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ABSTRACT

A large majority of human nutrition research uses nonrandomized observational designs, but this has led to little reliable progress. This is mostly
due to many epistemologic problems, the most important of which are as follows: difficulty detecting small (or even tiny) effect sizes reliably for
nutritional risk factors and nutrition-related interventions; difficulty properly accounting for massive confounding among many nutrients, clinical
outcomes, and other variables; difficulty measuring diet accurately; and suboptimal research reporting. Tiny effect sizes and massive confounding
are largely unfixable problems that narrowly confine the scenarios in which nonrandomized observational research is useful. Although nonrandom-
ized studies and randomized trials have different priorities (assessment of long-term causality compared with assessment of treatment effects), the
odds for obtaining reliable information with the former are limited. Randomized study designs should therefore largely replace nonrandomized
studies in human nutrition research going forward. To achieve this, many of the limitations that have traditionally plaguedmost randomized trials in
nutrition, such as small sample size, short length of follow-up, high cost, and selective reporting, among others, must be overcome. Pivotal mega-
trials with tens of thousands of participants and lifelong follow-up are possible in nutrition science with proper streamlining of operational costs.
Fixable problems that have undermined observational research, such as dietary measurement error and selective reporting, need to be addressed
in randomized trials. For focused questions in which dietary adherence is important to maximize, trials with direct observation of participants in
experimental in-house settingsmay offer clean answers on short-termmetabolic outcomes. Other study designs of randomized trials to consider in
nutrition include registry-based designs and “N-of-1”designs. Mendelian randomization designs may also offer somemore reliable leads for testing
interventions in trials. Collectively, an improved randomized agenda may clarify many things in nutrition science that might never be answered
credibly with nonrandomized observational designs. Adv Nutr 2018;9:367–377.
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Introduction
In human nutrition science, nonrandomized observational
studies outnumber randomized trials by a wide margin (Text
Box 1). Here, we argue that this should no longer continue.

This article is a review from the session “Observational Studies vs. RCTs in Nutrition: What Are
the Tradeoffs?”presented at the 6th Annual Advances & Controversies in Clinical Nutrition
Conference held 8–10 December 2016 at the Rosen Shingle Creek in Orlando, Florida. The
conference was jointly provided by the American Society for Nutrition (ASN) and Tufts
University School of Medicine.
Perspective articles allow authors to take a position on a topic of current major importance or
controversy in the field of nutrition. As such, these articles could include statements based on
author opinions or point of view. Opinions expressed in Perspective articles are those of the
author and are not attributable to the funder(s) or the sponsor(s) or the publisher, Editor, or
Editorial Board of Advances in Nutrition. Individuals with different positions of the topic of a
Perspective are invited to submit their comments in the form of a Perspectives article or in a
Letter to the Editor.

A nonrandomized observational study of nutrition can pro-
duce positive value only when it probes large effect sizes
(large in comparison to noise and biases) in a context in
which randomization would be unethical or otherwise un-
feasible. Severe nutritional deficiencies and other excep-
tional circumstances can therefore be examined reliably with
epidemiologic research, but everyday questions about mod-
est differences in dietary intake require random alloca-
tion of exposure for trustworthy answers. Overreliance on
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nonrandomized observational data has created widespread
confusion about optimal nutrition (1, 2). Clearly, diet is im-
portant for health, and poor diet is a major contributor to
the global burden of disease (3), but ambiguous and some-
times contradictory findings from nutritional epidemiology
have made it difficult to identify best approaches for curtail-
ing this burden.Many prominent epidemiologic associations
(including highly cited studies on α-tocopherol, β-carotene,
vitamin C, vitamin D, selenium, calcium, and low-fat diets)
have not been corroborated by large randomized trials (4,
5). Discordant or even opposite results between nonrandom-
ized observational studies and randomized trials have been
summarized in meta-analyses as well (6, 7). Questionable
nonrandomized data have led to dietary guidelines that did
not curb the twin epidemics of obesity and type 2 diabetes,
and it is unknown if the latest guidelines (8) will fare better.
Progress in nutrition science may continue to be stunted un-
til most observational research is replaced with randomized
study designs.

Text Box 1. Ratio of Nonrandomized Observational
Studies to Randomized Controlled Trials in
Nutrition Science
On 7April 2017, PubMed listed 511,648 papers with the key-
words “dietORnutrientORnutrition” after filters for abstract
availability and human species were both applied. We iden-
tified a random sample of 100 papers that reported results
from either a nonrandomized observational study or a ran-
domized controlled trial in the abstract. In this sample, 88 ab-
stracts reported results from a nonrandomized observational
study and 12 abstracts reported results from a randomized
controlled trial, yielding a ratio of 7.3:1.

Nonrandomized observational research in nutrition is
limited primarily by low signal and high noise, tiny effect
sizes for nutritional risk factors and nutrition-related inter-
ventions (9), andmassive confounding among densely corre-
lated nutrients, clinical outcomes, and other variables of in-
terest (10, 11). These largely unfixable problems pervade and
cripple most epidemiologic analyses regardless of whether
they use cohort, case-control, or cross-sectional designs. Di-
etary measurement error (12) and nontransparent research
reporting (13) are 2 additional problems that undermine
the credibility of nutritional epidemiology, although they are
more fixable.

Random allocation of exposure can overcome some of
these major problems, but there is also a need for revamp-
ing the randomized research agenda (14). The current agenda
spreads resources too thinly over thousands of trials (15),
with very few having the requisite size and duration for ob-
taining clear answers. It would be better to use these same
resources instead to conduct a few dozen more-informative
megatrials every decade, with many thousands of partici-
pants, long-term follow-up, and hard clinical endpoints. The
megatrials would focus on pragmatic insights about nutrition
that involve real-world (often low) adherence to dietary

prescriptions. Although some of these trials may seem to
have the disadvantage of requiringmany years (or decades) of
follow-up, observational nonrandomized studies have failed
to give reliable answers for a century. For mechanistic prob-
lems and proof-of-concept questions in which compliance
with the experimental protocol must be maximized, short-
term randomized trials with in-house direct observation can
be performed.

In this article, we review the inherent problems of nu-
tritional epidemiology and the shortcomings of the current
randomized research agenda and offer potential solutions for
moving forward with more trustworthy nutrition science.

Inherent, Unfixable Problems in Nutrition
Science
Despite all of the work that has been done in nutrition sci-
ence, a healthy diet still cannot be defined professionally in a
way that experts agree on—anything more specific than “eat-
ing with prudence” introduces controversy. Dietary guide-
lines are always argued over ferociously, and the relative mer-
its of commonly consumed nutrients have been debated for
decades (1, 2). This confusing state is not surprising when al-
most every single nutrient has been associated with almost
any outcome in peer-reviewed publications (16). For exam-
ple, not only havemost nutrients been associated with cancer
risk but most of the nutrients have published reports of in-
creased risk in 1 study and decreased risk in another (17).
Nutrition science has become an epidemic of questionable
results. Meta-analyses of retrospectively compiled data suf-
fering from biases and selective reporting do not necessarily
make things better.

Two major epistemological problems stand out in nu-
trition science for being especially pervasive and difficult
to fix. One problem is that many nutritional risk factors
and nutrition-related interventions have tiny effect sizes for
clinical outcomes, with RRs in the range of 0.95–1.05 or even
0.99–1.01 (9). For example, fruit consumption seems to have
an HR for cancer risk of ∼0.999/serving (100 g) (18). Tiny
effects may be all that remain to be found in nutrition sci-
ence, because most of the more conspicuous effects—which
typically relate to either severe nutrient deficiency or excess
(obesity)—have been found already (Figure 1). There will be
many more claimed discoveries of tiny effects in the future
with the emergence of “big data” (20).

Tiny effects create big controversies that cannot be settled
easily. A recent example is the International Agency for
Research on Cancer monograph that classified processed
meat as fully proven to be carcinogenic (class 1) and red
meat as a probable carcinogen (class 2A) (21). The HR for
overall cancer risk may be ∼1.01–1.02/serving (100 g) of red
or processed meat. Even for colorectal cancer risk, where the
observed effect is the strongest, a maximum HR of 1.18/50 g
processedmeat (22) is too small to avoid residual uncertainty
given the other problems that we discuss below.

Researchers commonly try to sort out whether a newly
found tiny effect is true or spurious by considering bi-
ological plausibility on the basis of external evidence
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Outer ring –– typical effect of smoking on lung cancer risk (RR ≥10)

Middle ring – minimum effect size needed to upgrade the strength of observational evidence using GRADE criteria (RR = 3)

Bullseye ––– typical single nutrient association with myocardial infarction (protective or harmful; RR ≤ 1.05) 

FIGURE 1 Epidemiologists may take aim at effects that differ greatly in size. One of the greatest achievements of observational
epidemiology was the demonstration that smoking has a causal effect on lung cancer risk. In the case of smoking and lung cancer, the RR
is very large (RR ≥ 10); this is akin to hitting the outer ring of the target. The middle ring must be hit when seeking the minimum effect
size needed to upgrade the strength of observational evidence using the GRADE criteria (corresponding to RR = 3) (19). Few
epidemiologic associations have such effect sizes. And the hit-to-miss ratio will be dismal when firing away at the small bullseye, which
represents a typical association between a single nutrient and a clinical outcome (RR ≤ 1.05). GRADE, Grading of Recommendations
Assessment, Development, and Evaluation.

(e.g., mechanistic data). If only highly relevant external
evidence is invoked, this should greatly circumscribe the
possible inferences that could be made with the primary
data; however, too often, off-topic external findings are in-
stead conscripted and forced to fight in support of whatever
inference a researcher wishes to make (23). At its worst, a
consideration of biological plausibility can unduly influence
which primary results get published, because different results
can be easily obtained (24) and selectively reported (13) de-
pending on whatever the experts believe they should be (25).

Statistical significance has lost the authority to determine
whether a tiny effect is real or illusory, now that almost all
published articles report an analysis with P values <0.05

(26). Some researchers have proposed lowering the threshold
to 0.005 or even 10−6 (27, 28). Alternatively, falsification
endpoints could be used to calibrate thresholds of statistical
significance (29, 30). This would involve prespecifying a
number of effects known in advance to be null, and study-
ing what P values they generate in each large database:
for example, if every P value for a null effect were >10−8,
then 10−8 would become the cutoff for picking signifi-
cant findings. These suggested approaches would reduce
the risk of false positives, but they would also increase
the risk of false negatives. Moreover, we still have limited
experience about how these approaches could affect the
sensitivity and specificity of findings in different settings
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and data sets. With a massive data set, it could be easy to
obtain P values <10−100 for associations that are manifestly
dubious (31).

When a field of research is saturated with tiny ef-
fects, even small errors or biases can result in innumer-
able misleading inferences, both by drowning out true ef-
fects and by generating spurious effects (32). This leads
to the second major problem in nutrition science that is
very difficult to fix. Confounding is a major problem gen-
erally, but it is an even bigger one in nutrition science,
specifically as a result of very dense correlations among
variables of interest. For practically every nutrient, amount
of intake correlates (positively or negatively) with the in-
take of multiple other nutrients (10). It also correlates
with many other environmental exposures (e.g., pollution),
and with many variables that pertain to lifestyle, edu-
cational level, and socioeconomic status (11). Several of
these exposures, including multiple nutrients, are associ-
ated with both clinical outcomes and intermediate outcomes
(10, 11), but most of these significant associations proba-
bly do not reflect causal relations. Attempts to disentangle
causes from spurious epiphenomena in these densely con-
nected “correlation globes” rarely have good odds of success
(10) (Figure 2).

For example, in an analysis with NHANES data of 317
exposures, serum trans-β-carotene was significantly associ-
ated with 68 other exposure variables, including 16 other nu-
trients (34). If any of the other exposure variables happen
to have a genuine association with a major outcome (e.g.,
cancer), β-carotene will also seem to have that association
whether it is real or not. This may explain why chemopro-
phylaxis with β-carotene and other antioxidants for cancer
prevention was such a prevalent idea for years, and why it
continues to be endorsed by some experts despite there be-
ing very strong evidence against it frommultiple randomized
trials (35).

Although epidemiologists may think carefully about how
to deal with confounding, it is extremely difficult to precisely
specify a regression model that could properly account for
such a dense set of correlations among so many variables.
Another example is the relation between tobacco and diet.
Tobacco is known to be associated causally withmultiple dis-
eases. However, in another analysis with the same NHANES
data, serum cotinine (a marker of tobacco exposure) had
modest-to-strong associations with dozens of other environ-
mental exposures, including 7 nutrients (34). If an associa-
tion is found between one of these other exposures and a
health outcome, one can never be sure how much of this
should be attributed to the other exposure or to smoking.
Simply adjusting for smoking in the regression model prob-
ably will not suffice, because several additional variables may
need to be accounted for, and tobacco exposure and nutrient
intake are both measured with considerable error (12, 36).
Correlation globes will only becomemore jumbled over time
due to rapid increases in the number of exposures that can be
assessed through ’omics (37, 38), wearable technology (39),
and other measurement tools.

AnotherMajor Problem in Nutrition Science:
DietaryMeasurement
Tiny effects and dense correlation globes are problem-
atic enough to disable most analyses in nutrition science
by themselves. Another major problem, dietary measure-
ment error (12), ruins most of what remains. Dietary
measurement error affects nonrandomized studies, as well
as randomized trials that attempt to measure adher-
ence to an assigned diet (and almost all trials currently
do this).
Most studies of nutrition do not record dietary consump-

tion right when it occurs with a direct and objective method.
Instead, inferences about past consumption are made by as-
sessing participants’ memories, typically with a 24-h dietary
recall or an FFQ. Nutritional policy and dietary guidelines
are largely informed by data obtained with these approaches
(40), but they can be very inaccurate (12). Two out of 3 partic-
ipants in the NHANES reported an amount of energy intake
not compatible with life (41). Another analysis found that
noise exceeds signal >9-fold for self-reported energy intake
(12). Individual nutrients are also misreported differentially
and unpredictably, so energy adjustment cannot salvage their
analyses (42).

There are also a few theoretical reasons for disbelieving
much of the data that come from memory-based dietary as-
sessments. A memory is not a plain retelling of a past event
but instead involves constructive and reconstructive pro-
cesses (e.g., imagination) that are highly error prone (12). In
addition, memory cannot be independently observed, quan-
tified, or falsified, so recall data are pseudoscientific by defini-
tion (12). Furthermore, memory-based dietary assessments
often interrogate inways that have been shown to induce false
recall in many other contexts (43–45): for example, when a
participant claims to not know the answer to a particular
question about intake, an interviewer might respond with si-
lence to motivate a new answer (46). Some memory-based
dietary assessments are better validated than others, but even
the best validations are typically done against bronze stan-
dards.

The Current Research Agenda in Nutrition
Science Cannot Handle These Problems
The aforementioned epistemologic problems cannot be over-
come with the research designs that are currently used in nu-
trition science. Nonrandomized observational research sim-
ply involves toomuch confounding. It is alsomore vulnerable
to publication and selective-outcome reporting biases (47)
compared with randomized research, because it is more diffi-
cult to ascertain how many observational data sets are avail-
able worldwide that can address a given exposure-outcome
relation (48). Although some epidemiologists register their
analysis protocols, this is falsely reassuring because it can eas-
ily be done after peeking at the relevant data surreptitiously
(49).

Random allocation of exposure is a necessary condition
for overcoming the major epistemologic problems afflicting
nutrition science. However, the current randomized research
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FIGURE 2 A beautiful, jumbled globe of correlations. This correlation globe depicts associations with fasting serum TGs and 575
exposures, including nutrients, food components, and other families of exposure variables. The strength of each association corresponds
to line thickness, with red lines depicting positive associations and blue lines depicting negative associations. To examine whether any of
these exposures causes fasting hypertriglyceridemia (rather than being merely correlated with it), the exposure of interest must first be
disentangled from all the others, a daunting task. Data for this depiction derive from 4 individual survey periods, spanning the years
1999–2006, of the NHANES. Similar analyses have been presented in reference 33. Figure art courtesy of Chirag Patel.

agenda in nutrition science is far from optimal. It occasion-
ally develops a pivotal, relatively large trial such as Prevención
con Dieta Mediterránea (PREDIMED) (50), but it mostly
produces thousands of small-sized, short-duration trials (15)
that underdeliver for many reasons. To increase the likeli-
hood of finding something publishable, these “microtrials”
commonly examine only populations that have an exception-
ally high risk of the main outcome of interest (51). Surrogate

outcomes of questionable clinical relevance (52) are com-
monly selected for convenience. Adverse events are recorded
haphazardly, if at all. Explanatory designs are necessarily fa-
vored over pragmatic designs (to be compatible with the
small sample size), which introduces problems related to
dietary measurement error as well as treatment nonadher-
ence. A small sample size also provides limited statistical
power to detect tiny effects, and it lowers the likelihood that a
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significant result represents a true effect (53). Reformation is
needed (14).

Megatrials Offer aWay to Answer a Small
Number of theMost Important Nutritional
Questions
Nutrition science needs to get rid of almost all nonrandom-
ized observational research, as well asmost of themicrotrials,
and conduct a few dozen megatrials at a time instead (14).
Rather than try to answer a million different questions all at
once without answering any one thing satisfactorily, as with
the current approach, the main goal of our proposed mega-
trial approach should be to clearly answer a small number of
the most important nutritional questions that we face. The
megatrials should reflect pragmatic circumstances so that
their results can be readily translated to recommendations for
the general public (54). Hard outcomes (that preferably in-
clude death) should be evaluated, and the megatrials should
not focus only on very-high-risk populations unless there is
good reason. For example, a trial could use a low-fat com-
paredwith a low-carbohydrate diet assignment in a large, un-
selected population of participants, andmeasure death as the
outcome instead of blood lipids or body weight.

This proposed scale-up is challenging but still quite
doable. The cost of the average trial would go up consider-
ably to pay for a larger sample size and lengthier follow-up,
but the aggregate cost of all of the trials combined may stay
the same or become even less because of their reduced num-
ber. Additional cost-savings will be achieved by streamlining
the trial design (55) and, when possible, by building the trial
on the platform of an already-existing health registry (56).

Our proposed reformation has several limitations—real
ones as well as imagined ones—that are worth discussing.
For instance, running only a few dozen megatrials at a time
will leave many questions understudied or unaddressed alto-
gether. Only a minority of all of the possible combinations of
dietary exposures and clinical outcomes will be tested. Frus-
tration will mount if a megatrial addresses a major question
that becomes obsolete while the trial is ongoing (57).

These problems sound worse than they actually are. It is
unrealistic to expect that every question about diet should be
addressed in nutrition science. Many questions do not have
answers that are valuable enough (i.e., translatable enough
into improved human health) to justify the resources that
would be needed to obtain them. For instance, trials of sin-
gle nutrients may almost never be worth the trouble, because
the expected effects are too tiny to be relevant (even to a
huge population) or detectable reliably (9). In contrast, com-
posite diets are much more likely to produce effects large
enough to justify a trial (50). And although many highly
important nutritional questions will not be addressed due
to the small number of megatrials, this still represents a
great improvement over the current research agenda, which
publishes endless nominal answers but hardly any credible
ones.

Similarly, it is unrealistic to expect that every minute vari-
ant of a research question should be addressed in its own trial.

Much of the waste that has accumulated over the years in
nutrition science has come from innumerable analyses and
studies that were ever-so-slightly different from the previ-
ous ones. These incremental approaches usually add little or
no value. We accept that a research question that is trialed
only once will never be answered with a perfect definitive-
ness that convinces everybody: one can always look back and
argue endlessly that a particular result could have been due to
any number of factors, or that a slight change in the research
question could have yielded a different result. However, most
of these speculations lead nowhere, and we doubt that any
amount of incremental research would put an end to them
anyway.

New information can indeedmake an important question
obsolete. Therefore, major questions to be trialed must be
evaluated beforehand to assess the likelihood that such infor-
mation could soon emerge. This will not prevent every single
megatrial from delivering a stillbirth, but the futility rate can
be minimized.

Another potential limitation of our proposed reformation
is that trials may not be pragmatic and may have poor repre-
sentation of important populations among trial participants.
For instance, somemegatrials may exclude women, children,
the elderly, or those with common medical conditions (58).
In addition, trial participants may rarely be an ethnic minor-
ity andmay rarely live in geographically remote areas (59). Of
special concern, trial participants’ responses to dietary inter-
vention might be seriously affected by volunteer bias (60).

Although the megatrials should try to include tradition-
ally underrepresented populations whenever possible, there
is little evidence to suggest that average dietary intervention
effects often differ meaningfully across broad populations.
Rarely are formal interaction tests performed to evaluate this
specifically (61), and even more rarely are claims of interac-
tion shown to be credible (62, 63).

Interventions that could be seriously affected by volunteer
bias can be examined in randomized trials that are nested
within larger observational cohorts (64). This allows for data
to be collected on treatment refusers (because they are still
in the observational cohort despite refusing the interven-
tion randomly assigned to them) so that comparisons can be
made with treatment acceptors.

Randomized trials are often regarded as being ill-
equipped to deal with unintended participant behavior,
which is commonplace in nutrition studies. Participants as-
signed to the intervention group may adhere poorly because
of study fatigue or because the intervention is genuinely dif-
ficult. They could also make changes to ancillary behaviors
that are not directly targeted by the intervention but affect the
main outcome of interest nonetheless, often in unpredictable
ways. Participants in the control group may decide to adopt
the intervention for themselves or they may withdraw from
the trial because of disappointment. Nevertheless, most of
these unintended behaviors are not introduced by the trial
itself (apart from delivery of an intervention), so they are not
especially problematic for pragmatic trials that aim to evalu-
ate interventions in real-world settings.
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Current methods for measuring diet are not accurate
enough for randomized trials (12), and newermethods based
on biochemical, Web, camera, mobile, or sensor tools have
yet to establish suitable validity (65, 66). Until this is done,
the megatrials will evaluate only the effects of prescribing di-
etary interventions, and adherence will not be measured (but
will be strongly encouraged).

Study assignment cannot be blinded in trials of whole di-
ets (apart fromoutcome assessment, which can and should be
blinded), so dietary preferences and expectations will factor
into the results. This is not very problematic. The interven-
tions are being trialed because there is no definitive pretrial
evidence of superiority, and this message will be reiterated
to the participants throughout the study. In addition, prefer-
ences and expectations are parts of real-world medicine, so it
is better for these “noises” to be included in the results.

Dietary interventions are not randomly assigned in real
life. Although randomization removes allocation bias, it also
removes preference effects (for the participants who are as-
signed an intervention that is other than their favorite) that
are important to examine for results to be maximally gener-
alizable. We think that the overall benefits of our approach
are well worth this limitation. In addition, randomized pref-
erence designs can partially overcome this problem (67).

Traditional parallel-arm randomized trials in nutrition
test dietary interventions that are fixed throughout the study,
which does not allow for investigation of the effectiveness
of continuing, modifying, or stopping an intervention alto-
gether depending on the previous response. Investigations of
this sort can first be evaluated in Sequential Multiple Assign-
ment RandomizedTrials to develop an adaptive intervention,
which can then be evaluated in a randomized confirmatory
trial against an appropriate alternative (68).

For selected questions in which adherence needs to be
maximized (e.g., to get mechanistic metabolic insights rather
than pragmatic insights on clinical outcomes), we propose
that short-term randomized trials with direct observation of
participants should be considered, as we discuss in the next
section.

Moving Forward with Traditional and Novel
Randomized Trial Designs
Having cataloged the many problems with traditionally per-
formed randomized trials and some potential solutions, we
now present how we can make progress with novel study
designs or improvements to existing traditional randomized
trial designs.

Large, simple trials
Large, simple trials (LSTs) can overcome many of the limita-
tions that relate to pragmatism with the current randomized
agenda in nutrition. LSTs aim to maximize benefits andmin-
imize cost. Each trial can compare ≥2 substantially different
dietary prescriptions with intention-to-treat methodology.

LSTs try to maximize real-world relevance and gener-
alizability (69). Eligibility criteria are as inclusive as possi-
ble. Data collection focuses on objective measurements of

the most relevant clinical outcomes for efficacy and harms.
Follow-up continues until ascertainment of the primary out-
come or death for all participants regardless of adherence.
Ideally, participants and researchers agree in advance to al-
low for passive follow-up for major trial outcomes and vital
status in the event of dropout or nonadherence (55).

LSTs are designed to minimize cost and complexity. Al-
ready available resources are used whenever possible. Study
enrollment and data capture can be done in part or entirely
online. Data collection is streamlined to capture only key in-
formation and outcomes that provide a level of scientific ben-
efit that exceeds added costs. Monitoring and adjudication
processes are similarly streamlined.

Rather than verifying all of the data, random samples are
chosen for verification instead. An error rate regarded as ac-
ceptable is chosen in advance, and targeted on-site monitor-
ing strategies are used when key indicators are triggered (55).

Registry-based designs
Some LSTs may be conducted with the use of existing reg-
istries. Registry-based randomized trials (RRTs) are prag-
matic trials that utilize a health registry as a platform for case
records, data collection, randomization, and follow-up (70).
The data can originate from reports by patients or physicians,
medical chart abstraction, electronic health records, admin-
istrative databases, institutional or organizational databases,
and other sources (70).

RRTs allow for enrollment of potentially thousands of par-
ticipants in very little time. A quick rate of enrollment is facil-
itated by identifying eligible trial participants with already-
existing clinical data (70). The use of a health registry also
allows for near-complete follow-up, collection of data, and
recording of outcomes of the reference population (all par-
ticipants who were eligible for the trial), as well as for the
participants who were not eligible (71). Typically, eligibility
criteria are not as stringent, and monitoring and follow-up
are more similar to everyday medical practice than with tra-
ditional randomized trials (70).

Registries can provide main outcome data long after
termination of an intervention. For instance, the Alpha-
Tocopherol, Beta-Carotene Cancer Prevention (ATBC)
Study had a median of 6.1 y of intervention (72) and then
utilized national registries to obtain follow-up data for 18
additional years (73, 74). The trial showed that, contrary to
earlier claims from nonrandomized studies, both β-carotene
and α-tocopherol did not offer any benefit for survival or
overall cancer risk during the main intervention period.
β-Carotene was actually associated with increased over-
all mortality risk. The follow-up postintervention period
showed no further differences between the compared arms:
once the interventions were stopped, the mortality disad-
vantage with β-carotene shrunk and became undiscernible
after 8 y. The same shrinking was seen for occasional signals
of increased or decreased risk of specific cancer types (which
were not primary endpoints) that had been seen in the
original intervention period (i.e., increased lung cancer risk
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TABLE 1 ATBC study (enrolled in 1985–1988): initial and postintervention-period results1

β-Carotene α-Tocopherol

All deaths Lung cancer All deaths Prostate cancer

Intervention to April 1993 (72) 1.08 (1.01, 1.16) 1.18 (1.03, 1.36) 1.02 (0.95, 1.09) 0.68 (0.53, 0.88)
Postintervention

To April 1999 (73) — 1.06 (0.94, 1.20) — 0.88 (0.76, 1.03)
To April 2001 (73) 1.07 (1.02, 1.12) — 1.01 (0.96, 1.05) —
To December 2009 (74) 1.02 (0.99, 1.05) 1.04 (0.96, 1.01) 1.02 (0.98, 1.05) 0.97 (0.89, 1.05)

1Values are relative risk (95% CIs). ATBC, Alpha-Tocopherol, Beta-Carotene Cancer Prevention.

with β-carotene and decreased prostate cancer risk with
α-tocopherol) (Table 1).

Meta-analysis of multiple long-term trials
Most intervention effects in nutrition are small (9), so meta-
analysis of multiple (preferably large and long-term) trials
may offer the best opportunity for reliable answers. The eval-
uation of antioxidants once again provides a useful exam-
ple. Several meta-analyses (75–78) of multiple trials have
shown convincingly that, contrary to earlier epidemiologic
expectations, antioxidant vitamins such as β-carotene and
α-tocopherol do not offer an overall mortality advantage or
preventive benefit for cancer or cardiovascular disease. Very
high doses may even be associated with excess mortality
(76, 78). Of course, meta-analyses have their own strengths,
weaknesses, and caveats, and their discussion goes beyond
the scope of this article.

Embeddingmultiple trials in the same study population
Multiple nutrition- or diet-related questions may be ad-
dressed concurrently in the same study population. Facto-
rial randomization may allow for optimal use of resources
and also maximizes power for assessing interactions (79).
It has been proposed that a very large number of research
questions can be studied concurrently in the same popula-
tion. The proposed design, Multiple Lifestyle Factorial Ex-
perimental (multi-LIFE) trials (80), can be thought of as spe-
cialized RRTs with some important distinctions: participants
can choose from a long list of simple lifestyle randomization
options, and several interventions can be tested concurrently
with factorial randomization. Health-conscious, motivated
individuals will likely be attracted to this study design, and
they have been shown to show good adherence to lifestyle
interventions (81–84). Adherence is also fostered by delib-
erately assigning participants to interventions that they feel
neutral toward.

N-of-1 trials
N-of-1 trials are multiple crossover trials. Although each N-
of-1 trial examines a single individual, they are often con-
ducted in a series, and their results can be aggregated or even
combined with results from parallel-arm trials (85). How-
ever,N-of-1 trials have somepotential limitations for applica-
tions in nutrition science. First, they have a low throughput.
All of the N-of-1 trials combined have examined only∼2000

participants to date (86). Despite having the theoretical ca-
pability to examine many different treatment options in each
individual, N-of-1 trials assess only 2 interventions in 93%
of cases, and the median period length is only 10 d (86). This
may not be a long enough duration to capturemost onset and
offset effects for diet. Second, generalizability is highly ques-
tionable in practice. Third, assumptions of performed statis-
tical tests are frequently violated as a result of small sample
size, limited data, nonnormal distribution, carryover effects,
priming from exposure to previous interventions, dropouts,
and other concerns (86).

Trials in experimental settings with direct observation
of participants
Many focused, mechanistic metabolic questions and proof-
of-concept questions require high treatment fidelity to be an-
swerable, and one cannot afford for nonadherence, crossover,
or dropout to be substantial. These questions also re-
quire the measurement of outcomes that can respond in a
short time frame, typically metabolic or laboratory mark-
ers. For these questions, trials can be performed that involve
continuous direct observation of participants in in-house set-
tings (87, 88). These trials are typically very expensive, but if
done sparingly for crucial questions, they may be worth the
investment.

Mendelian randomization studies
Mendelian randomization studies (89, 90) are possible to
build within nonrandomized observational cohorts and data
sets, in which the availability of genetic instruments al-
low for the creation of a randomized trial equivalent. The
Mendelian randomization approach has major advantages
in that it allows a randomized trial equivalent to be set up
without extra cost and without the need of new follow-up,
with the use of the available observational data. However,
they can have some shortcomings: for example, only weak
genetic instruments may be available and the assumptions
about the specificity of genetic instruments may not hold.
Although Mendelian randomizations may have better va-
lidity than traditional observational designs, it is unknown
whether they can be used for policy decisions, entirely re-
placing formal randomized trials. Interestingly, most well-
conducted Mendelian randomization studies show negative
results (91, 92), which aligns with the argument thatmost ob-
servational claims about causal associations are spurious.
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Compared with traditional observational analyses that
have such a poor record of identifying causality in nutrition,
well-done Mendelian randomization studies may be a good
investment for analyzing observational data toward identi-
fying factors that may have a higher chance of being causal.
Interventions that affect these factors can then be selectively
prioritized for evaluation in randomized trials, whenever
feasible.

Final Comments
Our perspective—on the relative merits of nonrandomized
and randomized studies in nutrition science, on the fixability
of certain epistemologic problems, and on replacing a current
highly prolific agenda of nonrandomized studies and micro-
trials with a small number of megatrials, as well as a few fit-
for-purpose designs—may notmeet with agreement by some
nutrition experts. We encourage debate and we recommend
the reader to also examine other perspectives on these is-
sues (93–98). Regardless, we think that we have reached a
saturation point in nutrition science, with limited or no fur-
ther progress being made, and thus some reformed research
agenda is necessary.

Wider adoption of optimal research practices would also
greatly benefit nutrition science (99). These include, but are
not limited to, preregistration for randomized trials and other
prespecified hypothesis-testing and validation studies, avail-
ability of protocols and raw data, complete reporting of all
results, and provision of proper rewards and incentives for
reproducible research. As we discussed above, randomized
trials have their own limitations as well, and they are not im-
mune to many of the problems encountered in nonrandom-
ized studies. For example, in the absence of detailed prereg-
istration of outcomes and analyses (15), selective reporting
can be as severe an issue in randomized trials as in observa-
tional studies. Unaccounted multiplicity of analyses can also
become a major problem in randomized trials. In extreme
cases, a single trial can generate dozens or even hundreds of
secondary articles (100).

But despite themany drawbacks of randomized trials, they
alone can possibly overcome the epistemological problems
of tiny effects, dense correlation globes, and high dietary
measurement error. Our proposed megatrial approach—
augmented with novel study designs, such as direct, contin-
uous observation of participants—will form a sounder basis
for informing dietary recommendations, both at the popula-
tion level and, in select circumstances, at the individual level
as part of precision nutritional therapy.
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