < 0.001) inversely predictive of the change in plasma
concentrations of those carotenes (161). The mechanisms by
which baseline status of non–provitamin A carotenoids may
affect absorption are unknown.

Hormonal status. As metabolic regulators, hormone fluc-
tuations may affect carotenoid status. Limited studies that
used carotenoid-controlled diet interventions and prospec-
tive cohorts have shown cyclical carotenoid fluctuations
correlating with menstrual cycle hormonal fluctuations
(162–164). In premenopausal women, lycopene, β-carotene,
and lutein fluctuated by ∼5% across the menstrual cycle
(164). Although the fluctuation patterns differed slightly
between carotenoids, there was a small increase in lutein and
β-carotene during the ovulatory phase, and all carotenoids
were lowest at menstruation, even when correcting for
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cyclical fluctuations in blood cholesterol concentrations
(164). An earlier, smaller study reported changes in circulat-
ing carotenoids over the menstrual cycle, but these were not
significant when adjusted for cholesterol (165). Neither study
controlled for carotenoid intake. Variations in circulating an-
drogens during the menstrual cycle have been associated
with blood carotenes, with testosterone being negatively as-
sociated with blood lycopene and β-carotene, and positively
associated with lutein (P< 0.05), and luteal progesterone be-
ing associated with β-carotene (164). These cyclical effects
may be important for minimizing variability in small stud-
ies andmay shed light on oxidative stress (164) or carotenoid
metabolism fluctuations across the menstrual cycle.

One study has suggested that age-related hormonal
changes were associated with blood carotenoids. In Italian
women aged ≥65 y, circulating β-carotene was inversely as-
sociated with estradiol (P = 0.01), independent of other pre-
dictors for estradiol [including BMI, testosterone, C-reactive
protein (CRP), and lipid intake], whereas other carotenoids
assessed had no association (166). The cause of this associa-
tion is unknown.

Although, to our knowledge, no studies have assessed the
influence of testosterone on carotenoid status in men, mul-
tiple studies have found that circulating carotenes and xan-
thophylls are higher in women than in men (130, 133, 167,
168). In addition, a study in castrated (in which the testic-
ular source of endogenous androgen is removed) compared
with intact rats indicated that low androgen status promotes
liver lycopene accumulation with no impact on serum ly-
copene (169). A recent controlled-feeding study found that
women had greater plasma xanthophyll, but not carotene, re-
sponses to fruit and vegetable consumption (168). However,
in the Framingham Heart Study cohort, analysis of plasma
carotenoids by quintile of carotenoid intake showed similar
blood-diet relations for lutein and zeaxanthin in men and
women, but an apparent greater response among women for
dietary β-cryptoxanthin (170). These findings may suggest a
complex relation between sex hormone status and carotenoid
biodistribution.

Body composition. Consistent evidence indicates that
body composition is associated with carotenoid status. Body
fatmasswas inversely correlatedwith plasma carotenoid con-
centrations in older women but not in younger adults or
older men (171). As with carotenes, greater body fat is asso-
ciated with lower serum xanthophylls (130, 143, 145, 171–
174). Furthermore, multiple studies have shown measures
of abdominal adiposity (waist circumference, waist:height,
and waist:hip) to inversely correlate with blood carotenoids
(174–177). Body fat distribution may affect distribution of
xanthophylls to tissues, because MPOD is also inversely re-
lated to body fat (172, 178–181), with abdominal fat in
particular being inversely related to MPOD (180). Con-
sistently, greater BMI is associated with lower circulating
carotenoids in both children and in older adults (182–185),
although not all studies took carotenoid intake differences
into account. These relations may be due to greater fat mass

being associated with more oxidative conditions that de-
crease circulating carotenoid concentrations, or abdominal
adipose acting as a sink for circulating carotenoids. Indeed,
among various body fat sites, carotenoid accumulation is the
greatest in abdominal fat (186). The practical implication
of these relations was recently shown, such that the predic-
tive ability of FFQ-estimated carotenoid intake for circulat-
ing carotenes was weaker in overweight and obese subjects
than in normal-BMI subjects (184). In sum, recent associa-
tive studies are consistent with previous findings of inverse
associations between BMI and circulating carotenoids.

Inflammatory status and associated disease. Inflammation
and oxidative stress are thought to contribute to the patho-
genesis of both CVD and type 2 diabetes. Therefore, it may
be that carotenoid status differs in patients with these condi-
tions compared with healthy counterparts. Although the di-
rectionality of this relation is not clearly understood, a num-
ber of studies have shown lower circulating carotenoids in
patients with CVD (187). Interestingly, in 1 study, among the
major carotenoids, only xanthophyllswere significantly lower
in patients with coronary artery disease (188). Indeed, circu-
lating xanthophylls are inversely associated with markers of
inflammation, including circulating CRP and IL-6 concen-
trations, and β-cryptoxanthin is specifically inversely associ-
ated with circulating fibrinogen, an acute-phase protein that
is elevated in inflammation (141, 189, 190). Similarly, serum
xanthophyll and carotene concentrations are inversely asso-
ciated with type 2 diabetes and impaired glucose metabolism
(191, 192). In addition to lower serum lutein and zeaxanthin,
MPOD is lower in type 2 diabetics than in type 1 diabetics
and normal controls (193).

Malabsorption syndromes, including inflammatory bowel
disease and celiac disease, as well as pancreatic insufficiency
from cystic fibrosis, are associated with lower serum lutein
and zeaxanthin concentrations as well as MPOD in adults
(194, 195). Patients with chronic cholestasis, which leads to
fat malabsorption, have similar serum β-cryptoxanthin con-
centrations unlike the other carotenoids (196), suggesting
that β-cryptoxanthin may be the most efficiently absorbed
carotenoid, even in cases of general malabsorption.

Pregnancy and lactation. Pregnancy and lactation induce
profound physiologic and metabolic changes, and a lim-
ited number of reports indicate that serum and plasma
carotenoids differ throughout pregnancy or during lactation.
A study in Peruvian women found that they had greater
serum α- and β-carotene, lycopene, and lutein and zeaxan-
thin, but not β-cryptoxanthin, in the third trimester of preg-
nancy than in the first and second trimesters (197). This
agrees with the findings of others (198), although it is gen-
erally unclear if this phenomenon is due to a physiologic or a
dietary change. A small study (n= 21) followed women over
the first 19 d postpartum and found that although plasma
xanthophylls decreased over that time, α-carotene, total β-
carotene, and lycopene did not change (199). Correspond-
ingly, colostrum collected 4 d postpartum contained greater
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xanthophylls and carotenes than mature milk collected 19 d
postpartum (199). The causes and significance of circulat-
ing carotenoid changes during pregnancy and lactation are
poorly understood at this time but may be important for ma-
ternal and infant nutrition.

Age. A large study in adults (35–74 y of age) found that
age was inversely associated with circulating carotenes but
positively associated with β-cryptoxanthin and lutein and
zeaxanthin concentrations. Advanced age remained a pre-
dictor of lycopene and α-carotene concentrations but not
of other carotenoids when controlling for blood cholesterol
concentrations, BMI, diet, vitamin supplements, sex, smok-
ing, country, and season (134). How age in early life affects
circulating carotenoids is not well understood at this time but
does not seem to profoundly differ from adults according to
NHANES 2001–2002 data (200). The causes of age associa-
tions with carotenoid concentrations in the blood are not yet
fully understood.

Microbiome. At this time, the impact of the intestinal mi-
crobiota on carotenoid absorption has not been thoroughly
investigated. The majority of carotenoid absorption is be-
lieved to occur in the small intestine (201), whereas the
majority of intestinal microbial fermentation occurs in the
colon. One study reported that germ-free rats absorbedmore
α- and β-carotene and had greater liver vitamin A than rats
with humanized microbiota (202). Yet, there was no marked
degradation of these carotenes when incubated 72 h with ei-
ther human fecal anaerobic or aerobic bacteria (202), refuting
the hypothesis that bacterial carotenemetabolism led to a de-
crease in carotene absorption. Thus, the presence or absence
of the microbiome may have an indirect effect on carotenoid
absorption. The effects of the gutmicrobiome on xanthophyll
metabolism remain unknown.

Genetic variables associated with blood and tissue
carotenoid concentrations. Current advances in human
genetics have provided more concrete sources of “host”-
associated variables affecting carotenoid absorption and
bioavailability (203, 204). Indeed, a recent study in children
found blood α- and β-carotene concentrations to be highly
heritable (205). Studies have shown variants in genes, such
as single nucleotide polymorphisms (SNPs)—a type of single
nucleotide variant with a minor allele occurring in ≥1%
of the population (206)—and haplotype polymorphisms,
to be associated with plasma carotenoids. A haplotype
polymorphism refers to a particular combination of SNPs
inherited together because of genetic linkage (207). In ad-
dition to showing candidate genes involved in carotenoid
assimilation, genotype-phenotype studies have shown ge-
netic variation as a determinant of physiologic responses to
carotenoids. To date, the most frequent associations with
the strongest mechanistic plausibility have been for BCO1
and SCARB1 variants. However, there is an ever-growing
number of novel gene-carotenoid relations.

BCO1 variants. A number of studies have tied BCO1
variants with circulating carotene concentrations. An early
study of the nutrigenetics of carotenoid status found β-
carotene bioconversion efficiency to vary markedly between
healthy individuals (208), prompting the hypothesis that
polymorphisms in BCO1 could contribute to the “poor con-
verter phenotype” (208). A rare missense mutation in BCO1
reduces BCO1 activity by ≤90% and results in carotene
accumulation (209). Specific BCO1 variants have been asso-
ciated with differences in circulating carotenoids. In a tar-
geted study of 224 BCO1 SNPs in women (n = 2344) of
European descent, a number of SNPs were significantly as-
sociated with plasma concentrations of α- and β- carotene,
β-cryptoxanthin, and lutein and zeaxanthin (210). It is hy-
pothesized that these variants in BCO1 alter BCO1 enzyme
activity, either through reduced BCO1 expression or catalytic
efficiency, ultimately affecting bioconversion (211). Similarly,
BCO1 polymorphisms are also associated with serum and
plasma xanthophyll responses (203, 212) andMPOD(204). A
genomewide association study (GWAS) in Italian adults also
found elevated β-carotene to be associated with the minor
allele of rs6564851 (203), an SNP in the ISX-binding regula-
tory site upstream of the BCO1 gene (213). The minor allele
of rs6564851 is hypothesized to reduce BCO1 activity, result-
ing in higher circulating intact β-carotene (213). For a re-
cently updated list of specific SNP-carotenoid associations,
see Bohn et al. (11).

As described above, BCO1 is also indirectly involved in
carotenoid absorption. Therefore, the effects of BCO1 vari-
ants reducing cleavage activity and retinoic acid generation
may increase intestinal carotenoid absorption due to greater
SCARB1 expression. Mechanistic studies will continue to
shed light on the effects of BCO1 variations on carotene
metabolism.

SCARB1 variants associated with blood carotenoid concen-
trations. Several studies have shown associations between
SCARB1 variants and carotene status. SCARB1 is a mem-
brane receptor involved in the uptake of cholesterol, vita-
min E, and carotenoids through cell plasmamembranes from
HDL cholesterol (214), with SCARB1 overexpression induc-
ing from a 1- to 2-fold increase in provitamin A carotenoid
uptake compared with controls (215). A genomewide ar-
ray of 7 million SNPs in African, Hispanic, and European
Americans found lycopene concentrations to be decreased
in SCARB1 rs1672879, rs701107, and rs838861 minor al-
lele carriers (216), but interestingly, subanalysis showed that
these minor alleles were so uncommon in European Amer-
icans that they were not predictors of serum lycopene in
that population (216). A focused study of 47 SCARB1 SNPs
showed a 24% increase in serum lycopene with each SCARB1
rs11057841 minor (T) allele (217). Men homozygous for
the SCARB1 rs2706295 T allele had 100% higher α-carotene
and 50% higher β-carotene concentrations than those who
were homozygous for the C allele (214). Some SCARB1
and CD36 SNP genotypes are associated with lower plasma
concentrations of lutein, zeaxanthin, and β-cryptoxanthin
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(214, 217–219). Several SNPs in SCARB1 are also associated
with lower MPOD in women (204). Mechanisms for how
these SCARB1 variants affect carotenoid uptake are currently
unknown.

Lipid and lipoproteinmetabolism-related genes. Given that
carotenoids are transported on lipoproteins, proteins in-
volved in their assembly and metabolism are likely to in-
fluence carotenoid responses. Variants in hepatic lipase C
(LIPC), ATP-binding cassette transporter (ABCA1), micro-
somal TG transfer protein (MTTP), NPC1L1, LPL, and
cholesteryl ester transfer protein (CETP) genes have shown
variable associations with carotenoid status (212, 214, 220–
223). SNPs in ABC transporters involved in cellular choles-
terol efflux are associated with differences in serum and
plasma lutein and zeaxanthin responses, postprandial chy-
lomicron lutein response (219, 223, 224), and MPOD (204).
SNPs in APOA1 and APOB, the major apolipoproteins in
HDL and LDL cholesterol, respectively, and LIPC are associ-
ated with postprandial chylomicron lutein response in men
(223); however, the authors did not indicate the direction
of the associations. SNP genotypes in LIPC are also asso-
ciated with lower MPOD (204). Genetic polymorphisms in
LPL are associated with lutein (direction not indicated) (223)
and lower β-cryptoxanthin serum concentrations (225).

Other gene variants associated with carotenoid status.
Associations of many other gene variants with blood
carotenoids have emerged, although the underlying mecha-
nisms are poorly understood (11). A GWAS in Amish adults
showed that the rs7680948 minor allele in SET domain–
containing lysine methyltransferase 7 (SETD7) was associ-
ated with lycopene (226). SETD7, a histone methyl trans-
ferase, is a central transcriptional activator of various genes
(226). Another GWAS found 4 SNPs in Slit guidance lig-
and 3 (SLIT3) and 3 SNPs in the dehydrogenase/reductase
2 (DHRS2) to be associated with lycopene in African Amer-
icans (216). SLIT3 is a molecular guidance cue in cellu-
lar migration, whereas DHRS2 codes for a NAD/NADP-
dependent oxidoreductase that lessens the breakdown of
steroids, retinoids, and prostaglandins (216). ELOVL fatty
acid elongase 2 (ELOVL2) rs37989709 and rs9468304 were
associated with both lycopene and β-carotene blood re-
sponses to ingestion of a carotenoid-rich meal (221, 227).
ELOVL2 catalyzes the elongation of EPA to docosapen-
taenoic acid and docosapentaenoic acid to DHA. A com-
bination of 5 SNP genotypes in CD36 present in 29% of
the European subjects (n = 312) was associated with 12%
greater plasma α-carotene compared with the most fre-
quentCD36 haplotype (215). A number of polymorphisms in
other genes with unknown relations to carotenoids have also
been identified in association with postprandial chylomicron
lutein response. These genes includemelanocortin 4 receptor
(MC4R) and insulin-induced gene 2 (INSIG2), which both
have SNPs associated with obesity (223). Other genes as-
sociated with lutein response are ELOVL2 (223, 228) and
cordon-bleuWH2 repeat protein like 1 (COBLL1) (223, 228).

Polymorphisms in COBLL1 are also associated with lower
serum insulin concentrations and lower insulin resistance
(229). SNPs in another gene, polycystin 1–like 2 (PKD1L2),
located directly upstream from BCO1, have also been associ-
ated with differential lutein response (223). Variants in ISX,
an upstream regulator of SCARB1 andBCO1, have been asso-
ciatedwith differences in postprandial chylomicron lutein re-
sponse in men (223). In addition, retinoid isomerohydrolase
(RPE65), which encodes an enzyme responsible for the con-
version of all-trans retinyl esters to 11-cis retinol in the visual
cycle, has SNPs associated with serum and retinal xantho-
phyll status (204, 228). RPE65 shares overall sequence sim-
ilarities with carotenoid oxygenases (230) and was recently
discovered to catalyze the isomerization of lutein to meso-
zeaxanthin (231). Asmore gene-carotenoid relations emerge,
experiments to validate and explain the mechanistic drivers
of these relations will provide insight into how genetic varia-
tion may affect carotene status and health.

Health Aspects of Carotenes
Introduction
Carotene exposures are epidemiologically monitored and
studied in the context of a wide number of health condi-
tions, leading to a number of subsequent intervention and
mechanistic trials. The following sections summarize thema-
jor conditions for which carotenes have been studied. β-
Carotene and lycopene are the most abundant carotenes in
our diet (232) and our circulation and will be the primary
focus of this section.

β-Carotene and other provitamin A active carotenes. Al-
though carotenoids are well-recognized antioxidants [re-
viewed in Böhmet al. (233)], the primary function of provita-
min A carotenoids is for the provision of vitamin A. Almost
a century ago, it was shown that yellow carotene pigments
from plants, butter fat, and egg yolk are converted to vita-
minA. Early findings established the structure of β-carotene,
the mechanisms of its cleavage, and the basic functions of
vitamin A [for recent review see Tanumihardjo et al. (2)].
For populations who do not consume animal sources of pre-
formed vitamin A, carotenoids are required to meet vitamin
A needs.

Vitamin A deficiency is a major worldwide nutrient de-
ficiency, prevalent in poor countries in which an estimated
19 million pregnant women are vitamin A deficient (234).
Symptoms include night blindness, xerophthalmia (eye dis-
ease that can progress to blindness), and a reduced abil-
ity to fight infections. An estimated 10 million preschool-
age children and pregnant women develop blindness from
xerophthalmia yearly; however, the lives of an estimated
50% of severely deficient children are saved by vitamin
A–intervention programs (235).

The primary functions of vitamin A include vision, main-
tenance of epithelial cells, and reproductive function. Visual
function relies largely on the 11-cis retinal metabolite. The
visual cycle was originally elucidated by Wald, for which he
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received the Nobel Prize in 1967 [reviewed in Tanumihardjo
et al. (2) and Eroglu and Harrison (236)]. Other vitamin
A functions are driven by the metabolites all-trans or 9-cis
retinoic acid, which regulate hundreds ofmetabolic pathways
once they are bound to one of several nuclear receptors (RAR
and retinoid X receptor). The interested reader is directed to
in-depth reviews of the activity of vitamin A and the mecha-
nisms of retinoid signaling (2, 237–239).

The current dietary requirements of healthy individu-
als for vitamin A were established in 2001 by the Food
and Nutrition Board of the National Academy of Sciences
(232). Retinol activity equivalents (RAEs) were used to as-
sign differing vitamin A values to preformed vitamin A and
provitamin A carotenoids. One RAE was defined as 1 µg
of all-trans retinol; however, to account for the inefficient
absorption from foods and conversion to vitamin A, 1
RAE = 12 µg β-carotene and 1 RAE = 24 µg α-carotene
and β-cryptoxanthin. Although carotene bioavailability and
bioefficacy differ with dietary sources and food preparation
and differ between individual consumers, the RAEs reflect
the best estimates of provitamin A bioefficacy from different
foods based on the available data at that time.

Carotenes as antioxidants or pro-oxidants and lung can-
cer risk. Carotenoids are antioxidants, and substantial in
vitro work suggests that carotenes are excellent free radical
and singlet oxygen quenchers but may also show some pro-
oxidant behaviors [reviewed in Böhm et al. (233)]. One long-
standing hypothesis is that these attributes may confer pro-
tection against various chronic diseases of aging linked with
oxidative stress. However, many in vitro studies are carried
out at supraphysiologic concentrations. In addition, other an-
tioxidants are in higher concentrations in human serum and
tissues, with serum vitamin C and vitamin E concentrations
being ∼30- and 50-fold higher than β-carotene [Appendix
tables in (167)] in American men. Thus, the in vivo antioxi-
dant function of carotenes remains unclear.

Early associations between diets high in β-carotene and
lower risk of cancers (240) spurred β-carotene supplemen-
tation trials in populations at a high risk of lung can-
cer. The Alpha-Tocopherol and Beta-Carotene Cancer Pre-
vention Trial (ATBC) provided male smokers with daily
placebo, 50 mg dl-α-tocopherol acetate, 20 mg β-carotene,
or both (241), and the β-Carotene and Retinol Efficacy Trial
(CARET) tested 30 mg β-carotene/d and 25,000 IU retinyl
palmitate/d in smokers or asbestos-exposed workers (242).
Unfortunately, β-carotene supplementation increased lung
cancer risk by 16% and 28%, respectively. It is speculated that
relatively high daily doses of β-carotene (∼10 times greater
than dietary intake), the formation of potentially carcino-
genic oxidation products of β-carotene in lung tissue as a re-
sult of cigarette smoke, asbestos exposure, or a combination
of thesemay have resulted in procancer effects (243, 244). Re-
markably, food-borne β-carotene intake remained inversely
associated with lung cancer risk in a recent meta-analysis of
9 studies (4).

The pro–lung cancer effect seems unique to β-carotene
supplements. The Age-Related Eye Disease Study 2
(AREDS2) trial found a small increase in lung cancer
incidence, mostly in former smokers, with β-carotene
supplementation (15 mg/d) compared with no β-carotene
(245), whereas lutein (10 mg/d) plus zeaxanthin (2 mg/d)
supplementation had no effect. Similarly, although ferrets
exposed to cigarette smoke and high β-carotene developed
precancerous lung lesions (246), lycopene showed some
protection (247).

There are no other reported adverse effects of dietary
β-carotene, except for carotenemia, a condition marked by
yellowing of the skin due to elevated concentrations of β-
carotene (or other carotenoid) accumulation in dermal tis-
sues when consumed in high concentrations (248). This con-
dition is common in young childrenwho frequently consume
pureed carrot or winter squash and is reversed over timewith
decreased carotenoid intake.

β-Carotene and cardiovascular health. Higher intakes of
β-carotene–rich fruit and vegetable have generally been
associated with lower CVD risk. For example, a se-
ries of current studies prospectively followed the relation
of serum β-carotene and CVD risk in >1000 Finnish
men in the Kuopio Ischemic Heart Disease Risk Fac-
tor (KIHC) cohort for ≥15 y and found that low serum
β-carotene concentrations were strongly related to the risk
of CVD mortality (249), congestive heart failure (250), and
sudden cardiac death (251). An analysis of the earlier litera-
ture has been previously published [reviewed in Sesso (7)].

Lycopene.

Lycopene and risk of PCa. PCa is themost frequently diag-
nosed cancer inUSmen and the fifth leading cause of cancer-
related deaths worldwide (252). A number of epidemiologic
trials carried out over the past 2 decades have evaluated
tomato product intake or serum lycopene concentrations and
the risk of PCa. Recent systematic reviews andmeta-analyses
have supported an inverse relation between blood lycopene
or lycopene intake with prostate cancer risk or severity (5,
253, 254). For an in-depth review of earlier preclinical and
clinical research on lycopene and PCa see Holzapfel et al.
(255).

The hypothesis that dietary tomato (the major source
of US dietary lycopene) or lycopene may reduce PCa risk
is supported by several preclinical animal studies evaluat-
ing prostate carcinogenesis and tumor progression. Tomato
powder feeding improved survival in a model of chemically
driven carcinogenesis (256) and decreased tumor size in a
model of tumor progression (257). Another study showed
overlapping effects of lycopene and tomato powder feeding
on gene expression changes in early carcinogenesis, espe-
cially related to androgen metabolism (258). Most recently,
lycopene or tomato powder inhibited the progression of ge-
netically driven carcinogenesis in mice (51, 259). Additional
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tomato and lycopene studies have been conducted [discussed
in Tan et al. (51)], providing insight into the scenarios in
which these interventions may be effective.

Lycopene metabolites may be biologically important [re-
viewed in Erdman et al. (260) and Lindshield et al. (261)]
and have been identified in tomato products, rodent tis-
sues, and in human blood (262–264). Lycopene metabolites
may compete with retinoids as ligands for nuclear receptors
and either act as agonists or antagonists for gene expression
and affect metabolic pathways (265). Recent findings sug-
gest that BCO2-generated lycopene metabolites contribute
to lycopene’s anticancer activity (51), such that the BCO2
gene was necessary for maximal anticancer efficacy of ly-
copene and tomato powder feeding. A recent study showed a
lycopene metabolite, apo-10′-lycopenoic acid, could reduce
hepatic tumorigenesis, hepatic inflammation, and steatosis
(266).

Because of the long latency of PCa, there have not been any
long-term clinical lycopene intervention trials with PCa inci-
dence as a primary endpoint. A series of recent phase II trials
in men either at high risk of PCa or with early PCa showed
lycopene consumption to be associated with stabilized dis-
ease (267), less extensive high-grade prostatic intraepithe-
lial neoplasia (a precancerous lesion) (268), or that pro-
static lycopene concentrations were inversely predictive of
progression to cancer (269). These and other recent small tri-
als, suggest modest impacts of lycopene on PCa progression
in high-risk men, warranting larger and longer studies.

Lycopene and CVD. On the basis of epidemiologic stud-
ies that have largely supported a reduced risk of CVD
with higher consumption of tomato products, >50 human
intervention trials with lycopene supplements or tomato-
based products have been conducted; however, the ma-
jority were statistically underpowered [reviewed in Thies
et al. (270)]. A current review of clinical trials concluded that
although there is a need for more targeted research, the re-
sults support the consumption of a healthy, low-saturated-fat
diet containing tomato-based foods as a first-line approach
for promoting CVD health (8). They noted that lycopene
supplements were impactful for blood pressuremanagement,
whereas tomato-based foods were a preferred approach for
other CVD risk factors. However, many of the beneficial ef-
fects seen in clinical trials were with nonvalidated CVD risk
markers, such as lipid peroxidation, DNA oxidative damage,
platelet activation, and inflammatory markers [reviewed in
Thies et al. (270)]. Some studies found beneficial impacts on
blood lipids, CRP, and blood pressure (270). Another recent
review concluded thatmost studies showed beneficial cardio-
protective effects in subjects whowere “antioxidant deficient”
(271).

Safety of lycopene. One systematic risk assessment of ly-
copene supplements used in placebo-controlled intervention
trials has been published (272). For inclusion, the trials must
have been carried out for≥1wk andwith doses>8mg/d. The
only documented side effect of lycopene supplementation in

the 16 trials was carotenodermia. Although the authors stated
that the absence of any pattern of adverse effects “provides
support for a high level of confidence in the safety of this
compound,” they also acknowledged that there were no hu-
man studies published that focused specifically on the safety
of lycopene supplementation (272).

Phytoene, phytofluene, and α-carotene
Three lesser-studied carotenes, phytoene, phytofluene, and
α-carotene, may confer some bioactivities. Phytoene and
phytofluene are colorless carotenoids found in tomatoes as
well as in some other fruit and vegetables [reviewed in
Engelmann et al. (273)] but are relatively understudied.
Short-term phytofluene, lycopene, or tomato powder sup-
plementation reduced serum testosterone in rats compared
to control-fed rats (274), a potential mechanism by which
tomato consumption may reduce the risk of PCa (258, 275).
Unique from other common dietary carotenoids, phytoene
and phytofluene maximally absorb light in the UV-B and
-C and UV-A ranges, respectively, and so may contribute
to skin protection from UV light exposure. Although the
protection does not approach the efficacy of sunscreen [re-
viewed in Stahl and Sies (276)], it was shown in humans that
daily tomato extract consumption for 12wk conferred greater
protection against UV-induced erythema lycopene alone
(277). The authors speculated that phytofluene and phy-
toene in the extract may have contributed to the protection
by reactive oxygen species scavenging or UV light filtering
(276). Similarly, tomato paste supplementation for 12 wk in
women reduced markers of skin damage after UV radiation
(278).

Many high β-carotene fruit and vegetables also contain
α-carotene; thus, one might expect similar correlations for
both carotenoids with chronic disease risk. One recent nested
case-control study found that both plasma α- and β-carotene
were associated with a lower risk of estrogen receptor–
negative breast cancer tumors (279), which was similarly
found in a 20-y follow-up of the Nurses’ Health Study (280).
A recent systematic review found that blood concentrations
of α-carotene, β-carotene, total carotenoids, and retinol were
all significantly inversely associated with lung cancer risk or
mortality (4).

Health Aspects of Xanthophylls
Lutein and zeaxanthin
Given lutein’s and zeaxanthin’s antioxidant and anti-
inflammatory properties (281), it is hypothesized that
these carotenoids may also have beneficial effects on diseases
for which oxidation and inflammation play a role.

Eye diseases. Current evidence supports a role for lutein and
zeaxanthin in the development of common age-related dis-
eases [AMD, cataract, diabetic retinopathy (DR)], retinopa-
thy of prematurity (ROP), and retinitis pigmentosa (RP)
(282). Lutein and zeaxanthin preferentially accumulate in
primate ocular tissue and are the exclusive carotenoids in
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the retina and lens (283). This selectivity, as well as their
known functions as antioxidants (284), anti-inflammatories,
and blue light filters (285), supports their role in ocular
health. Readers may refer to a current review of lutein and
eye diseases (9).

AMD. AMD is a disease affecting the central area of the
retina, resulting in an irreversible loss of central vision. AMD
is a major cause of blindness in persons aged >40 y in the
United States (286). Although the specific pathogenesis of
AMD is still unknown, chemical and light-induced oxidative
damage to the photoreceptors may be involved. The retina
is particularly susceptible to oxidative stress because of its
high consumption of oxygen, its high proportion of easily
oxidized PUFAs, and its exposure to visible light. A current
meta-analysis found that lutein and zeaxanthin intake was
inversely related to the risk of advanced AMD (287), and
supplementation of patients with AMD improves contrast
sensitivity and visual function in a dose-dependent manner
(288–290).However, these relationswere not present in every
study (291–293), perhaps due to between-population vari-
ability in dietary intake of lutein and zeaxanthin or amounts
reaching the eye. AREDS2 found that participants with low
dietary intakes of lutein and zeaxanthin at the start of the
study, but who took an AREDS formulation with lutein and
zeaxanthin during the study, were∼25% less likely to develop
advanced AMD compared with participants with similar di-
etary intake who did not take lutein and zeaxanthin (245).

Cataracts. Cataracts are the clouding of the lens leading
to a decrease in vision and are the leading cause of blind-
ness in the world (294). Among the carotenoids, only lutein
and zeaxanthin are found in the lens (295). A current meta-
analysis, which included 1 cohort and 7 cross-sectional stud-
ies, reported that there were significant inverse associations
between nuclear cataract and blood lutein and zeaxanthin
concentrations, with the pooled RRs ranging from 0.63 (95%
CI: 0.49, 0.77) for zeaxanthin to 0.73 (95% CI: 0.59, 0.87) for
lutein (296).

DR. DR is the most common cause of acquired blind-
ness in individuals between the ages of 20 and 65 y, and
rates are increasing with the rise in obesity and type 2 dia-
betes (297, 298). Given that oxidative stress and inflamma-
tion are believed to be involved in DR pathogenesis (297),
the protective effects of lutein and zeaxanthin have been in-
vestigated. Although low dietary lutein intake is not associ-
atedwithDR risk (299),MPODwas found significantly differ
between healthy controls [0.29 + 0.07 density units (DUs)],
diabetics without retinopathy (0.22+ 0.09 DUs), and diabet-
ics with retinopathy (0.14+ 0.05 DUs) (P< 0.001) (300) and
was inversely correlated with glycosylated hemoglobin (300).
Support that lutein and zeaxanthin may provide a benefit in
DR comes from a 3-mo supplementation study of lutein (6
mg/d) and zeaxanthin (0.5 mg/d) in subjects with nonprolif-
erative DR and controls. Specifically, MPOD increased with

supplementation, along with visual acuity and contrast sen-
sitivity, and decreased foveal thickness (301).

Retinitis pigmentosa. RP, a group of rare inherited genetic
disorders of rod and cone photoreceptors, is a leading cause
of inherited blindness (23). Common symptoms include dif-
ficulty seeing at night and a loss of peripheral vision. In a
randomized, controlled crossover study in RP patients, lutein
supplementation (10mg/d for 12 wk followed by 30mg/d for
12wk) had a highly significant effect in preserving visual field
and the mean log retinal area was 0.29 higher than when re-
ceiving the placebo (P< 0.001) (302), whereas 20mgof lutein
supplementation did not improve central vision in patients
with RP or Usher syndrome (303). One possible explanation
for this is that only half the patients had significant increases
inMPOD(303). In a randomized, controlled, double-masked
4-y-long trial in patients with RP, lutein (12 mg/d) added to
vitamin A supplements modestly slowed the midperipheral
loss (304). The lutein group lost, on average, 27 decibels/y,
whereas the control group lost, on average, 34 decibels/y.

Retinopathy of prematurity. ROP is retinal neovascular-
ization that leads to blindness in premature infants. The de-
veloping retinamay be susceptible to oxidative damage due to
its high proportion of long-chain PUFAs (305), exposure to
damaging light, high oxygen fluctuation, and high metabolic
activity promoting the production of reactive oxygen species
(297). Current trials in term newborns showed that lutein
supplementation lowers systemic oxidative stress (306, 307),
and lutein along with β-carotene and lycopene supplemen-
tation lowered markers of systemic inflammation in preterm
infants (308). One study indicatedmore rapid visual develop-
ment with lutein, lycopene, and β-carotene supplementation
(308). Alternatively, several small supplementation trials did
not show a significant effect on ROP incidence (309–311).

Visual function. Increased lutein and zeaxanthin intake
may improve visual performance in both healthy adults and
in eye disease (312–315). Macular pigment may improve vi-
sual function through its light-filtering properties (314). Two
placebo-controlled studies found that lutein supplementa-
tion alone or with zeaxanthin at 10–20 mg/d for 6–12 mo
significantly improved contrast acuity thresholds when am-
bient illumination was low (316, 317), although the degree of
the improvement varied with duration of the supplementa-
tion. Under the low-lighting (mesopic) condition, there were
significant improvements, suggesting improved vision dur-
ing night driving. Visual performance in glare conditionswas
improved in healthy subjectswith lutein or lutein and zeaxan-
thin supplementation (315, 317). Lutein or combined lutein
and zeaxanthin supplementation protected against the detri-
mental effects of long-term computer-display light exposure
and improved contrast sensitivity (318), improved chromatic
contrast and recovery from photostress (319), and reduced
symptoms of visual fatigue associated with visual proofread-
ing tasks in healthy subjects aged 22–45 y (320). In addition
to light filtering, lutein and zeaxanthin may improve visual
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function through biological mechanisms, such as neuronal
signaling efficiency in the eye (321).

Cognition. Recent epidemiologic and intervention studies
suggest that dietary and serum lutein and zeaxanthin are
associated with improved cognitive function during aging
(322–325). Lutein and zeaxanthin preferentially accumu-
late in the human brain, accounting for 46–70% of total
carotenoids (74, 75). Macular lutein and zeaxanthin con-
centrations are significantly correlated with concentrations
in matched human and in nonhuman primate brain tis-
sue (326, 327); therefore, MPOD is a biomarker of brain
lutein and zeaxanthin. Indeed, several observational stud-
ies reported that MPOD and cognitive function were
correlated in adult populations (328–332), and brain zeax-
anthin concentrations of centenarian decedents were sig-
nificantly associated with antemortem cognitive function
(74). Brain lutein was significantly related to recall and
verbal fluency, and although the associations were attenu-
ated with adjustment for covariates, brain lutein was sig-
nificantly lower in individuals with mild cognitive impair-
ment compared with those with normal cognitive function
(133 ± 21 compared with 67 ± 14 pmol/g, respectively;
P < 0.05) (74). Last, in a 4-mo randomized, double-blind,
placebo-controlled trial, lutein (12 mg/d), DHA (800 mg/d),
or both significantly improved verbal fluency by 19–40%over
baseline (depending on the intervention) in older women
(P < 0.03) (333), whereas the combination significantly im-
proved memory and rate of learning by ∼26% and 10%,
respectively (P < 0.03).

Current evidence suggests a role for lutein in adult cogni-
tive health, with emerging evidence showing that lutein ac-
cumulates in the brains of infants and children. Brain tissue
from 30 infant decedents (334) showed significantly greater
xanthophyll concentrations compared with carotenes. As
in the adult brain (74), lutein was the major carotenoid
(334). However, the relative contribution of lutein to total
carotenoids was∼2 times that of adults (58% compared with
31%, respectively), which may, in part, be due to the promi-
nence of lutein in human milk (335, 336). Antioxidants are
essential to the brain because of their high metabolic rate
and the high proportion of oxidizable PUFAs, but the human
newborn brain has a relative deficiency of endogenous an-
tioxidant enzymes (337). This may be particularly important
in the early neonatal period when oxidative stress may lead
to pathological conditions. In a randomized, double-blind,
placebo-controlled study in healthy term newborns, supple-
mental lutein significantly increased serum measures of an-
tioxidant activity (306).

Lutein’s role in brain function during early life has been
a focus of recent research. It is hypothesized that macular
lutein may facilitate brain development in early life by im-
proving visual performance and, effectively, environmental
inputs into the brain (338). Indeed, environmental enrich-
ment exerts morphological and functional effects at the neu-
ronal level and is accompanied by improvements in cognitive
performance (339). A recent exploratory, observational study

found that human-milk lutein and choline concentrations
were associated with recognition memory in corresponding
6-mo-old infants (340). Indeed, infant brain lutein concen-
trations are correlated with metabolites involved in neuro-
transmission, neuronal proliferation andmaturation, neurite
outgrowth, and synapse formation (341). These beneficial ef-
fects of lutein in cognitive health likely persist into childhood.
In children between 7 and 10 y of age, MPOD was positively
and significantly associated with hippocampus-dependent
relational memory and academic performance (342, 343).

Cardiometabolic health. A recent systematic review with
meta-analysis found that an increased lutein status (intake
or serum concentrations) was associated with a lower risk of
coronary heart disease, stroke, and metabolic syndrome, but
not with the risk of type 2 diabetes (344). Several biological
mechanisms have been proposed for the beneficial effect of
lutein on heart health, including vascular changes (345), an-
tioxidant effects (281, 284), and effects on immune response
and inflammation (285, 346).

β-Cryptoxanthin
Vitamin A source. β-Cryptoxanthin is the major dietary
xanthophyll with provitamin A activity. Accumulating ev-
idence indicates that β-cryptoxanthin is more bioavail-
able from dietary sources than the other provitamin A
carotenoids, including β-carotene (347). Therefore, it may be
a comparable source of vitamin A despite only providing 1
molecule of vitamin A upon cleavage.

Antioxidant. Similar to lutein and zeaxanthin, β-
cryptoxanthin exhibits in vitro antioxidant functions.
As a provitamin A carotenoid, β-cryptoxanthin was shown
to have a dose-dependent (0, 1, 4, 10, or 25 μM) protection
against H2O2-induced DNA strand breaks in HeLa cells
(348). Ferrets given β-cryptoxanthin (∼7.5 or 37.5 μg �
kg body weight−1 � d−1) and exposed to cigarette smoke
showed lower oxidative DNA damage in lung tissue than did
ferrets exposed to cigarette smoke only (349). The beneficial
effect of β-cryptoxanthin was stronger for the high-dose
β-cryptoxanthin than for the low-dose β-cryptoxanthin. To
date, to our knowledge, there are no human studies on the
antioxidant activity of β-cryptoxanthin.

Lung cancer prevention. Pooled analysis from 7 co-
hort studies found that, among the carotenoids, only β-
cryptoxanthin intake was associated with a lower risk of lung
cancer among current smokers (350, 351). β-Cryptoxanthin
supplementation in ferrets exposed to cigarette smoke de-
creased lung inflammation and oxidative damage (349).
Studies in mice indicate that β-cryptoxanthin reduced lung
tumor multiplicity, and restored sirtuin 1 (SIRT1), p53,
and RAR-β , expression in the lung, which were all sup-
pressed by nicotine (352). More recent evidence indicates
that β-cryptoxanthin may also inhibit phosphorylation of
protein kinase B through downregulation of nicotinic acetyl-
choline receptor α7 signaling (353). A more extensive
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FIGURE 4 Summary of the intrinsic and extrinsic variables affecting physiologic responses to carotenes and xanthophylls.

discussion of β-cryptoxanthin and lung cancer prevention
can be found in Iskandar et al. (353).

Bone health. In vitro studies have shown that β-
cryptoxanthin has both stimulatory effects on osteoblastic
bone formation and inhibitory effects on osteoclastic bone
resorption [reviewed in Burri et al. (354) and Yamaguchi
(355)]. These effects are mediated in part via modulation
of gene expression, which is not replicated by retinoic acid,
suggesting a function independent of vitamin A activity
(354). Epidemiologic studies in postmenopausal Japanese
women showed that β-cryptoxanthin intake and circulating
concentrations are associated with higher bone mineral
density (356, 357). However, analysis from the Framing-
ham Osteoporosis Study found no association between
β-cryptoxanthin intake and the risk of hip fracture in US
women (358). This may be explained by the fact that β-
cryptoxanthin intakes in the United States are much lower
than in Japan (354), making it difficult to detect differences in
the US study.

Safety of xanthophylls
To date, the vast majority of studies evaluating xanthophyll
supplementation on health outcomes have been on lutein
(272). Doses have ranged from 8 to 40 mg/d, and study du-
rations have ranged from 7 d to 5 y (28, 245, 304, 359, 360).
A systematic risk assessment of lutein supplements used in
placebo-controlled intervention trials was published in 2006
(272). Only a few of the studies monitored any possible ad-
verse side effects, primarily through self-reporting. However,
currently, the AREDS2 has reported no adverse effects, be-
yond some skin yellowing, with lutein and zeaxanthin sup-
plementation (10 and 2mg/d, respectively) over 5 y (245). Re-
cently, a case report of bilateral “foveal sparkles” in a woman
in her 60s taking a daily 20-mg lutein supplement for 8 y and
an unusually high dietary lutein intake (361) indicated that
7 mo after discontinuing the supplement but continuing her
dietary habits, the crystals in the right eye resolved, but not
those in the left eye. The authors indicated, for these reasons,
that chronic consumption of lutein at doses exceeding the
AREDS2 of 10 mg/d is not always beneficial.
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Conclusions and Future Research Needed
In summary, a number of variables (Figure 4) are associated
with carotenoid status, with many emerging from the analy-
sis of very large prospective or cross-sectional studies. Other
food-based variables have been discovered through experi-
mentation and should serve as the rationale for the develop-
ment of dietary interventions. These dietary, physiologic, and
genetic determinants of carotenoid responses warrant con-
sideration for study design and interpretation, and for the
development of public health and personalized dietary guid-
ance. Furthermore, it will be of continued importance to ex-
plore the possible pharmacokinetics and pharmacodynamics
of carotenoid metabolites.

Nearly all promising carotenoid bioactivity relations
shown by epidemiologic analysis should be tested in prospec-
tive clinical trials, as feasible, or in appropriate preclinical
models. Indeed, the most efficient strides will be made in
carotenoid research when studies of carotenoid pharmacoki-
netics and pharmacodynamics are analyzed in the context
of intrinsic and extrinsic modulators of carotenoid expo-
sure. Furthermore, studies should be statistically powered
for expected response variability due to these variables. In
particular, there is fairly consistent evidence that BMI and fat
distribution, as well as age and smoking, may affect circulat-
ing carotenoid responses to dietary carotenoids. In addition,
carotenoid absorption is likely to be regulated by host vita-
min A status.

Additional research should define the bioavailability of
carotenoids from different food sources as well as their expo-
sure half-lives in populations of interest. Indeed, the bioavail-
ability of carotenoids differs by source, leading to differing
physiologic responses that complicate the interpretation of
dietary intake data. Thus, it is important to monitor inter-
nal exposures in response to a dietary intervention, and it is
essential to control for the intake of both intervention and
nonintervention carotenoids consumed in a study. The physi-
ologic importance of interactions with other carotenoids, nu-
trients, and drugs that may affect absorption andmetabolism
also deserves continued investigation.

The evidence to date from large-scale GWASs and smaller
candidate gene studies indicates that genetics play a role
in explaining part of the interindividual variability in re-
sponses to carotenoid intake. Research in genetically diverse
human populations that defines the contribution of genet-
ics to interindividual variability in carotenoid bioavailability,
metabolism, and circulating and tissue concentrations will
help to prioritize the role of genetics in interpreting human
subject data and in designing personalized nutritional inter-
ventions. At the same time, efforts to understand the mecha-
nistic basis for gene polymorphism–carotenoid interactions
will expand our understanding of clinically discovered poly-
morphisms and their impacts on carotenoid exposure and
bioactivity.

As the analysis of large data sets continues to become
more commonplace, it is expected that the variables dis-
cussed herein could gain or lose support, and new variables
may emerge. However, continued review and consideration

of the modulators of carotenoid exposure should clarify our
understanding of the bioactivities of carotenoids in humans.
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