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Abstract

A diversity panel comprising of 296 indica rice genotypes was phenotyped under non-stress and water-deficit stress 
conditions during the reproductive stage in the 2013 and 2014 dry seasons (DSs) at IRRI, Philippines. We investigated the 
genotypic variability for grain yield, yield components, and related traits, and conducted genome-wide association stud-
ies (GWAS) using high-density 45K single nucleotide polymorphisms. We detected 38 loci in 2013 and 64 loci in 2014 for 
non-stress conditions and 69 loci in 2013 and 55 loci in 2014 for water-deficit stress. Desynchronized flowering time con-
founded grain yield and its components under water-deficit stress in the 2013 experiment. Statistically corrected grain 
yield and yield component values using days to flowering helped to detect 31 additional genetic loci for grain yield, its 
components, and the harvest index in 2013. There were few overlaps in the detected loci between years and treatments, 
and when compared with previous studies using the same panel, indicating the complexity of yield formation under 
stress. Nevertheless, our analyses provided important insights into the potential links between grain yield with seed set 
and assimilate partitioning. Our findings demonstrate the complex genetic architecture of yield formation and we pro-
pose exploring the genetic basis of less complex component traits as an alternative route for further yield enhancement.

Keywords:   A priori candidate genes, multi-locus analysis, Oryza sativa, reproductive-stage water-deficit stress, single-locus 
analysis, synchronized phenology.

Introduction

Rice (Oryza sativa L.) is a staple food crop for more than half 
the world’s population. Maintaining its high yield potential 
with sustained productivity is imperative for future food se-
curity. However, global climate change, with frequent epi-
sodes of abiotic stress (water deficit and heat stress), reduces 

the productivity of rice (Kadam et al., 2014; Reynolds et al., 
2016), as rice is more sensitive to water deficit than other cere-
als (Kadam et al., 2015). Nearly 20% of global rice production 
is affected by water deficit (Bouman et al., 2005). Water deficit 
can occur at any time during the growing season, but stress 
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occurring within the reproductive phase (i.e. from meiosis 
to flowering) causes the greatest grain yield losses (Liu et al., 
2006). The physiological effects of water deficit within the re-
productive phase have been discussed in detail by Saini and 
Lalonde (1997), Saini et al. (1999), and Barnabás et al. (2008).

Increasing tolerance to water deficit has been considered as a 
major breeding target, although knowledge on phenotypic traits 
linked with stress tolerance is limited. Recent evidence in rice has 
demonstrated that progress can be made through direct selection 
of grain yield, as a criterion under reproductive-stage water def-
icit (Venuprasad et al., 2007; Kumar et al., 2014). Physiologically, 
grain yield is a very complex trait determined by different com-
ponent traits (Slafer, 2003). Hence, exploring ideotype breeding 
based on selection for component traits is proposed as a com-
plementary route for further yield improvement (Donald, 1968).

Revealing the genetic basis of grain yield and its compo-
nent traits is essential for providing breeders with the tools for 
efficient development of stress-resilient cultivars. The genetic 
control of grain yield under reproductive-stage water deficit 
has been investigated extensively using linkage analysis of bi-
parental crosses in rice. This approach has proven to be power-
ful in the detection of quantitative trait loci (QTLs) for grain 
yield and its components under stress (Lanceras et  al., 2004; 
Bernier et  al., 2007; Vikram et  al., 2011; Mishra et  al., 2013; 
Dixit et  al., 2014; Kumar et  al., 2014). A  few of these QTLs 
regulating grain yield, for instance qDTY12.1, have been intro-
gressed into elite cultivars to improve stress tolerance (Mishra 
et al., 2013), but most of them are only based on a small frac-
tion of the rice genetic diversity. Identifying the allelic vari-
ations exhibited in a large genetic diversity panel as a result 
of divergent selection pressure provides an obvious alterna-
tive that can have a greater potential in grain yield improve-
ment under water deficit. These natural allelic variations have 
been identified in rice under non-stress conditions for grain 
yield and its component traits through genome-wide associ-
ation studies (GWAS) (Agrama et al., 2007; Borba et al., 2010; 
Huang et al., 2010, 2012; Zhao et al., 2011; Begum et al., 2015; 
Spindel et al., 2015; Rebolledo et al., 2016; Yano et al., 2016). 
Yet, very few studies are available for reproductive-stage water-
deficit conditions (Ma et al., 2016; Pantalião et al., 2016; Swamy 
et al., 2017). This is partly due to the difficulty in implementing 
water deficit to coincide with reproductive stage under field 
conditions for a large diversity panel, which usually consists 
of genotypes having diverse phenology. Only the study of Ma 
et al. (2016) followed a staggered sowing to account for vari-
ation in flowering phenology under stress.

Our study aimed to (i) explore the natural variation in grain 
yield and yield component traits under non-stress and repro-
ductive-stage water-deficit conditions; (ii) link the variation of 
these phenotypic traits with single nucleotide polymorphisms 
(SNPs) through GWAS; and (iii) identify the most likely under-
lying candidate genes in close proximity to the significant SNPs.

Materials and methods

Association mapping population
We used a rice panel consisting of a diverse set of 296 indica genotypes 
consisting of improved and traditional genotypes with (sub)tropical 

adaptation. This panel was assembled at the International Rice Research 
Institute (IRRI), Philippines for the Phenomics of Rice Adaptation 
and Yield potential (PRAY) project in the context of the Global Rice 
Phenotyping Network (http://ricephenonetwork.irri.org). Recent stud-
ies have reported GWAS analyses using this population for grain quality 
traits (Qiu et al., 2015), salinity tolerance (Al-Tamimi et al., 2016), panicle 
architecture (Rebolledo et al., 2016), yield traits under varying planting 
densities (Kikuchi et al., 2017), and root plasticity (Kadam et al., 2017).

Strategy to cope with variation in flowering phenology
The PRAY panel was screened in non-stress and reproductive-stage 
water-deficit conditions under field experiments conducted at the upland 
farm of IRRI, Philippines (14°11′N, 121°15′E; elevation 21 m above sea 
level) in the 2013 and 2014 DSs. Seeds were sown from December of 
the preceding year to late January or early February of each year (Fig. 1). 
As expected, a strong genotypic variation in flowering phenology was 
observed that confounds the true water-deficit response (Fukai et  al., 
1999) and inevitably induces bias with interpretation of genetic mapping 
outcomes (Pinto et al., 2010; Kumar et al., 2014). We followed staggered 
sowing in seedbeds and transplanting in main plots to synchronize flower-
ing and thus minimize phenological differences under stress imposition 
(Fig. 1). Briefly, in the 2013 DS experiment, we divided 296 genotypes 
into six groups with a 10 d interval based on days to flowering data col-
lected from a previous experiment conducted in the 2012 wet season 
(WS), our only source of flowering dates for this population grown at 
IRRI. While the expected range of flowering was 29 March to 8 April 
2013 (Fig. 1A), we observed deviation in days to flowering in the 2013 
DS experiment, where the staggered sowing was based on the 2012 WS 
data. Therefore, in the 2014 DS experiment, we regrouped the 296 geno-
types into eight groups with a 7 d interval using 2013 DS flowering data 
to improve synchrony within the whole population. The expected date of 
flowering was 28 March to 5 April 2014 for these genotypes (Fig. 1B). In 
each year, the sowing date chosen for the stress treatment was the same as 
for the non-stress treatment of the same genotype.

Crop management
The soil type of the upland farm at IRRI is Maahas clay loam, isohyper-
thermic mixed Typic Tropudalf. The experiments were laid out in a group 
block design with three replications for each genotype in both treatments 
(Supplementary Fig. S1 at JXB online). Seeds were first exposed to 50 °C 
for 3 d to break dormancy and then hand sown in a seedbed nursery. 
Twenty-one-day-old seedlings were transplanted (two seedlings per hill) 
for each genotype in four rows per replication. In both years, row dis-
tance was 0.2 m and row length was 2.4 m. The seeds of one genotype 
in 2013 and eight genotypes in 2014 germinated poorly and hence were 
excluded. In addition, four genotypes completed flowering and maturity 
before stress imposition in 2013 and were excluded. This resulted in final 
sets of 291 genotypes in 2013 and 288 genotypes in 2014, with three 
replications and two treatments totalling 1746 and 1728 plots in 2013 
and 2014, respectively. A day before transplanting, 30 kg P ha−1 (as single 
superphosphate), 40 kg K ha−1 (as KCl), and 5 kg Zn ha−1 (as zinc sulfate 
heptahydrate) fertilizers were manually applied. Nitrogen fertilizer as urea 
was applied in three splits: 45 kg ha−1 before transplanting, 30 kg ha−1 at 
mid-tillering, and 45  kg ha−1 at panicle initiation. The IRRI standard 
management practices were followed to control weeds, insects, and dis-
eases. In both years, all plots were maintained like irrigated lowlands with 
~5 cm standing water until maturity except for the water-deficit plots 
during the stress period (see below).

Reproductive stage water-deficit stress imposition
There was variation in synchronizing days to flowering among rice geno-
types in 2013, resulting in deviation from our expected flowering win-
dow (29 March to 8 April). In rice, the reproductive stage ranges between 
19 and 25 d, starting at panicle initiation and ending with flowering 
(Moldenhauer et al., 2013). Therefore, before imposing stress, we manu-
ally dissected the main tillers of the middle two plants of border rows 
from water-deficit plots for all the genotypes, primarily to check the 
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reproductive-stage development. Stress was imposed on 23 March 2013 
when the majority of genotypes reached the agronomic panicle initiation 
stage, by draining water out from the field. The stress continued for 14 
d until 5 April 2013. In the 2014 experiment, the synchronization was 
more precise with expected dates of flowering occurring between 28 
March and 5 April, as predicted. The same dissection approach as in 2013 
was followed and stress was imposed on 26 March 2014 and continued 
for 14 d until 8 April.

To quantify the stress intensity, 26 tensiometers were installed ran-
domly across the entire stress field at 30 cm depth in each season. A poly-
thene sheet was inserted at 2 m depth by digging a deep and narrow 
trench in between stress and non-stress fields to prevent water seepage 
during the stress period from the adjacent non-stress field. In addition, 
the stress and the non-stress plots were separated by a distance of 2.3 
m (Supplementary Fig. S1). The intensity of stress was higher in 2014 
than in 2013 (Supplementary Fig.  S2A). There was no rainfall during 
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Fig. 1.  Schematic representation of the staggered sowing and transplanting approach to synchronize flowering time that was followed for screening of 
an indica rice diversity panel under reproductive-stage water-deficit stress in the dry seasons (DSs) of 2013 (A) and 2014 (B). Days to flowering (DTF) 
was 10 d between groups (G) in 2013 and 7 days in 2014 DS experiments. (C, D) The expected and observed DTF in non-stress (NS) and water-deficit 
stress (WD) in the 2013 (C) and 2014 (D) DS experiments. ANOVA results with the effect of DTF (as a covariate in mixed linear model) on grain yield and 
its key component traits are shown. GY, grain yield; HI, harvest index; n, number of genotypes; PN, panicles per m2; SP, spikelets per m2; SPP, spikelets 
per panicle; SS, seed set; TGW, thousand grain weight; Trt, treatments. Significance levels: *P<0.05, **P<0.01, ***P<0.001. To synchronize the flowering 
time, we used the 2012 wet season DTF data in the 2013 DS experiment (C). Similarly, for the 2014 DS experiment, we used DTF data from the 2013 DS 
experiment (D). (This figure is available in colour at JXB online.)
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the peak stress period in both seasons, except for rainfall during the first 
day of the stress period in 2013 (Supplementary Fig. S2B). Higher stress 
intensity in 2014 compared with 2013 could be due to higher maximum 
temperature and higher vapour-pressure deficit (Supplementary Fig. S3B, 
D), leading to quicker loss of soil moisture in 2014. A weather station was 
placed between the non-stress and water-deficit plots (see Supplementary 
Fig. S1). Detailed weather data are given in Supplementary Fig. S3.

Observations
At maturity, plants of 16 hills from the middle two rows, i.e. 0.64 m2 
plot area (excluding the border rows) were harvested to assess yield (14% 
moisture), its components, and related traits in both experiments, fol-
lowing Shi et al. (2016). Days to flowering was assessed as the interval 
between the date of sowing and the date when panicles of 50% of plants 
per plot were fully exerted. Days to maturity was assessed as the interval 
between the flowering date and date when panicles on most plants in 
a plot turned yellow and ready for harvest. Plant height was measured 
from the base of the root–shoot junction to the tip of the flag leaf, which 
was manually straightened to be aligned with the culm. Non-grain dry 
weight was assessed as the sum of leaf, stem and rachis dry weight. The 
total aboveground dry weight was the sum of non-grain and grain dry 
weight. Harvest index was the ratio of grain dry weight to total above-
ground dry weight.

Statistical analysis of phenotypic data
Analysis of variance
A combined linear mixed model based analysis of variance (ANOVA) 
was performed to test the effect of genotype (G), treatment (T), and year 
(Y) with their interactions using the following model in Genstat V17.1:

	 Y G T Y R T Y G T Y Eijkl i j k l j k ijk ijkl= + + + + ( ) + × ×( ) +µ [ ] 	

where Yijkl is the phenotypic trait value recorded in a plot, µ is the over-
all mean, Gi is the effect of the ith genotype, Tj is the effect of the jth 
treatment, Yk is the effect of the kth year, Rl[Tj(Yk)] is the effect of the lth  
replication within the jth treatment of the kth year, (G×T×Y)ijk is the 
effect of three-way interaction between the ith genotype, the jth treat-
ment and the kth year, and Eijkl is the error. Apart from the  three-way 
interaction, we also consider two-way interactions of main factors in all 
possible combinations.

Linear mixed model to estimate best linear unbiased estimators
We estimated the best linear unbiased estimators (BLUEs) of phenotypic 
traits for an individual genotype across years and treatments separately. 
The following linear mixed model was used in Genstat V17.1 to estimate 
the BLUEs separately in non-stress and stress conditions across years, 
using genotypes as a fixed effect and replications as a random effect,

	 Y = +G + R + Eij i j ijµ 	

where Yij is the phenotypic trait value recorded in a plot, µ is the overall 
mean, Gi is the effect of the ith genotype, Rj is the effect of the jth repli-
cation, and Eij is the error.

Days to flowering had a strong confounding effect on grain yield and 
its components under stress, particularly in 2013 (Fig.  1C). Therefore, 
we performed the linear mixed model-based ANOVA using the above 
equation with days to flowering as covariate. When the effect of days to 
flowering was significant on phenotypic traits, corrected BLUEs of trait 
values were estimated in stress treatments.

Principal component analysis, trait correlation and multiple  
regression analysis
A multivariate principal component analysis (PCA) was performed in 
XLSTAT across years and treatments. The chart.Correlation() func-
tion within the R package ‘Performance Analytics’ was used to gen-
erate the correlation scatter plot. The lm() function in R was used for 

multiple linear regression analysis of grain yield with its component and  
related traits.

Heritability estimates
Broad-sense heritability (H2), capturing the proportion of phenotypic 
variance explained by genetic factors that is due to dominance, epistatic, 
and additive effects, was calculated across years and treatments separately 
using the below equation:

	 H =
+

r
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2
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σ σ 	

where σ2
G and σ2

E are the genotypic and residual variances, respect-
ively, and r is the number of replications. The restricted maximum likeli-
hood estimate was used to calculate the variance components in Genstat 
V17.1. The narrow-sense heritability (h2), capturing the proportion of 
total phenotypic variance explained by the additive genetic variance, was 
estimated using the equation in Genomic Association and Prediction 
Integrated Tool (GAPIT) function:

	 h =
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where σ2
a is the additive genetic variance and σ2

e is the residual variance.

Genetic analysis of marker-trait associations
Two hundred and ninety-one genotypes in 2013 and 288 genotypes in 
2014 had complete phenotypic data. However, 20 genotypes were miss-
ing from the 45 699 (46K) SNPs dataset resulting in 271 genotypes in 
2013 and 268 in 2014, used for GWAS analysis. The detailed genotype-
by-sequencing protocol of SNP genotyping, population structure, and 
linkage disequilibrium (LD) for this population is explained in Kadam 
et al. (2017). The GWAS was performed on a set of 271 (2013) and 268 
(2014) genotypes separately, with 267 genotypes being common across 
both years. Two GWAS methods were used to test the marker–trait asso-
ciations: single-locus and multi-locus analysis.

Single-locus analysis is a one-dimensional scan, typically identifying 
associations between single markers and traits. We performed this ana-
lysis using a compressed mixed-linear model (CMLM; Zhang et  al., 
2010) in GAPIT (Lipka et al., 2012). In the mixed model, we included 
population structure and family kinship (family relatedness), which were 
calculated by the GAPIT function using SNPs with ≥0.05 minor allele 
frequency (MAF).

	 Y = X Q K eα β µ+ + + 	

where Y represents the vector of phenotype, X represents the vector 
of SNPs, Q is the PCA matrix and K is the relative kinship matrix. 
Xα and Qβ are the fixed effects, and Kμ and e represent random effects. 
The Q and K matrices help to reduce the spurious false positive asso-
ciations. Correction for population structure (Q) substantially reduces 
the false positives but it sometimes eliminates true positive associations 
due to overcorrection. Therefore, the optimal number of principal 
components was estimated for each trait before incorporating them 
for CMLM tests, based on the forward model selection method using 
the Bayesian information criterion. This method helps to control both 
false-positive and -negative associations more effectively although it 
cannot eliminate both completely. We used a lower suggestive threshold 
probability P-value 1.0 × 10−4 (−log10 P=4) and superior Bonferroni 
corrected threshold as an upper limit (2013: −log10(0.05/45 437)=6; 
2014: −log10(0.05/45 414)=6) to detect significant associations.

The single-locus analysis corrects the confounding effects of popula-
tion structure and family kinship but does not consider the confounding 
effect of causal loci. The multi-locus GWAS is a method that corrects not 
only the confounding effects of population structure and family kinship 
but also the confounding and/or interaction effects of causal loci present 
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in the genome due to LD (Segura et al., 2012). We performed the multi-
locus GWAS using a modified version of the multi-locus mixed linear 
model (MLMM) in R (R script for mlmm.cof.r available at https://
cynin.gmi.oeaw.ac.at/home/resources/mlmm). We ran the complete 
model as recommended with stepwise forward inclusion of the strongest 
significant markers (lower P-value) and stepwise backward elimination of 
the last forward model (that is, least significant markers). Significant mark-
ers were selected based on the criteria explained by Kadam et al. (2017). 
Briefly, in the first step (like single-locus GWAS without any marker as 
a cofactor), we manually checked the P-value of SNPs before including 
them as a cofactor in the model. Then we continued adding markers to 
the model as cofactors based on cut-off threshold P-value≤1.00 × 10−4. 
Once no significant loci appeared below the threshold P-value, the 
model was stopped. All the significant cofactors identified were consid-
ered as significant loci.

Selecting a priori candidate genes underlying the genetic loci
The detailed protocol to select a priori candidate genes near to significant 
SNPs was followed as explained in Kadam et al. (2017).

Results

The flowering time was sensitive to seasonal climate 
variations

The flowering time synchronization approach was followed to 
reduce the confounding effect of flowering time differences of 
rice genotypes on grain yield and its components (those meas-
ured in this study) and related traits under stress (Fig. 1A, B). 
However, we witnessed deviation of our observed days to flow-
ering from expected days (r2=0.53 in non-stress and r2=0.46 
in stress conditions; Fig. 1C) in 2013. As rice flowering time is 
regulated by internal genetic cues and external stimuli such as 
photoperiod and temperature (Yin et al., 1997), such deviations 
were expected, since the synchronization in 2013 was based on 
2012 WS pre-experiment data due to lack of DS data. Many 
genotypes exhibited photothermal sensitivity across wet and 
dry seasons. Therefore, some genotypes experienced stress dur-
ing the flowering period (31%), whereas others experienced 
stress either before (60%) or immediately after flowering (8%). 

In 2014, we restructured the synchronization based on 2013 
DS data. This resulted in better synchronization with only small 
deviation observed from expected days to flowering (r2=0.91 
in non-stress and r2=0.85 in stress conditions; Fig. 1D). Further, 
to test the effect of days to flowering, we performed the analy-
sis with days to flowering as a covariate in the mixed model. 
The moderate to strong significant effect of days to flowering 
on yield, its components, and harvest index were detected in 
2013 stress, most likely due to desynchronized flowering time. 
Conversely, the improved flowering synchronization caused no 
significant effect in 2014 stress. The marginal (P<0.05) to mod-
erate (P<0.01) effect of days to flowering on yield, seed set, 
and harvest index was detected in both years under non-stress 
(Fig. 1C, D). This could be due to the pleiotropic effect of flow-
ering genes on panicle development (Crowell et al., 2016), a key 
determinant of rice grain yield.

Genotype effects and genotype-by-environment 
interactions accounted for variations in 
phenotypic traits

A combined mixed model ANOVA across years was carried 
out to divide the variation in genotype, treatment and year 
components and their interactions (Table 1). The variation in 
grain yield, its components, and other related traits differed 
significantly between genotypes (G; P<0.001), treatments (T; 
P<0.001) and years (Y; P<0.01 to P<0.001). Further, the yield, 
its component, and related traits of each genotype responded 
differently to treatment (G×T; P<0.001) and year (G×Y; 
P<0.001). The detailed descriptive statistics of these traits are 
given in Supplementary Table S1. The traits showed different 
distributions in non-stress and stress conditions for both years 
(Fig. 2). Yield ranged from 106.3 to 727.0 g m−2 in non-stress, 
and from 16.7 to 622.6 g m−2 under stress in 2013, and from 
102.8 to 839.7 g m−2 in non-stress, and from 78.1 to 761.1 g 
m−2 under stress conditions in 2014. Across all observations, 
H2 and h2 estimates ranged from 0.73 to 0.99 and from 0.27 
to 0.94, respectively, in 2013; and from 0.62 to 0.99 and from 

Table 1.  Analysis of variance (ANOVA) in 2013 and 2014 dry season experiments of three groups of traits: grain yield, yield 
components, and other related traits

Trait Unit G T Y G×T G×Y T×Y G×T×Y

Grain yield g m−2 *** *** *** *** *** *** **
Grain yield component traits
  Panicles per m2 m−2 *** *** *** *** *** ns ***
  Spikelets per panicle — *** *** *** *** *** ns
  Seed set % *** *** *** *** *** *** ***
  Thousand grain weight g *** *** ** *** *** ns ***
  Spikelets per m2 (×103) m−2 *** *** *** *** *** ***
Other related traits
  Harvest index — *** *** *** *** *** *** ***
  Total dry weight kg m−2 *** *** *** *** *** ns ns
  Non-grain dry weight kg m−2 *** *** *** *** *** *** ***
  Plant height cm *** *** *** *** *** * ns
  Days to flowering — *** *** *** *** *** *** ***
  Days to maturity — — — — — — — —

Spikelets per m2 is not an independent yield component but is the product of panicles per m2 and spikelets per panicle. G, genotype; T, treatment; Y, 
year. Significance level: *P<0.05, **P<0.01, ***P<0.001; ns, non-significant. 

https://cynin.gmi.oeaw.ac.at/home/resources/mlmm
https://cynin.gmi.oeaw.ac.at/home/resources/mlmm
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/ery186#supplementary-data
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0.69 to 0.93, respectively, in 2014 (Supplementary Table S1). 
The greater reduction of yield, seed set, and harvest index 
under stress in 2014 was due to higher stress intensity during 
2014 (−64 kPa) compared with 2013 (−46 kPa), driven by 
higher vapour-pressure deficit (Supplementary Figs S2A, S3D). 
However, a higher reduction of spikelets per panicle and spike-
lets per m2 despite lower stress intensity was observed during 
2013 than during 2014 (Fig. 2C, E). This could be due to vari-
ation in flowering time synchronization with more genotypes 
experiencing stress before flowering in 2013 than in 2014. 
These results clearly illustrate that stress affects the number of 
spikelets per m2 when imposed before flowering, but spike-
let fertility when imposed during flowering (Lanceras et  al., 
2004), as shown in Fig. 2C, E. The days to flowering differed 
significantly (P=0.002) between non-stress and stress in 2013, 
but not (P>0.05) in 2014 (Fig. 2I).

The first two principal components cumulatively explained 
>55% in 2013 and >61% in 2014 of the total phenotypic vari-
ation across treatments (Fig.  3). The genotypic variation in 
the first PC was mostly explained by yield, harvest index and 
spikelets per m2 in non-stress and yield, harvest index, spikelets 
per m2 and total dry weight under stress in 2013 and 2014. The 
genotypic variation in the second PC was explained by non-
grain dry weight, days to flowering, and total dry weight under 
non-stress, and plant height, non-grain dry weight, and days to 
flowering under stress in 2013 and 2014. In addition, the prin-
cipal component variations for the phenotypic traits differed in 
response to treatment and year (Fig. 3). This further confirms 
the strong G×T and G×Y interactions.

Phenotypic trait correlations and contribution of 
component traits to grain yield

Grain yield was significantly (P<0.05) correlated with most 
of its components and related traits across treatments and 

years (Supplementary Figs  S4, S5). However, non-significant 
(P>0.05) correlations of yield were found with thousand grain 
weight and non-grain dry weight in non-stress, and with pani-
cle number in 2013 stress. Yield was not significantly (P>0.05) 
correlated with non-grain dry weight across treatments in 
2014. The correlation of yield with spikelets per panicle was 
higher in stress (2013: r=0.73; 2014: r=0.46) than in non-stress 
conditions (2013: r=0.40; 2014: r=0.36) in both years, and 
the increase was stronger in 2013. Similarly, the correlation 
between yield and seed set increased from 0.62 in non-stress 
to 0.75 in stress conditions in 2014. The increased correlation 
of yield with spikelets per panicle in 2013 and with seed set 
in 2014 in stress conditions reflects the effect of variation in 
days to flowering synchronization. The correlation of yield 
with days to flowering was higher under stress (r=0.29) than 
under non-stress conditions (r=0.16) in 2013, but was almost 
the same (r=0.30) for both treatments in 2014.

We also tested the relative contribution of each component 
and related trait to yield through multiple linear regression. All 
the components and related traits significantly contributed to 
yield except for plant height and days to flowering in non-
stress in 2013 and days to flowering in stress conditions during 
2014 (Supplementary Table S2).

Treatment and year specific genetic loci for 
phenotypic traits

Grain yield and its components and related traits followed a 
normal distribution (Supplementary Figs  S4, S5), indicating 
the quantitative pattern suitable for genetic analysis. A  sum-
mary of GWAS results using single-locus and multi-locus 
analysis methods is given in Table 2. The detailed results are 
in Supplementary Tables  S3–S6. In total, we identified 38 
significant loci in non-stress conditions, and 69 loci in stress 
conditions during 2013, and 64 significant loci in non-stress 

Fig. 2.  Box-plot showing phenotypic distribution of grain yield and its components and related traits in non-stress (NS) and water-deficit stress (WD) 
during 2013 (n=271) and 2014 (n=268). Two-sample t-test P-value shows the significant difference between grain yield (A), its components (B–F), and 
related traits (G–J) in NS and WD conditions. n, number of genotypes. Inside boxplot, the bold line represents the median, box edges represent upper 
and lower quantiles, and whiskers are 1.5× the quantile of the data. Outliers are shown as open circles. Values in parentheses represent the significant 
percentage change (increase (+) or decrease (−)) in WD over NS conditions. Days to maturity across treatments in 2013 and data for non-grain tissue dry 
weight across treatments and years are given in Supplementary Table 1. The values of phenotypic traits given in the box-plot under 2013 water deficit are 
the original, not corrected for days to flowering to account variation in flowering synchronization. (This figure is available in colour at JXB online.)

http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/ery186#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/ery186#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/ery186#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/ery186#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/ery186#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/ery186#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/ery186#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/ery186#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/ery186#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/ery186#supplementary-data
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conditions, and 55 loci in stress conditions during 2014. Most 
loci were specific across treatments within years and within 
treatments across the years. Nevertheless, we also detected 14 
common loci (nine in 2013 and five in 2014) across treatments 
and eight common loci within treatments (six in non-stress 
and two in stress conditions) across years for the same compo-
nents and related traits (Supplementary Table S7).

Genetic analysis after correcting for days to flowering 
under stress conditions in 2013

Flowering time synchronization was strongly confounding the 
grain yield and its component traits in 2013 stress conditions 
(Fig.  1C, D). We corrected for yield, yield components, and 
other related traits (only harvest index in this group) using 
days to flowering as a covariate in the mixed model. The sin-
gle and multi-locus analysis of corrected trait values identi-
fied 31 additional loci using similar threshold P-values as 
mentioned earlier (Table  2; Supplementary Table  S8). Most 
genetic loci detected for non-corrected traits disappeared 

when corrected trait values were subjected to GWAS analy-
sis. This suggests that the trait variations associated with these 
loci were mostly explained by variation in days to flowering. 
Only five genetic loci (one on chromosome 4 for yield (Q9); 
one on chromosome 12 for spikelets per m2 (141 599) and 
three loci on chromosome 11 for harvest index (10 627 944, 
10 131 062, 10 329 677) were common to corrected and non-
corrected trait values (Supplementary Tables S4 and S8). The 
common (corrected vs non-corrected) loci detected for yield 
(Q9; Table 3; Fig. 4) and harvest index (Supplementary Fig. S6; 
Supplementary Tables S4, S8) recorded lower P-values for cor-
rected than the non-corrected trait value through single locus 
analysis. Despite correction, the novel locus Q10 on chromo-
some 3 for corrected yield, seed set, and harvest index over-
lapped with days to flowering (Table 3). In summary, statistical 
correction helped to explain the confounding effect of days to 
flowering and to some extent helped to eliminate its effect on 
yield under water deficit. Unless otherwise mentioned, all the 
mapping results discussed in the following sections were for 
the corrected trait loci under 2013 stress.
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Fig. 3.  The principal component analysis of grain yield, its components, and related traits with first two principal components (PC1 and PC2) in non-
stress (NS) (A, C) and water-deficit stress (WD) (B, D) during 2013 (A, B) and 2014 (C, D) DS. The traits marked inside the solid circle/ellipses contributed 
more to the variation explained by PC1 and those marked inside the dashed ellipses to PC2. DTF, days to flowering; DTM, days to maturity; GY, grain 
yield; HI, harvest index; NGDW, non-grain dry weight; PH, plant height; PN, panicles per m2; SP, spikelets per m2; SPP, spikelets per panicle; SS, seed 
set; TDW, total dry weight; TGW, thousand grain weight. (This figure is available in colour at JXB online.)

http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/ery186#supplementary-data
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Eight grain-yield loci revealed small to medium allelic 
effect in non-stress conditions

We identified two (Q1 and Q2) and six (Q3–Q8) loci for grain 
yield in 2013 and 2014, respectively (Table 3). There were no 
common loci across years, most likely due to significant vari-
ations in temperature (minimum and maximum) and vapour-
pressure deficit (VPD; Supplementary Fig. S3). These loci had 
a positive or negative effect (small to medium) on yield with 
regard to its minor allele (allele refers to the 0.05 frequency in 
the studied population). In 2013, the minor allele of Q1 had a 
positive effect on yield. Conversely, the minor allele of Q2 had 
a negative effect on yield. In 2014, the minor allele of Q3, Q5, 
and Q6 had a positive effect, while the minor allele of Q4, Q7, 
and Q8 had a negative effect on yield (Table 3).

Eighteen and sixty-eight a priori (known or characterized) 
candidate genes were harboured within the expected LD 
block by Q1 and Q2 in 2013, and Q3–Q8 in 2014, respect-
ively. Interestingly eight a priori candidate genes were identi-
fied (Supplementary Table S9). Q1 was close to OsPTR2 (6 
and 31 kb; two copies in LD block). The rice homologue of 
this gene, short panicle 1 (OsPTR2), regulates panicle and grain 
size and nitrate transport (Li et al., 2009). The homologue of 
OsPTR2 was recently detected at the q-28 locus (OsPTR9) 
for spikelet number per panicle (a key determinant of grain 
yield) in the same rice association panel as that used in this 
study (Rebolledo et al., 2016). Likewise, Q4 was close (34 kb 
from peak SNP) to serine–threonine kinase (OsSTE). The 
Arabidopsis orthologue of OsSTE (AtSTE or BLUS1) is the 
major regulator of stomatal opening (Takemiya et  al., 2013; 
Supplementary Table S9).

Seven grain-yield loci revealed a small to medium 
allelic effect in response to reproductive-stage water 
deficit

We identified two loci (Q9 and Q10) for grain yield under 
stress in 2013. The minor allele of both these loci had a negative 
effect on yield. Five significant loci Q11–Q15 were detected 
for yield under stress in 2014 (Fig. 5). The minor allele of Q11, 
Q12, and Q15 had a positive effect on yield, while the minor 
allele of two loci, Q13 and Q14, had a negative effect on yield. 
Q9 and Q10 harboured 18 and Q11–Q15 harboured 16 a 
priori candidate genes within the expected LD block region 
(Table 3). Seven a priori candidate genes, mostly near signifi-
cant SNPs, are given in Supplementary Table S9. The Q9 locus 
was close (13 kb) to the phosphomannomutase gene regulat-
ing L-ascorbic acid biosynthesis and response to abiotic stress 
stimulus (Gene Ontology (GO):0009628). L-Ascorbic acid 
acts as a redox buffer to detoxify reactive oxygen species (ROS) 
(Arrigoni and De Tullio, 2002). Q11 was close to squalene 
monooxygenase or epoxidase (16 and 23 kb; two copies in LD 
block) and response to abiotic stress stimulus (GO:0009628). 
This gene is known to regulate ROS, stomatal responses and 
water-deficit tolerance in Arabidopsis (Posé et al., 2009).

Only three loci for grain yield acted via change in seed 
set percentage

Although rice grain yield is co-determined by panicle num-
ber, spikelets per panicle, seed set percentage, and grain weight, 
very few loci of these component traits co-located with loci for 
yield per se. The seed set percentage is one of the most important 
yield components as indicated by its strong correlation with yield 
(Supplementary Figs  S4, S5). Three loci were regulating yield 
through changes in seed set percentage, i.e. two loci designated as 
Q2 (2013) and Q7 (2014) in non-stress, and Q10 (2013) in stress 
conditions. The major allele (allele refers to the 0.95 frequency 
in the studied population) of these loci had a respective positive 
effect on yield, seed set, and harvest index (Fig. 6). In addition, the 
Q10 was also detected for days to flowering. No loci were com-
mon for yield and seed set in 2014 stress conditions, but one of 
the loci on chromosome 1 (29 223 354) was commonly detected 
for seed set and harvest index (Supplementary Fig. S7). Similarly, 
the major alleles had a respective positive effect on seed set, har-
vest index, and yield (irrespective of genetic significance) (Fig. 7). 
Hence, these loci were regulating yield through the effect of seed 
set on harvest index.

Four a priori candidate genes were predicted within the 
expected LD block of these loci. The Q2 was close (55  kb 
from peak SNP) to the plastocyanin gene that regulates flower 
development (GO:0009908) and pollination (GO:0009856) in 
rice (Supplementary Table S9). The Arabidopsis orthologue of 
this gene regulates seed set and pollen tube growth (Dong et al., 
2005). Q7 was within the novel expressed protein, which pro-
vides an entry point for future study. Sugar transport or uptake 
is essential for normal pollen development (Reinders, 2016), 
while the lack of starch synthesis arrests the pollen develop-
ment in water deficit conditions thereby regulating seed set 
(Sheoran and Saini, 1996). Our Q10 locus was within the sugar 

Table 2.  Summary of genetic loci detected in 2013 and 2014 
under non-stress (NS) and water-deficit stress (WD) conditions 
for three groups of traits: grain yield, yield components, and other 
related traits

Traits 2013 2014

NS WD WDa NS WD

Grain yield 2 4 2 6 5
Grain yield component traits
  Panicles per m2 6 12 7 9 3
  Spikelets per panicle 5 9 6 2 na
  Seed set 3 7 7 8 11
  Thousand grain weight 3 4 na 6 8
  Spikelets per m2 1 4 1 4 3
  Subtotal 18 36 21 29 25
Other related traits
  Harvest index 6 7 8 4 2
  Total dry weight 3 2 — 4 11
  Non-grain dry weight 3 3 — 5 2
  Plant height 2 6 — 6 4
  Days to flowering 3 11 — 10 6
  Days to maturity 1 na — — —
  Subtotal 18 29 8 29 25
Total 38 69 31 64 55

na, no marker trait association analysis performed
a Marker-trait associations detected for corrected trait values in water-
deficit stress (see the text for the correction method).

http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/ery186#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/ery186#supplementary-data
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transporter gene that plays an important role in sugar distri-
bution. The rice grain yield MQTL2.1 (meta-analysis QTL) 
detected in water-deficit conditions also contained the sugar 
transporter gene (Swamy et al., 2011). Similarly, the locus on 
chromosome 1 for seed set and harvest index in 2014 stress was 
near (34 kb from peak SNP) to the nitrate transporter gene 
that plays a role in rice yield increment (Fan et al., 2016).

Discussion

The main aim of this study was to link phenotypic variation 
with genetic markers, thereby gaining insights about promis-
ing candidate genes and the genetic architecture controlling 
yield traits. To the best of our knowledge, this is the first study 
conducted on the rice PRAY association mapping panel under 
reproductive-stage water-deficit stress. The key findings from 
our study are discussed below.

Statistical trait adjustment can reduce confounding 
effect of desynchronized flowering on genetic analysis 
under water deficit

The desynchronized flowering time may result in the identi-
fication of QTLs, often colocating with QTLs for phenology 

and grain yield in reproductive-stage stress (Pinto et al., 2010). 
Our genetic analysis of statistically corrected trait values was 
effective in minimizing the effect of desynchronized flower-
ing time, as it led to detection of several novel loci that were 
not detected for non-corrected trait values. Despite statistical 
adjustment for flowering time, our novel Q10 for grain yield 
was co-localized with flowering time (different SNPs but fall-
ing within the same gene and LD block). In addition, it was 
also co-localized with seed set and harvest index. Previous 
studies in rice have identified several grain yield QTLs using 
linkage mapping under reproductive water-deficit stress con-
ditions (Bernier et  al., 2007; Venuprasad et  al., 2009; Vikram 
et al., 2011; Swamy et al., 2013; Mishra et al., 2013), of which 
some co-localized with plant height (qDTY6.2), days to flow-
ering (qDTY3.2), or both (qDTY1.1). Interestingly, the major 
effect of qDTY1.1 was consistent even after statistical correc-
tion of grain yield using flowering time and plant height as 
covariates (Vikram et al., 2011), and the recent detailed char-
acterization confirmed the tight linkage and not the pleiot-
ropy of this QTL with plant phenology (Vikram et al., 2015). 
Our novel Q10 provided higher confidence of a causa-
tive SNP placed directly within the sugar transporter gene. 
However, this SNP was just 5 kb away from the COP9 signa-
losome complex subunit 4 gene within the same LD block 

Table 3.  GWAS results for final set of genetic loci detected for grain yield in non-stress and water-deficit stress conditions during 2013 
and 2014. Detailed GWAS results for yield components and related traits across treatments and years are given in Supplementary 
Tables S3–S6 and S8

Treatment Year
(mean grain
yield (g m−2))

Locus 
name

SNP posa Chrb Allele MAFc PCMLM
d PMLMM

e AEf  
(g m−2)

LD blockg Size (kb) Known
genesh

Start End

Non-stress 2013 (451.1) Q1 10 101 900 11 C:G 0.336 2.72 × 10−5 — 30.13 10 101 900 10 173 685 71 2
Q2 30 523 925 2 G:A 0.070 — 5.78 × 10−8 −175.90 30 397 910 30 541 202 143 16

2014 (521.9) Q3 13 199 901 12 C:T 0.468 6.84 × 10−5 — 30.04 12 917 853 13 298 195 380 8
Q4 26 796 595 3k C:T 0.097 9.91 × 10−5 2.20 × 10−6 −46.18 26 756 997 26 978 105 221 9
Q5 29 142 398 2l C:A 0.179 — 4.19 × 10−5 13.98 29 122 557 29 261 158 138 9
Q6 19 367 031 10l T:G 0.466 — 1.75 × 10−6 74.08 19 280 939 19 474 522 193 21
Q7 5 105 627 12l A:C 0.078 — 3.03 × 10−5 −186.24 5 101 105 539 0949 289 12
Q8 42 643 337 1l A:G 0.347 — 6.58 × 10−5 −97.80 42 587 683 42 643 699 56 9

Water deficit 2013 (317.3) Q9i 34 815 277 4 C:T 0.074 1.17 × 10−5 1.77 × 10−6 −81.29 34 815 277 34 833 179 17 5
— — — — — 1.29 × 10−6 3.05 × 10−6

Q10j 5 113 428 3k T:C 0.424 3.55 × 10−5 5.17 × 10−6 −40.61 5 021 158 5 167 439.00 146 13
2014 (319.5) Q11 6 934 188 3k A:G 0.397 8.26 × 10−5 8.73 × 10−6 31.47 6 908 684 7 020 707 112 7

Q12 42 144 827 1l T:C 0.366 — 1.86 × 10−7 6.10 42 123 552 42 144 993 21 2
Q13 16 038 003 10l T:C 0.358 — 5.46 × 10−6 −49.86 16 024 382 16 110 372 85 6
Q14 23 005 301 11l G:A 0.276 — 1.12 × 10−5 −23.54 22 976 390 23 005 386 28 0
Q15 27 115 652 11l G:A 0.075 — 4.92 × 10−5 33.65 27 115 609 27 123 090 7 1

a Single nucleotide polymorphism (SNP) position.
b Chromosome.
c Minor allele frequency (MAF).
d P-value of single-locus compressed mixed linear model (CMLM).
e P-value of multi-locus mixed model (MLMM).
f Allelic effect with respect to minor allele=(average traits value of genotypes carrying minor allele−average traits value of genotypes carrying major allele).
g Linkage disequilibrium block.
h Total number of known characterized genes in LD block.
i Genetic locus detected for non-corrected and corrected grain yield value.
j Genetic locus detected for corrected grain yield value and coinciding with days to flowering.
k Genetic locus detected through CMLM and MLMM methods.
l Genetic locus detected through MLMM method only.
All the unmarked loci were detected through CMLM method. The italic P-value is for corrected grain yield value. The genetic locus marked in bold (Q2) 
overlaps with panicle weight (equivalent to grain yield) from Kikuchi et al. (2017) (Supplementary Table S10).

http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/ery186#supplementary-data
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(Supplementary Table S9). The COP9 signalosome complex 
gene is known to regulate flower development in Arabidopsis 
(Wang et al., 2003), although the role of this gene in rice flow-
ering has not been reported. Therefore, a further characteriza-
tion of Q10 would be interesting to decipher the relationship 

with flowering time and stress tolerance to test linkage versus 
pleiotropy. Nevertheless, the effect of our consistent Q9 for 
grain yield (detected using either corrected or non-corrected 
values) was independent of flowering time stress conditions. 
More precise flowering time synchronization in 2014, which 

Fig. 4.  (A) GWAS results (Manhattan and quantile–quantile plot) detected through single-locus compressed mixed linear model (CMLM) and multi-locus 
mixed model (MLMM) for non-corrected and corrected (using days to flowering as covariate) grain yield in 2013 water-deficit stress (WD) conditions. 
Significant SNPs in the Manhattan plot of MLMM are numbered according to the order in which they were included as a cofactor in the regression model. 
(B) Identified LD block (17 kb) based on r2 value between SNPs on chromosome 4 and the colour intensity of the box on the LD plot corresponds with r2 
(multiplied by 100) according to legend. Significant SNP marked by first rectangle was detected by CMLM and MLMM and the next three rectangles only 
by CMLM approach. (This figure is available in colour at JXB online.)

http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/ery186#supplementary-data
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allowed identification of the genetic loci without having any 
co-localization with flowering time in stress conditions, added 
value to the findings. To the best of our knowledge, this is the 
first report demonstrating the effectiveness of better synchro-
nization of flowering time phenology on a large GWAS panel 
under stress conditions at field level.

Genetic control of grain yield, its components, 
and related traits was mostly independent and 
environment-specific

Grain yield is a complex trait determined by many interactive 
physiological processes changing temporally during the grow-
ing period. These processes often match the development of the 

key yield components in cereals that are genetically less com-
plex than yield per se (Yin et al., 2002). In rice, grain yield is the 
product of the panicle number or productive tiller (determined 
during the vegetative phase), spikelets per panicle (determined 
during panicle initiation), seed set percentage (determined dur-
ing gametogenesis and anthesis), and individual grain weight 
(determined during grain filling). The genetic selection for each 
of these traits during rice domestication has given rise to rich 
genetic diversity (Doebley et al., 2006; Sweeney and McCouch, 
2007). To date, molecular genetic studies have detected QTLs 
underlying these genetic changes in rice yield components 
(http://www.gramene.org/). From these QTLs some of the 
candidate genes were successfully identified, notably display-
ing improvement in grain yield (Ashikari et al., 2005; Fan et al., 

Fig. 5.  (A) GWAS results (Manhattan and quantile–quantile plot) detected through single-locus compressed mixed linear model (CMLM) and multi-
locus mixed model (MLMM) for grain yield in 2014 water-deficit stress (WD) conditions. Significant SNPs on the Manhattan plot of MLMM are numbered 
according to the order in which they included as a cofactor in regression model. (B) Identified LD block (112 kb) based on r2 value between SNPs on 
chromosome 3 and the colour intensity of the box on the LD plot corresponds with r2 (multiplied by 100) according to the legend. Significant SNP marked 
by a rectangle was detected by CMLM and MLMM. (This figure is available in colour at JXB online.)

http://www.gramene.org/
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Fig. 6.  Allelic effect of Q2 (A–C; 2013), Q7 (D–F; 2014) in non-stress and Q10 (G–I; 2013) in water-deficit stress conditions on grain yield, seed set, and 
harvest index. Allelic effect of Q7 on harvest index was significant regardless of GWAS significance. Two-sample t-test P-value shows significant allelic 
effect difference with reference to major and minor allele. The Q10 locus also coincided with days to flowering.
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reference to major and minor allele.
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2006; Song et al., 2007; Shomura et al., 2008; Huang et al., 2009; 
Miura et al., 2010). For instance, the SPIKE gene/allele regu-
lating the spikelet numbers indicated 13–36% yield increment 
in rice (Fujita et  al., 2013). In the present study, genetic dis-
section of these yield components enabled us to detect more 
loci than yield per se that were directly or indirectly contribut-
ing to rice grain yield. The co-localization of grain yield loci 
with yield components was limited in this study compared with 
other studies in rice (Lanceras et al., 2004). This could be due 
to compensation among the yield components. In addition, 
these results emphasize the need for genetic analysis of yield 
components to identify additional genetic determinants having 
indirect effect on grain yield, providing alternative routes to 
enhance yield under water deficit.

Except for one locus on chromosome 12 for spikelets per m2 
in 2014, the majority of the loci for grain yield and its com-
ponent traits were specific to non-stress or stress conditions in 
both years. These results are in agreement with previous studies 
in rice (Lanceras et al., 2004; Vikram et al., 2011; Kumar et al., 
2014) and other crop species (Yin et al., 2002; Millet et al., 2016). 
Hence, the greater dependence on environments appeared to 
be a common characteristic of QTLs, although this does not 
negate their importance in marker-assisted selection. Despite 
strong variation in weather, we also detected four consistent 
loci: one each for panicles per m2 and spikelets per panicle on 
chromosomes 10 (19 903 199) and 4 (23 423 399), respectively, 
and two loci on chromosomes 2 (30 699 332) and 5 (5 366 489) 
for thousand-grain weight across years in non-stress condi-
tions (Supplementary Table S7). These consistent regions with 
favourable alleles could be used for improving yield potential.

Few overlaps of genetic loci with previously identified 
markers using same diversity panel

The PRAY population has been previously used in GWAS 
for a range of phenotypic traits (Qiu et al., 2015; Al-Tamimi 
et al., 2016; Rebolledo et al., 2016; Kikuchi et al., 2017; Kadam 
et  al., 2017). When comparing our results with these previ-
ous studies, we could not find any overlap between significant 
markers, except a SNP marker detected for plant height (posi-
tion: 38 286 772) on chromosome 1, which was detected in our 
previous study (Kadam et al., 2017). The most likely reasons for 
this lack of co-localization are difference in type and timing of 
stress or growing environments (QTL×environment interac-
tion), population size, and molecular marker data used by pre-
vious studies or novel GWAS analysis methods (multi-locus) 
that are used in this study. Therefore, to make a more logical 
comparison for the same traits, we reanalysed the number of 
spikelets per panicle from Rebolledo et  al. (2016) and yield 
and yield components from Kikuchi et  al. (2017), using the 
same SNP datasets and analysis methods that are used in this 
study. This comparative analysis identified one locus on chro-
mosome 2 (30 518 548) for panicle weight (equivalent to grain 
yield) from Kikuchi et  al. (2017) that overlapped with grain 
yield locus (Q2: 30 523 925; different SNP but falls within 
the same LD block; Table 3; Supplementary Table S10) from 
2013 non-stress conditions. In addition, there was also no over-
lap of a significant marker for grain yield and its components 

when comparing with other studies using different mapping 
panels under reproductive-stage water deficit (Ma et al., 2016; 
Pantalião et al., 2016; Swamy et al., 2017). The major reasons 
for this were different rice genotypes or population size and 
inherent environmental and field variation for stress treatment 
(QTL×environment interaction). Another possible reason 
could be use of indica subspecies genotypes in this study while 
previous studies either used japonica subspecies (Pantalião 
et al., 2016) or small population size (75 genotypes) with sim-
ple sequence repeat markers (Swamy et al., 2017). In addition, 
it can be difficult to identify genomic regions or genes deter-
mining the trait difference across subspecies or genotypes.

Seed set regulates the assimilate partitioning and 
grain yield

Better optimization of assimilate partitioning to reproductive 
organs with minimal competition among reproductive organs 
is essential to achieve stable and higher grain yield. So far, the 
physiological and genetic basis of the above processes have been 
poorly understood in rice and other cereal crops. Our study 
showed that the co-localization of grain yield loci with its com-
ponents was rare. However, four genetic loci, namely Q2 and 
Q7 in non-stress, and Q10 and 29 223 354 (SNP position) in 
stress conditions, were regulating the grain yield and harvest 
index through changes in the seed set (Figs 6, 7). This indicates 
that the seed set is a critical determinant of assimilate partition-
ing (harvest index), thereby regulating the final expression of 
grain yield. A recent GWAS analysis confirmed these interac-
tions in wheat (Guo et al., 2017). Hence, these identified loci 
could be pyramided into an ‘ideotype’ at genomic level through 
marker-assisted selection to enhance rice grain yield in non-
stress and stress conditions. In addition, such loci could also be 
of interest in identifying the physiological and molecular basis 
of assimilate partitioning to reproductive organs.

Promising a priori candidate genes for grain yield and 
water-deficit stress resilience

We detected a priori candidate genes near peak SNP(s) within 
the LD block for grain yield loci (Supplementary Table S9). A 
priori candidate genes of grain yield loci can indicate possible 
roles of underlying physiological (SET kinase, sugar and nitrate 
transporter genes) and reproductive developmental (plasto-
cyanin gene) processes in regulating the grain yield. Likewise, 
the abiotic stress tolerance candidate genes were detected 
near to grain yield loci in water-deficit conditions, of which 
genes regulating the detoxification of ROS (phosphoman-
nomutase and squalene epoxidase genes) seem to be critical 
in rice stress tolerance (Selote and Chopra, 2004; Pyngrope 
et al., 2013). These candidate genes need to be considered to 
detect the most likely causal genes. However, detailed large-
scale molecular validations need to be conducted using the 
available approaches of RNAi, knockout mutants transgenic 
overexpression, and gene editing. Similarly, the loci for com-
ponents and related traits that were not co-localized with 
yield per se could also be interesting candidates for further 
identification of novel genes.

http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/ery186#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/ery186#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/ery186#supplementary-data
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Concluding remarks

This study provides novel genetic loci for rice grain yield, its 
components, and related traits under non-stress and stress con-
ditions in field phenotyping experiments. We detected several 
favourable alleles regulating these traits that, upon validation, 
can be effectively used in improving yield. Additional genetic 
loci with less overlap of yield component traits to yield per se 
clearly indicate the independent genetic regulation of these 
traits. Thus, many loci for component traits had an indirect 
effect on yield, which cannot be detected while mapping yield 
directly. This indicates the complexity of yield as a trait despite 
moderate to high heritability, which is often used as a selec-
tion criterion to improve yield potential and stress tolerance. 
Hence, future studies should also explore the genetic basis of 
individual component traits that are genetically less complex—
an approach expected to give additional useful information to 
further enhance yield.

Supplementary data

Supplementary data are available at JXB online.
Fig. S1. Field set-up of 296 genotypes screened under non-

stress and reproductive-stage water-deficit stress in 2013 and 
2014 experiments.

Fig. S2. Soil moisture tension measured using tensiometers 
in water-deficit stress field during 2013 and 2014, and rainfall 
pattern measured during stress period in 2013 and 2014. 

Fig.  S3. Climate parameters observed during the growing 
period. 

Fig. S4. Pearson correlation coefficient between grain yield 
and its components and related traits in 2013 non-stress and 
water-deficit stress conditions. 

Fig. S5. Pearson correlation coefficient between grain yield 
and its components and related traits in 2014 non-stress and 
water-deficit stress. 

Fig.  S6. GWAS results (Manhattan and quantile–quantile 
plot) detected through single-locus compressed mixed linear 
model and multi-locus mixed model for non-corrected and 
corrected harvest index (using days to flowering as a covariate) 
in 2013 water-deficit stress conditions. 

Fig.  S7. GWAS results (Manhattan and quantile–quantile 
plot) detected through single-locus compressed mixed linear 
model and multi-locus mixed model for seed-set and harvest 
index in 2014 water-deficit stress conditions.

Table S1. Summary statistics of grain yield and its compo-
nents and related traits in 2013 and 2014 non-stress and water-
deficit stress conditions.

Table S2. Multiple linear regression of grain yield with its 
components and related traits in non-stress and water-deficit 
stress conditions during 2013 and 2014. 

Table S3. The details of genetic loci detected for grain yield 
components and related traits in 2013 non-stress conditions 
using compressed mixed linear-model and multi-locus mixed 
model methods. 

Table  S4. The details of genetic loci detected for uncor-
rected grain yield, its components, and related traits in 2013 

water-deficit stress conditions using compressed mixed linear-
model and multi-locus mixed model methods.

Table S5. The details of genetic loci detected for grain yield 
components and related traits in 2014 non-stress conditions 
using compressed mixed linear-model and multi-locus mixed 
model methods.

Table S6. The details of genetic loci detected for grain yield 
components and related traits in 2014 water-deficit stress con-
ditions using compressed mixed linear-model and multi-locus 
mixed model methods.

Table S7. Common genetic loci detected across treatments 
(non-stress versus water-deficit stress) in 2013 or 2014 (A). 
Similarly, common genetic loci detected across years (2013 
versus 2014) in NS or WD conditions (B).

Table S8. The details of genetic loci detected for corrected 
grain yield components and related traits (only on harvest 
index excluding the other traits in this group) in 2013 water-
deficit stress conditions using compressed mixed linear-model 
and multi-locus mixed model methods. 

Table S9. The list of a priori candidate genes within the link-
age disequilibrium block of GWAS significant peak SNP/loci 
for grain yield in non-stress and water-deficit stress conditions. 

Table S10. The details of genetic loci detected from previ-
ously published data on grain yield and yield components from 
Kikuchi et al. (2017), and number of spikelets per panicle (a 
key yield component) from Rebolledo et al. (2016), using the 
same rice PRAY panel.
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