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Abstract Non-coding RNAs are increasingly recognized not only as regulators of various biological functions but also as tar-
gets for a new generation of RNA therapeutics and biomarkers. We hereby review recent insights relating to non-
coding RNAs including microRNAs (e.g. miR-126, miR-146a), long non-coding RNAs (e.g. MIR503HG, GATA6-AS,
SMILR), and circular RNAs (e.g. cZNF292) and their role in vascular diseases. This includes identification and thera-
peutic use of hypoxia-regulated non-coding RNAs and endogenous non-coding RNAs that regulate intrinsic smooth
muscle cell signalling, age-related non-coding RNAs, and non-coding RNAs involved in the regulation of mitochon-
drial biology and metabolic control. Finally, we discuss non-coding RNA species with biomarker potential.
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This article is part of the Mini Review Series from the Varenna 2017 meeting of the Working Group of Myocardial Function of the European

Society of Cardiology.

1. Introduction

Manifestations of vascular diseases are the leading causes of morbidity
and mortality.1 Endothelial dysfunction is a key initiator of vascular dis-
ease. Proliferation, migration, and the phenotype switches of smooth
muscle cells are further hallmarks of vascular disease. Inflammatory cells
aggravate vascular disease by release of secreted growth factors and
cytokines, as well as cell/cell interactions that perpetuate the response
to injury. Relatively recently, non-coding RNA has been discovered as
new regulators of vascular function and angiogenesis. Non-coding RNAs
include microRNAs (miRs, miRNAs, and short non-coding RNAs of
about 20 nt length), long non-coding RNAs (lncRNAs) (length of
>200 nt), and circular RNAs, a specific subtype of lncRNAs that form cir-
cular structures2 through back-splicing events. Herein, we focus on re-
cent new insights how non-coding RNAs constitute regulatory

therapeutic targets and biomarkers in vascular disease, with a special fo-
cus on cardiac disease-associated factors (e.g. hypoxia, ageing, smooth
muscle cell biology, and metabolism).

2. Hypoxia-regulated non-coding
RNAs

Hypoxia is a key trigger for angiogenic events and has a substantial
impact on the non-coding transcriptome. Oxygen depletion alters
endothelial expression of a wide range of lncRNAs, as indicated by
next-generation RNA sequencing and microarray approaches in endo-
thelial cells subjected to hypoxia.3 Validation experiments confirmed
strong hypoxia-dependent activation of two intergenic lncRNAs
(LINC00323 and MIR503HG). Silencing of these lncRNA transcripts led
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to angiogenic defects, including repression of growth factor signalling
and/or the key endothelial transcription factor GATA2. Endothelial loss
of these hypoxia-driven lncRNAs impaired cell-cycle control and inhib-
ited capillary formation. The potential clinical importance of identified
endothelial lncRNAs to vascular structural integrity was demonstrated
in an ex vivo model of human-induced pluripotent stem cell-based engi-
neered heart tissue showing that pharmacological inhibition of these
lncNRAs impaired vascular structure appearance. Interestingly, research
in the non-coding RNA field discovered the well-known endothelial (and
protein-coding RNA) transcription factor GATA2 as a common target
for many non-coding RNAs.4 GATA2 orchestrates the expression of
many endothelial-specific genes, illustrating its crucial importance for en-
dothelial cell function.5 In addition to being regulated through the actions
of endothelial lncRNAs LINC00323 and MIR503HG, GATA2 was re-
cently identified to be also a master switch for several key microRNAs.
Using profiling approaches, the GATA2-dependent miR transcriptome
was identified.6 Indeed, global miRNAnome-screening identified several
GATA2-regulated miRNAs, including miR-126 and miR-221. Specifically,
proangiogenic miR-126 was regulated by GATA2 transcriptionally and
targeted anti-angiogenic SPRED1 and FOXO3a contributing to GATA2-
mediated formation of normal vascular structures, whereas GATA2 defi-
ciency led to vascular abnormalities. In contrast to GATA2 deficiency,
supplementation with miR-126 normalized vascular function and expres-
sion profiles of cytokines contributing to proangiogenic paracrine
effects. GATA2 silencing resulted in endothelial DNA hypomethylation
leading to induced expression of anti-angiogenic miR-221 by GATA2-
dependent demethylation of a putative CpG island in the miR-221 pro-
moter. Mechanistically, a reverted GATA2 phenotype by endogenous
suppression of miR-221 was mediated through direct proangiogenic
miR-221 target genes ICAM1 and ETS1. Of therapeutic importance
was the finding that in a mouse model of carotid injury with endothelial-
specific repressed GATA2, systemic supplementation of miR-126-
coupled nanoparticles enhanced miR-126 availability in the carotid
artery. MiR-126 improved re-endothelialization of injured carotid arter-
ies in vivo, thus proving a therapeutic strategy for treatment of GATA2-
deficient vascular diseases.

An additional screen for hypoxia-regulated lncRNAs revealed that the
long non-coding antisense transcript of GATA6 (GATA6-AS) is induced
by hypoxia in endothelial cells as well.7 Silencing of GATA6-AS in endo-
thelial cells in vitro diminished TGF-b2-induced endothelial–mesenchymal
transition. Transplantation of GATA6-AS modulated human umbilical
vein endothelial cells (HUVECs) via application of an antisense oligonu-
cleotide (GapmeR) promoted the formation of human blood vessels in
immune-deficient mice. Mechanistically, GATA6-AS interacted with the
known deaminase LOXL2, which can remove activating H3K4me3 chro-
matin marks, and controlled a set of angiogenesis-related genes that are
inversely regulated by LOXL2 and GATA6-AS silencing. Specifically,
GATA6-AS silencing reduces H3K4me3 methylation of two of these
genes, periostin and cyclooxygenase-2, suggesting that GATA6-AS acts
as negative regulator of nuclear LOXL2 function. Interestingly—at least
in endothelial cells in vitro—the levels of secreted LoxL2, which are
known to regulate collagen cross-linking and are implicated in cardiac fi-
brosis,8 were not affected.

Non-coding RNAs are also molecular targets in therapeutic revascu-
larization. It was recently demonstrated that endothelial cells can be de-
rived via both directed differentiation and haematopoietic origin.9

Expression of the lncRNA SENCR, a lncRNA already known to be

expressed in vascular smooth muscle cells (SMC),10 was up-regulated
upon differentiation to endothelial cells, and manipulation of SENCR
during differentiation affected endothelial cell appearance. Interestingly,
SENCR modulation modified the angiogenic phenotype of endothelial
cells, suggesting that lncRNAs have important regulatory functions for
vascular cell types. Such studies are consistent with others in the field,
assessing different lncRNAs in endothelial cells.11–13 Circulating levels of
SENCR are also an independent predictor of diastolic function and
remodelling in patients with Type 2 diabetes.14

Apart from linear lncRNAs, circular forms of RNA species exist and
are differentially regulated in the context of cardiovascular dis-
eases.2,15 CircRNAs lack polyadenylation, are resistant to RNase R di-
gestion, and localized to the cytoplasm. Boeckel et al.16 explored the
expression and function of circular RNAs in endothelial cells. Using a
modified computational analysis pipeline,17 RNA sequencing data of
ribo-minus RNA from HUVECs cultured under normoxic or hypoxic
conditions were analysed. cZNF292, cAFF1, and cDENND4C were
shown to be up-regulated by hypoxia. Silencing of cZNF292 inhibited
cZNF292 expression and reduced tube formation and spheroid
sprouting of endothelial cells in vitro. Since circRNAs were previously
suggested to act as microRNA sponges,17 the authors also explored
whether this mechanism of action accounts for the biological function
of endothelial circRNAs, by merging the RNA sequencing data with
Argonaute HITS-CLIP data. Herein, the majority of circRNAs were
shown to not possess a microRNA binding site, and only a small num-
ber have more than one binding site, suggesting that the majority of
circRNAs are not acting as miRNA sponges, although this requires
further exploration.

3. Cardiovascular ageing-associated
non-coding RNAs

The role of ageing associated non-coding RNAs has been recently
reviewed.18 Herein, we focus on novel lncRNAs that were not covered
in the aforementioned review. The hypoxia-sensitive nuclear-localized
lncRNA Meg3 was induced highly in endothelial cells of aged mice in vivo
compared to controls and its levels correlate with ageing in human heart
tissue.19 In vitro, Meg3 was increased in replicative senescent HUVECs.
Silencing of Meg3 using locked nucleic acid gapmeRs induced angiogenic
sprouting and proliferation and repressed senescence as evidenced by
the reduction of SA-b-galactosidase activity of endothelial cells in vitro.

......................................................................................................

Table 1 Non-coding RNA associated biomarker studies

Non-coding RNA Disease association Study

reference

miR-126 Type 2 diabetes 35

miR-126, miR-197, miR-223 Myocardial infarction 36

miR-126, miR-150, miR-191, miR-223 Atherosclerosis 38

YRNA Platelet reactivity 39

miR-122 Metabolic syndrome

development

and Type 2 diabetes

41
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Conversely, lentiviral overexpression of Meg3 inhibited sprouting angio-
genesis and cell-cycle progression, although splicing isoforms of Meg3
show differential effects. In vivo, silencing of Meg3 in aged mice using
gapmeRs in combination with hind limb ischaemia significantly repressed
Meg3 levels in the hind limb and increased recovery of perfusion com-
pared to control mice. These results demonstrate that silencing Meg3
may be a potential strategy to reduce endothelial senescence and in-
crease regenerative angiogenesis. Of note, Meg3 is also expressed in
other non-endothelial cells such as cardiac fibroblasts and its silencing
was effective in reducing cardiac fibrosis showing importance of this
lncRNA broadly as a potential target in the treatment of cardiovascular
diseases.20

A novel approach for aged patients with cardiovascular diseases using
non-coding RNAs as targets was recently presented. Ageing populations
show higher incidences of myocardial infarction (MI) and heart failure
(HF). With regard to miRNAs, miR-22 was shown to be strongly in-
creased during ageing in murine and human hearts and was identified as
an abundant and strong inhibitor of cardioprotective autophagy.21

Inhibition of miR-22 in ageing cardiomyocytes activated autophagy and

inhibited cellular hypertrophy. Pharmacological inhibition of miR-22
post-MI in older mice activated cardiac autophagy, prevented post-
infarction remodelling, and improved cardiac function compared with
control subjects. Interestingly, similar effects were less pronounced in
younger mice with significantly lower cardiac miR-22 expression levels.
In addition, circulating levels of miR-22 in 154 patients with systolic HF
were highly associated with early mortality. Thus, miR-22 seems to be an
important regulator of cardiac autophagy and a potential therapeutic tar-
get, especially in the older myocardium. Clearly, targeting therapeutics
to the aged or diseased myocardium in human is challenging and requires
sophisticated delivery strategies to be developed.

4. Non-coding RNAs in smooth
muscle cell biology

The expression and function of lncRNA in smooth muscle cells
remains relatively poorly defined. Aside from SENCR,10 a recent
study identified a single transcript (three exons) lncRNA called

Figure 1 Non-coding RNAs as angiogenic therapeutic entry points. Enhancement or inhibition strategy can be followed for modulation of vascular non-
coding RNAs. Circular RNA, miRNA, or long non-coding RNA are target structures for therapeutic intervention. Modulation of RNA subtypes triggers ex-
pression changes (up or down) of interacting effectors (e.g. proteins such as chromatin modifiers or ribosomal factors or different RNA species).
Collectively cardiac vascularization is positively or negatively influenced dependent on the chosen non-coding RNA therapy.

Non-coding RNAs in the vasculature 1283
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SMILR (Smooth Muscle cell Induced LncRNA) that was activated fol-
lowing exposure of basal vSMC to pro-proliferative signals. Following
exposure to a combination of platelet-derived growth factor and
interleukin-1a, SMILR was induced.22 Interestingly, SMILR was local-
ized both in the nuclear and cytoplasmic compartments, suggestive of
differential modes of action within the cell. Further, an accurate
lncRNA quantification assay for secretion from cells and human
plasma samples was developed. Indeed, plasma levels of SMILR were
elevated in patients with higher C-reactive protein levels compared
with patients with lower levels, albeit in a small population sample
set. Using a siRNA approach, an anti-proliferative effect following effi-
cient down-regulation of SMILR was identified, with effects on the
neighbouring gene HAS2. Further, levels of SMILR were higher in
patients with advanced atherosclerosis compared with stable patient
samples, suggesting relevance of human disease. These studies clearly
show the importance of lncRNA expression on function of vSMC.
Since vSMC are centrally important in vascular health and disease,
this suggests a much greater understanding of both required and es-
sential lncRNA characteristics. Several questions remain regarding
the function of SMILR. These include the mode of action with respect
to vSMC proliferation. Further, how this is consistent across vascular
beds and vasculoproliferative diseases, as well as refining the thera-
peutic potential of SMILR inhibition to block proliferation. Notably, in
the context of vein graft failure, an anti-proliferative strategy would
provide likely efficacy when considering the predominant role of
vSMC in vein graft neointima formation. Other studies have also dem-
onstrated the importance of lncRNA in vSMC function,23,24 consis-
tent with the notion that they hold important regulatory potential in
vascular health and disease.

5. Non-coding RNAs in the control
of mitochondrial function and
energy metabolism

Recently, miRNAs emerged as central regulators of mitochondrial
function and energy metabolism in diabetes, hypertension, ischaemia,
atherosclerosis, and cardiotoxicity. Mitochondrial miRNAs—also
mitomiRs—are enriched in those diseases. In diabetes mellitus,
mitomiRs are enriched in spatially distinct compartments,25 whereas in
hypertensive-hearts their expression differs in the early and later stage of
HF.26 In general, miR-146a, miR-181c, and miR-378 act as important
therapeutic targets affecting mitochondrial function in cardiovascular dis-
eases. MiR-146a was first reported to affect cardiac metabolism during
peripartum cardiomyopathy.27 Uptake by cardiomyocytes of endothelial
cell-released miR-146a decreased the metabolic activity of cardiomyo-
cytes during pregnancy, with down-regulation of Erbb4, Notch1, and
Irak1. Inhibition of miR-146a is thereby protective. Its suppression is not
only beneficial in peripartum cardiomyopathy, but also in pressure
overload-induced cardiomyopathy,28 and in atherosclerosis.29 Inhibition
of miR-146a in pressure overload—either with aortic banding or with
angiotensin-II infusion-blunted the cardiac hypertrophic response
and protected against systolic dysfunction.29 MiR-146a decreased dihy-
drolipoyl succinyl transferase (DLST) levels, a rate-controlling enzyme in
the tricarboxyl acid cycle in the failing heart, thereby impairing cardiac
oxidative metabolism. Both fatty acid and glucose oxidation decreased
upon pressure overload in wild-type mice, but were preserved upon
miR-146a inhibition. Increase in DLST upon loss of miR-146a helped
to preserve these oxidative fluxes, protecting against maladaptive hyper-
trophy, and dysfunction. As in peripartum cardiomyopathy27 and in

Figure 2 GATA2 as a central player for angiogenic non-coding RNAs. Besides the regulation of GATA2-dependent coding genes (e.g. ICAM1, VCAM1),
endothelial transcription factor GATA2 directly controls transcription of miR-126/miR-221 locus. Interestingly, loss of GATA2 causes DNA hypomethyla-
tion thereby activating miR-221 expression. Next to that, GATA2 repression lowers miR-126 expression levels causing an up-regulation of anti-angiogenic
factors. Overall, downstream modulation leads to anti-angiogenic outcome and imbalanced endothelial cell biology. Modified from Ref.6
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atherosclerosis,29 miR-146a seems to be mainly derived from endothelial
cells. In line, also in atherosclerosis, deficiency of miR-146a in those en-
dothelial cells tempered the chronic inflammatory response to the ath-
erogenic high-fat diet, thereby protecting against atheroma formation.29

MiR-181c is another detrimental mitomiR involved in mitochondrial
function. Its inhibition increases Bcl2, a key-player in mitochondrial apo-
ptosis and morphology, and thereby protects against cardiomyocyte ap-
optosis in vitro.30 In doxorubicin-induced toxicity in vivo, miR-181c
inhibition decreases the reactive oxygen species production and reduces
basal mitochondrial respiration.31 In ischaemic hearts, miR-181c targets
mitochondrial COX1, and its deficiency thereby resulted in decreased
infarct size, emphasizing the overall cardio-protective effect of miR-181c
inhibition. Further, presence of miR-378 attenuated ischaemia-induced
apoptosis by inhibiting caspase-3 expression in cardiac myocytes32 and
blunted cardiac hypertrophy and dysfunction upon cardiac overload by
targeting Ras signalling.33 In the diabetic heart, antagomiR blockade of
this mitomiR-378 increased ATP6 protein production and thereby also
improved cardiac function.25 In a human infarct study, miR-378 modu-
lated the proangiogenic capacity of CD34þ progenitor cells after MI,
with clear stimulatory effects on endothelial cells as confirmed in vitro
and in vivo.34

In conclusion, diverse mitomiRs modulate mitochondrial function in
cardiovascular diseases caused by ischaemia, the metabolic syndrome—
diabetes, hypertension, and hyperlipidaemia—and cardiotoxic agents.
Although inhibition of the mitomiRs-146a is beneficial in hypertensive
and peripartum cardiomyopathy, and in atherosclerotic disease, and
inhibition of miR-181c in ischaemic and toxic cardiomyopathy, the pres-
ence of miR-378 is needed to protect against cardiac dysfunction caused
by ischaemic injury and maladaptive hypertrophy.

6. Circulating microRNAs as novel
cardiovascular biomarkers

Previous studies have highlighted the presence of endogenous circulating
miRNAs that are not cell-associated. Zampetaki et al.35,36 have performed
the first systematic analysis of circulating miRNAs in a large community-
based study and revealed a diagnostic potential of miRNA changes associ-
ated with Type 2 diabetes and cardiovascular disease. In subsequent
studies, it has become apparent that platelets have abundant amounts of
miRNAs,37 and that circulating miRNAs reflect platelet activation.38,39 As
platelets are anucleate and do not perform transcription, it was initially
thought that circulating miRNAs are unlikely to be platelet-derived.
However, surprisingly many abundant plasma and serum miRNAs, includ-
ing miRNAs like miR-126 that were previously thought to be endothelial
specific, can originate from platelets.37–39 YRNAs is another species of cir-
culating non-coding RNAs that is platelet-derived.39 There still remains a
gap in our understanding of how changes in platelet biology relate to circu-
lating miRNAs. In contrast, miR-122 is a liver-specific miRNA that is readily
detectable in the circulation.40 Notably, circulating levels of miR-122 are
strongly associated with the risk of developing metabolic syndrome.41 The
presence of circulating tissue-derived miRNAs provides the possibility of a
cross-organ communication by miRNAs.

7. Conclusion and outlook

The discovery of miRNAs and other non-coding RNAs such as lncRNAs
and circRNAs that are involved in transcriptional and other functional

regulation of the vasculature have transformed our understanding of bio-
logical processes and disease development, especially in cardiovascular
diseases. This might lead to new therapeutics and diagnostics. The non-
coding RNAome offers promising opportunities for treating and assess-
ing cardiovascular disease, but many obstacles still need to be overcome.
A major point to address in therapeutic use of non-coding RNAs is to
develop tailored drug delivery with e.g. heart specificity. Next to that,
lncRNA and circRNAs are relatively new areas of research, thus it is par-
amount to better understand their biological function.
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