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Abstract

Cyanobacteria are a key constituent of biocrusts, communities dominated by lichens, mosses and
associated microorganisms, which are prevalent in drylands worldwide and that largely determine
their functioning. Despite their importance, there are large gaps in our knowledge of the
composition and diversity of cyanobacteria associated with biocrusts, particularly in areas such as
the Mediterranean Basin. We studied the diversity of these cyanobacteria in a gypsiferous
grassland from Central Spain using both morphological identification after cultivation and genetic
analyses with the 16S rRNA gene. Nine different morphotypes were observed, eight corresponding
to filamentous, and one to unicellular cyanobacteria. We found cyanaobacterial genera typical of
biocrust communities, such as Microcoleus and Trichocoleus, and N-fixing cyanobacteria such as
Scytonema and Nostoc. Genetic information allowed us to identify cultures belonging to recently
described genera such as Roholtiella, Nodosilineaand Mojavia. We also describe two new
phylotypes of Microcoleus and Scytonema, which are key genera contributing to ecosystem
functioning in biocrust-dominated ecosystems worldwide.
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1 Introduction

Cyanobacteria are a key component of biocrusts, soil surface communities also formed by
lichens, mosses, liverworts and other microorganisms that are a prevalent biotic feature of
drylands worldwide (Biidel et al., 2016). Cyanobacteria are present in virtually all biocrust
communities due to their capacity to adapt to a wide range of ecological conditions (Tamaru
et al., 2005). Early successional biocrusts are dominated by filamentous pioneer
cyanobacteria, which are the first colonizers of bare ground areas in drylands (Garcia-Pichel
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and Wojciechowski, 2009). These organisms secrete an exopolysaccharide (EPS) matrix that
promotes soil stabilization and enhances microhabitat conditions for colonization of other
cyanobacteria and the remaining biocrust constituents (Mager and Thomas, 2011).
Cyanobacteria with heterocysts (heterocytes) are also important contributors to nitrogen
fixation in oligotrophic ecosystems such as drylands (Belnap, 2002). Together with the other
components of cryptogamic covers, heterocyst-forming cyanobacteria contribute to the
fixation of nearly half of the total amount of biologically fixed nitrogen worldwide (Elbert et
al., 2012).

Detailed studies of the composition and biogeography of cyanobacteria have been carried
out in North America, Asia, Africa, Europe and Australia (e.g. Garcia-Pichel et al. 2013,
Dojani et al. 2014, Hagemann et al. 2014, Kumar and Adhikary 2015, Williams et al. 2012,
Williams et al. 2016). However, to date, few studies have analysed the cyanobacteria
associated to biocrusts in gypsum habitats (Garcia-Pichel et al., 2001; Steven et al., 2013),
even though they are hotspots of botanical diversity (Escudero et al., 2014) and harbour very
conspicuous biocrust communities dominated by lichens (Castillo-Monroy et al., 2010;
Martinez et al., 2006). We studied biocrusts in a gypsiferous semiarid site from Central
Spain to advance our knowledge of cyanobacterial communities associated gypsum
biocrusts. We used a combination of molecular and morphological information because this
increases the number of identified sequences in molecular databases, which is a major
concern in the study of cyanobacterial diversity nowadays (Thomazeau et al., 2010; Weber et
al., 2016).

2 Materials and methods

2.1 Field site

This study was carried out in the Aranjuez Experimental Station, located in Central Spain
(40°01'55.7"N - 3°32'48.3"W and 590 m above sea level). The climate is semiarid, with an
intense summer drought lasting from June to September. Mean annual temperature is 15°C
and annual precipitation is 349 mm. Soils are rich in gypsum, and are classified as Gypsiric
Leptosols (IUSS Working Group WRB 2014; see Castillo-Monroy et al. 2010 for a physico-
chemical characterization). The vegetation cover is sparse and dominated by herbaceous
plants such as Macrochloa tenacissima (L.) Kunth. and shrubs such as Retama sphaerocarpa
(L.) Boiss. and Helianthemum squamatum (L.) Dum. Cours. The soil in open areas located
between plant patches is covered by a well-developed biocrust community dominated by the
squamulous lichens Diplochistes diacapsis (Ach.) Lumbsch., Squamarina lentigera (\Weber)
Poelt. and Psora decipiens (Hedwig) Hoffm.; with patches of acrocarpous mosses
Pleurochaete squarrosa (Brid.) Lindb. and 7ortula revolvens (Schimp.) G. Roth. (see Maestre
et al. 2013 for a full list of lichens and mosses found in the site).

2.2 Soil collection and morphological characterization of cyanobacteria

We randomly selected eight 50 x 50 cm plots in areas with a well-developed biocrust
community in July 2013. At each plot, we collected five samples (0-1 cm depth), which
were pooled and taken to the laboratory. Lichens and mosses were removed, and soil was
sieved through a 2 mm sieve and kept dry in the dark.
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Cyanobacterial strains were isolated using a modification of the procedure described in
(Loza et al., 2013). Aliquots of ~1 g of soil were mixed with 1.5 ml of cyanobacterial culture
media and distributed uniformly over different solid media (1.5% agar concentration). We
used four common culture media for cyanobacteria: BG11, BG11g (Rippka et al., 1979),
modified CHU 10, and modified CHU 10 without addition of N (Gémez et al., 2009). These
media allowed the growth of cyanobacteria by providing a range of nutrient richness with
and without N, which is important to isolate both N-fixing and non-N-fixing cyanobacteria.
To avoid fungal contamination, we added cycloheximide (0.1 mg/ml). Cultures were
incubated in a growth chamber at constant light and temperature (20-50 umol photons m-2
s'1 and 28°C) three to four weeks until colonies grew without overlapping. Cyanobacterial
colonies were isolated under a dissecting microscope (Leica, Leica Microsystems, Wetzler,
Germany) as described in Gdmez et al. (2009). Cultures were kept in the same medium and
conditions both in agar plates and in liquid medium to further promote their growth.

All colonies were characterized morphologically using a dissecting microscope and an
Olympus BH2-RFCA (Olympus, Tokio, Japan) photomicroscope. Identification and
morphological characterization of cyanobacteria were conducted considering the following
attributes: colony morphology, trichome shape, presence of sheaths, details of cell
morphology, number of trichomes per filament and end cell characteristics. Taxonomy was
based on Geitler (1932), Anagnostidis and Komarek (1999), Komarek and Anagnostidis
(2005) and Komérek (2013).

2.3 Genotypic characterization

DNA was extracted with the Ultraclean Microbial DNA Isolation Kit (Mobio, Carlsbad, CA,
USA) following the manufacturer’s instructions. A prior step was added at the beginning of
the procedure, as samples were homogenized and exposed to three cycles of thermal shock
using alternating immersion in liquid N and heating to 60°C to break the protective EPS that
covers the surface of many cyanobacteria (Loza et al., 2013). PCR amplifications were
performed using the bacterial 16S rRNA primers 27F and 1494R (Neilan et al., 1997). The
PCR mixture (25ul) contained 2.5 pul Buffer 10X, 1.5 mM MgCly, 50 uM dNTP, 10 pmol of
each primer, BSA 1 mg/ml, 5 ul TagMasterTM PCR Enhancer 5x (Eppendorf, Germany),
0.75 U Ultratools DNA polymerase (Biotools, Spain), miliQ H,O and 10 ng DNA.
Amplification took place in a termocycler PCR Eppendorf Mastercycler (Eppendorf, Viena)
with the reaction conditions described by Gkelis et al. (2005). Success in PCR was checked
with agarose gel 1.5% using 1Kb Gene Ruler (MBL Biotools, Spain) and fluorescent DNA
stain GelRed™. PCR products were purified with Real Clean Spin Kit (Real, Durviz, Spain)
and sequenced at Centro Nacional de Investigaciones Oncoldgicas (Madrid, Spain). When
sequences had low size (<200 bp) or quality (low confidence on % base assignation in
sequence chromatograms), PCR products were cloned into pPGEM-T vectors with the pGEM
Easy Vector system (Promega, US) according to manufacturer recommendations and
sequenced according to vector information and primers. Sequences were obtained for both
strands independently.

We compared our results with sequences from the National Center for Biotechnology
Information (NCBI) database to complement identifications. For phylogenetic analysis,
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sequences were aligned using ClustalW (Thompson et al., 1994) with the software Bioedit
7.2.5 (Ibis Biosiences, Carlsbad, CA). We obtained the most similar sequences and reference
strains of the closest species from the NCBI database with BLAST (blast.ncbi.nlm.nih.gov)
and then performed multiple alignment with all sequences (Altschul et al., 1990).
Phylogenetic trees were generated with the MEGA7 software (Tamura et al., 2013) using the
Maximum Likelihood, Neighbor Joining (Saitou and Nei, 1987), and Maximum Parsimony
methods and the Tajima Nei matrix (Tajima and Nei, 1984) to calculate pairwise distances.
The alignment was checked and corrected manually with the Bioedit software (Ibis
Biosiences, Carlshad, CA). All sequences obtained had an expected length ranging from
1046 to 1459 bp, except AR11, which had 532 bp. Independent phylogenetic trees made
with and without AR11 produced similar clustering, therefore this sequence was included in
the phylogenetic analysis. Phylogenetic trees were carried out using our nineteen 16S rRNA
sequences together with 53 cyanobacterial sequences from the NCBI database. There were a
total of 879 positions in the final dataset. Statistical significance was performed with the
bootstrap test described in Felsenstein (1985), using 1000 and 500 replicates for the
Neighbor Joining tree and both Maximum Parsimony and Maximum Likelihood trees,
respectively. Sequence similarity between our sequences and those from the NCBI database
was determined as 100*(1-P-distance), and was carried out using the MEGA?7 software
(Tamura et al., 2013).

Cultures were named after the site (Aranjuez, AR-) and were included in the culture
collection of the Universidad Auténoma de Madrid (UAM). The nucleotide sequences
obtained in this study were uploaded to the Genbank (NCBI) database (accession numbers:
MF002044 - MF002062).

3 Results

Macroscopic and microscopic evaluation of cultivated cyanobacteria yielded nine different
cyanobacterial morphotypes and the successful isolation and sequencing of 12 strains. Three
main types of morphologies were found: filamentous and heterocyst-forming cyanobacteria,
filamentous cyanobacteria without heterocysts, and unicellular cyanobacteria (Figure 1;
Table 1). The three methods used to obtain the phylogenetic tree (Maximum Likelihood,
Neighbor Joining and Maximum Parsimony) produced similar clustering. Therefore, we
show only the Maximum Likelihood tree, with the indication of the bootstrap values for all
three approaches (Figure 2).

Cluster | —Roholtiella. Sequences of isolated strains AR2 to AR6 were included in this
cluster together with sequences of RoholtiellaBohunikd, Pietrasiak & Johansen., a recently
described genus (Bohunicka et al., 2015) from the Nostocaceae family. This genus includes
some species formerly identified as 7o/ypothrix Kutzing ex Bornet & Fahault, but
phylogenetically distant to the Tolypothricaceae clade containing 7olypothrix sensu stricto.
In addition, sequences of 7olypothrix not recognized as belonging to this genus (Hauer et
al., 2014) were also included in this cluster. Our isolated strains shared morphological
characteristics of the genus Roholtiella, such as single false branching, terminal and
intercalary heterocysts, trichomes surrounded by a thin and transparent sheath and, in some
cases, cells that attenuated their size towards the end of the trichome (Figure 1A). Strains
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AR2 to ARG shared 99.43-99.89% of similarity between them, and were 99.32 to 99.66%
similar to the reference strain of Roholtiella edaphica Bohunicka & Lukesova JOH39.
Therefore, these strains were assigned to this taxon.

Cluster 11-Mojavia. This cluster contained sequences from Mojavia Rehékovéa & Johansen
and our isolated strain AR1, which had 97.61-99.43 % similarity within the cluster. Mojavia
is a new cyanobacterial genus that shows morphological resemblance to AVostoc Vaucher ex
Bornet & Flahault (Rehakova et al., 2007). Isolated strain AR1 showed a high similarity
(99.43%) with a sequence from the database corresponding to an isolated strain of Mojavia
from the Atacama Desert, and a 98.37% similarity with the generitype Mojavia pulchra
Rehéakova & Johansen. Therefore, we assigned culture AR1 to this genus. Morphological
analysis showed that this strain had short filaments, with terminal and intercalary
heterocysts. Colonies were subsphaerical to irregular, densely aggregated and had an intense
green color. A firm mucilaginous sheath covered thickly entwined trichomes (Figure 1C).

Cluster I11-Nostoc. Cluster 111 included sequences corresponding to the Nostoc genus with a
97.75-100% similarity within the cluster. Isolated strain AR12 showed a similarity of
98.92% with Nostoc calcicola Brébisson ex Bornet & Flahault from this cluster, and a
similarity of 98.47% with the generitype Nostoc commune Vaucher ex Bornet & Flahault.
Cyanobacterial culture of strain AR12 had a thin mucilage and colonies with spherical
shape, and a green to yellowish color (Figure 1D).

Cluster IV- Scytonema. This cluster harbored Scytonema Agardh ex Bornet & Fahault
sequences that shared a 93.4-100 % similarity, and was strongly supported. However,
cyanobacterial strains AR7 and AR8 were located in a cluster separated from the other
Scytonema sequences, with only 97.6% of similarity to the closest relative Scytonema
arcangeli Bornet & Flahault CCIBt3134. Our Scyfonema cultures showed the typical
characteristics of the genera, such as thick and cylindrical trichomes, filaments with double
and single false branching, and terminal or intercalary heterocysts. Necridia appeared in
some filaments, and their sheath was thin and transparent (Figure 1E).

Cluster V-Microcoleus. Isolated strains AR9 and AR10 correspond to the same species
(99.49-100% similarity), and were grouped with Microcoleus paludosus Gomont and a
sequence from an uncultured cyanobacterium with 96.45-100% similarity within the cluster.
Filamentous strains AR9 and AR10 showed morphological features characteristic of
Microcoleus Desmazierés ex Gomont: typical bundles or dense packages of trichomes (5-6
trichomes observed) surrounded by a very thick and transparent sheath, although single-
trichomes in filaments were also observed (Figure 1F). Sequences of other bundle-forming
cyanobacteria, such as Microcoleus vaginatus (Maucher) Gomont, Microcoleus steenstrupii
J.B.Petersen, Symplocastrum spp. (Gomont) Kirchner, Wilmottia spp. Strunecky, Elster &
Komarek and Kastovskya adunca Mihlsteinova, Johansen & Pietrasiak, were located in
other clusters and had low percentages of similarity to the sequences observed in our
samples (all percentages of similarity below 95%).

Cluster VI -Nodosilinea. Cluster VI grouped sequences from Nodosilinea Perkenson &
Casamatta, a new genus that resembles Leptolyngbya Anagnostidis & Komarek, but is
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morphologically and genetically distinct (Perkerson et al., 2011). This cluster exhibited a
97.42-100% sequence similarity and includes Nodosilinea generitype strain, as well as
isolated strain AR11. Nevertheless, Leptolyngbya sensu stricto, with the generitype L.
boryana (Gomont) Anagnostidis & Komarek, is placed in other cluster that exhibited only
86% sequence similarity (Figure 2). Culture AR11 showed single, long, thin and flexuous
filaments that were green to transparent, and did not have akinetes or heterocysts (Figure
1G). The strain AR11 had a high similarity (99.6%) with Nodosilinea epilithica Kovacik, so
it was assigned to this taxon.

In addition, three morphotypes were also observed in initial cultures, but could not be
isolated and sequenced. They were identified as belonging to the genera Spirirestris
Flechtner & Johansen, Trichocoleus Anagnostidis and Chroococcus Négeli. Their
morphological characteristics are described in Figure 1 and Table 1.

4 Discussion

4.1 Phylogenetic and morphological analysis of the isolated cyanobacteria

In this study, analysis of morphological features of isolated species in combination with
phylogenetic analysis (polyphasic approach), allowed us to characterize the biocrust-forming
cyanobacteria in a semiarid gypsiferous site from Central Spain. Biocrusts all over the world
typically harbor genera reported in this study, such as bundle-forming filamentous
Microcoleus, and heterocystous cyanobacteria from the genera Nostoc and Scytonema
(Weber et al., 2016). We also found Nodosilinea, Trichocoleus, Roholtiella, Mojavia,
Chroococcus and Spirirestris.

The genus Roholtiella contains cyanobacteria that formerly were included into the typical
biocrust genus 7olypothrix which shares morphological characteristics, such as single and
(less often) double false branching. However filaments of 7o/ypothrix are typically very
long, cylindrical and do not attenuate towards the end, whereas Roholtiella shows tapering
heteropolar trichomes during the first stages of its life cycle (Bohunické et al., 2015).

Strains AR1 and AR12 are morphologically similar to genus Nostoc, but could be separated
on the basis of phylogenetic analysis. The sequence corresponding to strain AR12 was
located into a pure Nostoc cluster, thus it clearly belongs to this genus. Strain AR1 was
located in a cluster with all sequences from Mojavia. This genus was recently separated
from the genus Nostoc based primarily on the distinctive secondary structure of the 16S-23S
ITS region, and it is phylogenetically located as sister group to Nostoc sensu stricto
(Rehékova et al., 2007), as found in our study (Figure 2). To our knowledge, our results
provide the first record of Mojaviain Europe.

Regarding Scytonema, a wide representation of members of this genus has recently been
analyzed (Komarek et al., 2013). The molecular evaluation of the species within this genus
showed a separation of the traditional genus Scytonema in different clusters, which probably
represented separate genera. Our cultures of Scytonema are clustered into the clade of
Scytonema sequences in our phylogenetic tree. Nevertheless, the low similarity (97%)
between our sequences with the closest relative Scytonema sp. HK-05, isolated from Japan,
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suggests that we found a novel biocrust-associated phylotype of Scytonema. A more
comprehensive analysis, with a multi-locus evolutionary reconstruction and including a
wider representation of Scytonemataceae, needs to be done in future studies.

Our phylogenetic analyses demonstrated the distinctiveness of strains of Microcoleus sp.
AR9 and AR10 found in our samples. Their morphological evaluation showed that these
strains had phenotypical characteristics of this genus, but genetically it is really different
from other common Microcoleus found in biocrusts, such as the generitype Microcoleus
vaginatus (only 91% similarity). The closer Microcoleus species was M. paludosus, which
exhibited a similarity of 96.4-96-8% with our sequences. Microcoleus is a genus currently
defined as polyphyletic, and is currently under taxonomic review (see Strunecky et al.
(2013) and references therein). Based on molecular data, several bundle-forming
cyanobacteria have been already separated from Microcoleus, such as Kastovskya
Muhlsteinova, Johansen & Pietrasiak, Wilmottia, Coleofasciculus Siegesmund and
Trichocoleus (MUhlsteinova et al., 2014) All of these genera are phylogenetically distant
from the strains found in our study. The current state of cyanobacterial taxonomy makes
sometimes difficult to compare results from different studies, particularly for non-taxonomic
specialists. Therefore, and while awaiting further revision of the genus by studies using more
bundle-forming representatives and combining information from several genes, we maintain
this taxonomic assignation, particularly given its morphological and ecological closeness
with typical Microcoleus from other biocrust types (see below).

Perkerson et al (2011) separated Nodosilinea from the polyphyletic genus Leptolyngbyaon
the basis of 16S rDNA sequences, the highly conserved 16S-23S ITS secondary structure,
and morphology. Nodosilinea differs morphologically from Leptolyngbya by the presence of
nodules when grown under low light conditions. However, we did not observe nodules in our
AR11 strain, a response likely due the cultivation conditions employed. This character has
never been reported from any other taxa in the Oscillatoriales (Perkerson et al., 2011).

4.2 Diversity of cyanobacteria from gypsum soils

Studies comparing different soil types have revealed that gypsum soils have distinct
cyanobacterial communities. Using denaturalizing gradient gel electrophoresis (DGGE) and
microscopy, cyanobacterial communities from gypsum soils in the Colorado Plateau (USA)
were different to those from sandy, shale and silt soils (Garcia-Pichel et al., 2001). These
authors also found that the common dominant filamentous cyanobacteria Microcoleus
vaginatus appeared in all biocrusts except those from gypsiferous soils. In the same area,
studies using high-throughput sequencing of the 16S rRNA gene have found that gypsum
soils have a lower abundance and diversity of cyanobacteria, and a very low relative
abundance of Microcoleus vaginatus (1-5%), when compared to other soil types (Steven et
al., 2013). Biocrust-associated cyanobacteria have been rarely studied in Spain (Maestre et
al., 2011). Using DGGE, Maestre et al. (2006) found 19 different phylotypes associated with
biocrust-forming lichens from a calcareous site in south-eastern Spain. No heterocystous
cyanobacteria were detected in that study, but common biocrust-forming genera, such as
Leptolyngbya, Oscillatoria \faucher ex Gomont or Phormidium Kiitzing ex Gomont, and the
cosmopolitan Microcoleus steenstrupii were reported. We believe that the Microcoleus
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found at our study site could have the same ecological function as other Microcoleus
because it showed the typical bundles contributing to soil stabilization. The lack of
heterocystous cyanobacteria in Maestre et al. (2006) is possibly related to the molecular
approach employed by these authors, and/or the greater difficulty in extracting DNA of these
cyanobacteria due to their thick mucilage (Patzelt et al., 2014), which can underestimate this
part of the cyanobacterial community that commonly appears in cultures (Garcia-Pichel et
al., 2001).

4.3 Ecological significance

Biocrusts at our study site comprised a community of cyanobacteria dominated by
filamentous forms (heterocystous and non-heterocystous), which enhance the ecological role
of biocrusts. For example, the bundles of filaments of Microcoleus, surrounded by a sticky
gelatinous sheath, form a net-like structure that binds soil particles together (Mager and
Thomas, 2011). In addition, the thick EPS layer can remain over many years after the death
of trichomes, contributing to biostabilization of soils, protection against erosion by wind and
water, and enhancement of soil moisture (Biidel et al., 2016). The cohesion of soil particles
by bundles of filaments allows the colonization by heterocystous cyanobacteria, such as
Nostoc and Scytonema, and by lichens and mosses in later successional stages (Weber et al.,
2016). Scytonema is able to grow and survive in habitats exposed to strong irradiation by
producing the UV-protector pigment scytonemin (Sinha and Hader, 2008). The accumulation
of this pigment substantially reduces soil albedo, with immediate consequences for the soil
microbiome, as this induces the replacement of thermosensitive bacterial species with more
thermotolerant forms (Couradeau et al., 2016). Dinitrogen fixation is the most important
process in the N cycle of biocrusts, and it has been estimated to be responsible for about
30% of biologically fixed N in terrestrial ecosystems globally (Yeager et al., 2012). Most of
this activity is carried out by heterocystous cyanobacteria such as Mojavia, Roholtiella,
Scytonema or Nostoc, which play an important role in ecosystem N cycling within dryland
soils (Belnap, 2002).

4.4 Concluding remarks

Given the important ecological roles they play, and the strong links between species
composition and diversity and ecosystem functioning in biocrust communities (Bowker et
al., 2013; Maestre et al., 2012; Yeager et al., 2012), understanding the composition and
diversity of cyanobacterial communities can provide valuable information to assess
ecosystem functioning and development in biocrust-dominated landscapes. This is
particularly important in understudied habitats, such as gypsum outcrops from
Mediterranean regions. We found cyanobacteria belonging to genera such as Microcoleus,
Trichocoleus, Scytonema, Nostoc, Roholtiella, Nodosilinea, Chroococcus, Spirirestris and
Mojavia. We also report two new phylotypes of Microcoleus and Scytonema, two of the
most important cyanobacterial genera found in dryland soils worldwide. Our findings
contribute to our understanding of biocrust-associated cyanobacteria from gypsum habitats,
which are biodiversity hotspots and have a great conservation value.
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Figure 1.
Diversity of cyanobacterial morphotypes found in our study area. (A) Roholtiella edaphica.

AR2; (B) Spirirestris sp; (C) Nostoc sp. AR12; (D) Mojaviasp. ARL; (E) Scytonemasp. In
cultivation progress ; (F) Microcoleus sp. AR10; (G) Leptolyngbyasp. AR11, (H)
Trichocoleus sp.; () Chroococcus sp. Scale bars equal 20 pm.
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Figure 2.
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Phylogenetic tree based on 16S rRNA gene sequences obtained by the Maximum Likelihood
method (log likelihood -17870.7546). The percentage of trees in which the associated taxa

clustered together (Bootstrap) is shown next to the branches (>50% values are reported for

Maximum Likelihood, Neigbor Joining and Maximum Parsimony analysis). The tree is

J Arid Environ. Author manuscript; available in PMC 2018 October 01.

drawn to scale, with branch lengths measured in the number of substitutions per site. The



s1duosnuBIA Joyiny sispund DN edoin3 ¢

s1dLIOSNUBIA JoLINY sispund DN 8doin3 ¢

Cano-Diaz et al.

0.05 bar indicates substitutions per nucleotidic position. @ Reference strain. Newly
sequenced strains are in bold.
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