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Abstract

We present a method for automated brain tissue segmentation based on diffusion MRI. This 

provides information that is complementary to structural MRI and facilitates fusion of information 

between the two imaging modalities. Unlike existing segmentation approaches that are based on 

diffusion tensor imaging (DTI), our method explicitly models the coexistence of various diffusion 

compartments within each voxel owing to different tissue types and different fiber orientations. 

This results in improved segmentation in regions with white matter crossings and in regions 

susceptible to partial volume effects. For each voxel, we tease apart possible signal contributions 

from white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF) with the help of 

diffusion exemplars, which are representative signals associated with each tissue type. Each voxel 

is then classified by determining which of the WM, GM, or CSF diffusion exemplar groups 

explains the signal better with the least fitting residual. Fitting is performed using ℓ0 sparse-group 

approximation, circumventing various reported limitations of ℓ1 fitting. In addition, to promote 

spatial regularity, we introduce a smoothing technique that is based on ℓ0 gradient minimization, 

which can be viewed as the ℓ0 version of total variation (TV) smoothing. Compared with the latter, 

our smoothing technique, which also incorporates multi-channel WM, GM, and CSF concurrent 

smoothing, yields marked improvement in preserving boundary contrast and consequently reduces 

segmentation bias caused by smoothing at tissue boundaries. The results produced by our method 

are in good agreement with segmentation based on T1-weighted images.

1 Introduction

Brain tissue segmentation is most commonly performed using T1-weighted images, which 

are typically rich with anatomical details thanks to their higher spatial resolution (1 × 1 × 1 

mm3). However, the recent availability of high spatial resolution (1.25 × 1.25 × 1.25 mm3) 

diffusion MRI data from the Human Connectome Project1 begs the following questions: 1) 

Can tissue segmentation be performed equally well solely based on diffusion data, therefore 

making it possible to avoid the technical difficulties involved in transferring segmentation 

information from T1-weighted images, such as geometric distortion and cross-modality 
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registration? 2) Can diffusion data, acquired based on a totally different contrast mechanism, 

provide information complementary to T1-weighted images for further improving 

segmentation?

In this paper, we attempt to address these questions by introducing a segmentation method 

that works directly with diffusion MRI data. In contrast to existing segmentation methods 

that are based on diffusion tensor imaging (DTI) [1–3], our method explicitly models the 

coexistence of various diffusion compartments within each voxel owing to different tissue 

types and different fiber orientations. This improves segmentation in regions with white 

matter crossings and in regions susceptible to partial volume effects. For each voxel, we 

tease apart possible signal contributions from white matter (WM), gray matter (GM), and 

cerebrospinal fluid (CSF) with the help of diffusion exemplars, which are representative 

signals associated with each tissue type. More specifically, the WM diffusion exemplars are 

sampled from diffusion tensors oriented in different directions with different axial and radial 

diffusivities; GM from isotopic tensors of low diffusivities; and CSF from isotropic tensors 

of high diffusivities. Each voxel is then classified by determining which of the WM, GM, or 

CSF diffusion exemplars explain the signal better with the least fitting residual.

Fitting is performed using ℓ0 sparse-group approximation, circumventing various reported 

limitations of ℓ1 fitting. The use of ℓ0 penalization is motivated by the observations reported 

in [4], where the authors have shown that the commonly used ℓ1-norm penalization [5, 6] 

conflicts with the unit sum requirement of the volume fractions and hence results in 

suboptimal solutions. To overcome this problem, the authors propose to employ the 

reweighted ℓ1 minimization approached described by Candès et al. [7] to obtain solutions 

with enhanced sparsity, approximating solutions given by ℓ0 minimization. However, despite 

giving improved results, this approach is still reliant on the suboptimal solution of the 

unweighted ℓ1 minimization problem that has to be solved in the first iteration of the 

reweighted minimization scheme. In the current work, we will employ an algorithm that is 

based directly on ℓ0 minimization.

To promote spatial regularity, we introduce a smoothing technique that is based on ℓ0 

gradient minimization [8]. This can be viewed as the ℓ0 version of total variation (TV) 

smoothing. Compared with the latter, our smoothing technique yields marked improvement 

in the preservation of boundary contrast. In addition, our method smooths the probability 

maps of WM, GM, and CSF concurrently. This is achieved by an ℓ0 adaptation of a multi-

channel smoothing algorithm [9], solved using alternating direction method of multipliers 

(ADMM) [10].

2 Approach

Our approach to tissue segmentation is inspired by the face recognition work of Wright et al. 

[11]. However, instead of the ℓ1 sparse approximation used in [11], we use a sparse-group ℓ0 

minimization approach that circumvents the problems mentioned in [4]. To promote spatial 

regularity, we also propose a multi-channel gradient minimization algorithm for smoothing 

of the tissue probability maps, producing edge-preserving effect better than smoothing based 

on TV regularization [12].
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Linear Subspaces

We assume that the signal from each class of tissue lies in a linear subspace. The subspace is 

spanned by diffusion exemplars, which are hypothetical signal vectors generated using the 

tensor model, S(b, ĝ) = S0 exp(−bĝTDĝ), with varying diffusion parameters. Here, ĝ is a 

unit vector representing the gradient direction, S0 is the baseline signal with no diffusion 

weighting, and D is the diffusion tensor. The WM subspace is spanned by multiple groups of 

diffusion exemplars. Each WM diffusion exemplar group consists of signal vectors sampled 

from a set of unidirectional axial-symmetric diffusion tensor models with a range of typical 

axial and radial diffusivities. Multiple groups of WM diffusion exemplars are generated by 

tensors with principal directions uniformly covering the unit sphere. The GM and CSF 

diffusion exemplar groups consist of signal vectors sampled from isotropic tensors with GM 

diffusivities set lower than CSF diffusivities, consistent with what was reported in [1, 13]. 

For each class c ∈  = {WM, GM, CSF}, we arrange the nc signal vectors of the diffusion 

exemplars as columns of a matrix Ac = [sc,1, sc,2, …, sc,nc]. We then concatenate the 

exemplar matrices of all tissue classes into a matrix A = [AWM|AGM|ACSF], where AWM = 

[AWM1 |…|AWMk|…|AWMNWM
] and each numerical subscript k of the WM exemplar 

matrix AWMk denotes the index corresponding to a WM direction.

ℓ0 Sparse-Group Representation

Given the signal vector s of a voxel that we wish to classify, we first compute its sparse-

representation coefficient vector f by solving the follow ℓ0 sparse-group approximation 

problem:

min 
f ≥ 0

ϕ(f) = ‖Af − s‖2
2 + γ α‖f‖0 + (1 − α) ∑

g ∈ 𝒢
ℐ(‖fg‖2) , (1)

where ℐ(z) is an indicator function returning 1 if z ≠ 0 or 0 if otherwise. The ℓ0-“norm” gives 

the cardinality of the support, i.e., ‖f‖0= | supp(f)|= |{k : fk ≠ 0}|. Parameters α ∈ [0, 1] and 

γ > 0 are for penalty tuning, analogous to those used in the sparse-group LASSO [14]. Note 

that α = 1 gives the ℓ0 fit, whereas α = 0 gives the group ℓ0 fit. fg denotes the subvector 

containing the elements associated with group g ∈  = {WM1, …, WMNWM, GM, CSF}. 

We solve this problem using an algorithm called non-monotone iterative hard thresholding 

(NIHT) [15], inspired by [16, 17]. Proof of convergence can be obtained by modifying the 

results shown in [17].

Tissue Classification

Each voxel is classified as the class with diffusion exemplars that best explain the signal. 

This is achieved, based on [11], by determining the class that gives the least reconstruction 

residual:

min 
c

{r(s |c) = ‖Aδc(f) − s‖2}, (2)
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where δc(f) is a new vector whose only nonzero entries are the entries in f that are associated 

with class c. We modify the above problem to become a maximum a posteriori (MAP) 

estimation problem:

max 
c

{p(c |s)∝p(s |c)p(c)}, (3)

where p(c) is the prior probability and p(s|c) is the likelihood function defined as

p(s |c) = 1
σc 2π

exp  − r2(s |c)
2σc

2 . (4)

The scale σ can be determined from the data via σc
2 = 1

|Ωc| ∑i ∈ Ωc
r2(si |c), where Ωc ⊂ Ω = 

{1, …, N} is the subset of indices of voxels with class c giving the least residuals. N is total 

number of voxels. This alternative formulation allows us to visualize the posterior 

probability maps {p(c|si)|i ∈ Ω, c ∈ } (disregarding constant scaling) for qualitative 

assessment of tissue segmentation. The prior probabilities can be set according to a pre-

computed probabilistic atlas for guided segmentation.

Multi-Channel Gradient Minimization

Tissue classification as discussed in the previous section can be improved in terms of 

robustness by imposing spatial regularity. To achieve this, we smooth the posterior 

probability maps of WM, GM, and CSF concurrently prior to MAP estimation. In contrast to 

the commonly used TV-regularized smoothing, which is essentially an ℓ1 gradient 

minimization (L1-GM) algorithm, we will use here ℓ0 gradient minimization (L0-GM), 

which has been shown in [8] to be more effective than L1-GM in preserving edges. 

Moreover, L0-GM is more suitable in our case due to the piecewise constant nature of the 

segmentation maps. Here, we describe a multi-channel version of L0-GM.

We first define for the i-th voxel a probability vector pi ≡ p(si) = [p(WM|si), p(GM|si), 

p(CSF|si)]T. We then solve for a smoothed version of the probability map {pi ∈ ℝ| |, i ∈ Ω}, 

i.e., u = {ui ∈ ℝ| |, i ∈ Ω} via the following problem:

min 
u

ψ(u) = ∑
i

‖ui − pi‖2
2 + β∑

i
∑

d
‖Di, du‖2

2

0
. (5)

We let Di,du ∈ ℝ1×| |, where u ∈ ℝN×| |, be a row vector concatenating the finite difference 

values of all channels of u in the d-th spatial dimension. Note that Di,d ∈ ℝ1×N is the finite 

difference matrix. The first term in (5) maintains data fidelity and the second term penalizes 

small edges in a multi-channel image. If we replace the ℓ0-“norm” in the second term with ℓ1-

norm, the above problem become a TV-regularized smoothing problem. Note that the above 

optimization problem is known to be computationally intractable. We thus implement an 
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approximate solution using ADMM [18] by introducing a number of auxiliary variables. The 

ADMM formulation amounts to repeatedly performing hard thresholding and spatial 

convolution/deconvolution [10].

3 Experiments

3.1 Data

Diffusion weighted (DW) datasets from the Human Connectome Project (HCP) [19] were 

used. DW images with 1.25 × 1.25 × 1.25 mm3 resolution were acquired with diffusion 

weightings b = 1000, 2000, and 3000 s/mm2, each applied in 90 directions. 18 baseline 

images with low diffusion weighting b = 5 s/mm2 were also acquired. The DW datasets were 

acquired with reversed phase encoding to correct for EPI distortion. T1-weighted anatomical 

images were acquired as anatomical references.

3.2 Diffusion Parameters

The parameters of the tensors used to generate the diffusion exemplars were set to cover the 

typical values of the diffusivities of the WM, GM, and CSF voxels in the above dataset: 

λ‖
WM = 1 × 10−3 mm2/s, λ⊥

WM = [0.1:0.1:0.3] × 10−3 mm2/s, λGM = [0.00:0.01:0.80] × 10−3 mm2

/s

, and λCSF = [1.0:0.1:3.0] × 10−3 mm2/s. The notation [a : s : b] denotes values from a to b, 

inclusive, with step s. Note that in practice, these ranges do not have to be exact but should 

however cover possible parameter values. The direction of each group of the WM diffusion 

exemplars corresponds to one of the 321 points evenly distributed on a hemisphere, 

generated by the subdivision of the faces of an icosahedron three times.

3.3 Comparison Methods

We compared the proposed method (L200) with the following methods:

– L211: Sparse-group LASSO [14] using diffusion exemplars identical to the 

proposed method. Similar to [4] and according to [7], we executed sparse-group 

LASSO multiple times, each time reweighing the ℓ21-norm and the ℓ1-norm so 

they eventually approximate their ℓ0 counterparts.

– L0: ℓ0 minimization using a single diffusion exemplar each for WM, GM, and 

CSF [13]. Similar to [13], WM-GM-CSF segmentation was used to help 

determine the parameters for the diffusion exemplars. The axial and radial 

diffusivities of the WM diffusion exemplars were determined based on WM 

voxels with fractional anisotropy (FA) greater than 0.7. The diffusivity of the 

isotropic GM/CSF diffusion exemplar was determined based on GM/CSF voxels 

with FA less than 0.2.

The tuning parameter γ was set to 1 × 10−4 for all methods. In addition, we set α = 0.05, β = 

0.001, p(WM) = 0.35, p(GM) = 0.50, and p(CSF) = 0.15 for the proposed method.
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3.4 Results

Qualitative—Figure 1 indicates that the segmentation result of the proposed method, L200, 

resembles very closely to that produced using the T1-weighted image with the FSL FAST 

algorithm [20]. L211 produces WM segmentation result that is similar to L200, but 

underestimates GM. Note that these two methods are able to separate the deep GM 

structures, such as caudate and putamen, from the surrounding WM. The segmentation of 

the thalamus is more challenging because it is a mixture of GM and WM (see likelihood 

maps in the bottom row of Fig. 1).

Quantitative—Figure 2 shows the Dice scores for WM-GM-CSF segmentation of 5 

subjects from the HCP data repository, confirming again that the proposed method produces 

segmentation results that agree most with segmentation based on T1-weighted images. The 

average Dice scores for L200/L211/L0 are 0.8603/0.8581/0.8019 (WM), 

0.8105/0.7177/0.6844 (GM), and 0.7204/0.5941/0.6985 (CSF).

Smoothing—Figure 3 shows the effects of smoothing with different strengths using L1-

GM and L0-GM. The results confirm that despite the increased smoothing strength, L0-GM 

can still preserve edges effectively. On the other hand, L1-GM blurs the edges when the 

smoothing strength is increased.

4 Conclusion

In this paper, we have presented a tissue segmentation method that works directly with 

diffusion MRI data. We demonstrated that the proposed method is able to produce 

segmentation results that are in good agreement with the more conventional T1-based 

segmentation. We also showed that diffusion MRI provides additional information for 

segmentation of deep gray matter structures, complementary to T1-weighted imaging, where 

image contrast in this region is typically low. Future research will be directed to further 

improving the segmentation of deep gray matter.
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Fig. 1. 
(Top) T1-weighted, fractional anisotropy (FA), mean diffusivity (MD), and T1 segmentation 

images. (Middle) Segmentation maps given by L200 (proposed), L211, and L0. (Bottom) 
Likelihood maps for WM, GM, and CSF given by L200.
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Fig. 2. 
Accuracy of segmentation outcomes evaluated based on Dice score using T1 segmentations 

as the ground truth.
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Fig. 3. 
Effects of light and heavy smoothing using L1-GM and L0-GM. The WM, GM, CSF 

posterior probability maps are smoothed concurrently. However, due to space limitation, 

only the WM probability maps are shown here.
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