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Abstract

Traditional 2D cell cultures do not accurately recapitulate tumor heterogeneity, and insufficient
human cell lines are available. Patient-derived xenograft (PDX) models more closely mimic
clinical tumor heterogeneity, but are not useful for high-throughput drug screening. Recently,
patient-derived organoid cultures have emerged as a novel technique to fill this critical need.
Organoids maintain tumor tissue heterogeneity and drug-resistance responses, and thus are useful
for high-throughput drug screening. Among various biological tissues used to produce organoid
cultures, circulating tumor cells (CTCs) are promising, due to relative ease of ascertainment.
CTC-derived organoids could help to acquire relevant genetic and epigenetic information about
tumors in real time, and screen and test promising drugs. This could reduce the need for tissue
biopsies, which are painful and may be difficult depending on the tumor location. In this review,
we have focused on advances in CTC isolation and organoid culture methods, and their potential
applications in disease modeling and precision medicine.
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1. Introduction

Circulating tumor cells (CTCs) are shed from primary tumor and/or metastatic lesions into
the vasculature and initiate metastatic lesions at distant sites. In 1869, Thomas Ashworth,
an Australian physician, first identified cells similar to cancer cells in blood drawn from

the saphenous vein [1]. In 1889, Stephen Paget proposed a ‘seed and soil” hypothesis, in
which certain tumor cells (“seeds™) have a specific affinity for the environment of specific
organs (‘soil’), and compatibility between the seed and soil leads to metastasis [2]. CTCs
are considered as ‘seeds’ distributed by primary tumors for potential initiation of metastatic
growth at distant organ sites. CTCs reflect tumor heterogeneity, and could be genotyped and
functionally characterized to study and target the evolving mutational landscape of primary
and/or metastatic tumors [3-5].

CTCs have opened a new avenue towards combating cancer by acting as important
indicators of metastatic disease and prognostic biomarkers. Several studies in different

solid cancers such as breast [6,7], lung [8], prostate [9], and esophageal squamous cell
carcinoma [10] have suggested that effective chemotherapy or hormonal therapy are
associated with decreased CTCs. Correlations between numbers of CTCs, and survival time
— both progression-free survival (PFS) and overall survival (OS) before and after surgery —
are considered important pharmacodynamics data in treatment response studies to determine
clinical outcomes and risk of relapse [11,12]. Meta-analyses of patients with ovarian [13]
and lung cancer [14] showed a strong link between number of CTCs and cancer progression
and treatment response, determined as shorter PFS and OS [15]. Normanno et al. (2013)
noted that after the first cycle of chemotherapy, CTCs decreased in patients with small cell
lung cancer [16]. In gastrointestinal cancers (e.g. pancreatic, gastric, and colorectal cancers),
CTCs are being used to predict distant metastasis and patient survival, and are helpful

in tumor staging during chemotherapy and/or radiotherapy [17,18]. Higher expression of
multidrug-resistance-related proteins (MRPs) and aldehyde dehydrogenase 1 (ALDH1) in
CTCs are associated with shorter PFS and predicts response to chemotherapy in breast
cancer [19]. Blassl et al. (2016) identified therapeutic resistance in ovarian cancer cells
through gene expression profiling of CTCs [20]. In short, CTCs have now emerged as a
‘liquid biopsy’, offering a safe, low-cost and repeatable tissue source that is an alternative
to invasive biopsies, and can be immensely useful in the diagnosis and prognosis of various
cancers.

Immense efforts have been made to isolate live CTCs and culture them for genetic and
epigenetic characterization of tumors. Further, CTCs in culture could be useful to screen
promising drugs and making important treatment decisions in emerging precision medicine
and targeted treatment regimens. This review focuses on the current status of efforts to
isolate and culture CTCs, to grow three-dimensional organoids for potential applications in
cancer research and drug development.

2. Current methodologies for isolation and characterization of CTCs

For organoid cultures, it is important to isolate sufficient numbers of viable CTCs from
blood. In the last few decades, several methods have been developed for isolation of CTCs
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using biological characteristics (such as surface marker expression) and physical properties
(e.g. density, size and electrical charge) (see summary in Table 1 and Fig. 1).

Immunoaffinity-based enrichment techniques are the first reported and most widely used
techniques for CTC enrichment [21]. The Cell-Search® system (Veridex LLC) is an
FDA-approved technique used for detection of CTCs in samples from patients with
prostate [22,23], colorectal [24], and breast cancer [25]. It employs immunomagnetic
separation (ferrofluid nanoparticles functionalized with an EpCAM antibody) combined
with fluorescence imaging technology using antibodies to identify CTCs (with the criteria
of EpCAM+, DAPI+, cytokeratins 8, 18+, and/or 19+, and CD45-) from white blood cells
(with the criteria of cytokeratins-, CD45%, and DAPI+).

To further improve efficiency and detection speed, several new methods have been
developed. These include AdnaTest (Adnagen AG), a commercial platform [26] that detects
CTCs through an optimized cocktail of antibodies and a combination of tumor-associated
markers. In this method, CTCs are first enriched through antibody-coated magnetic particles
(including EpCAM), followed by reverse transcription-polymerase chain reaction (RT-PCR)
analysis of tumor-associated genes (e.g. CA15-3, GA 733-2, and Her2) [26-28]. OncoCEE
(commercialized by Biocept) uses an anti-EpCAM antibody for capture and a cocktail of
TROP-2, MUC-1, HER2, EGFR and N-cadherin antibodies for detection of CTCs [29];

this approach had high detection efficiency in samples from patients with metastatic breast
cancer [30].

However, two major drawbacks exist with these types of detection systems. First, the
epithelial cell surface marker EpCAM is used to isolate CTCs, although EpCAM is

not expressed in various sub-types of the same cancer [31]. EpCAM-based detection of
CTCs did not recognize breast cancer cells of a normal cell-like subtype characterized

by aggressive behavior [32]. Furthermore, downregulation of epithelial markers during
epithelial-mesenchymal transition (EMT) is common in CTCs [33,34]. These problems have
been overcome by using additional surface marker/s frequently expressed on cells lacking
EpCAM, such as N-cadherin, vimentin, EGFR, CD133, and O-cadherin [35-37].

Preprocessing of blood using centrifugation or cell lysis can cause significant loss of

CTCs. To resolve this issue, new enrichment techniques have been developed, such as
MagSweeper, which used a magnetic rod to separate CTCs (magnetically labelled) from
non-magnetically labelled cells [38]. This technique was used for genetic profiling studies in
breast cancer [39,40] and prostate cancer [41], and for analyses of stem cells in colorectal
cancer [42]. Cell-antibody interaction is the key for efficient capture of CTCs, which can

be controlled by sample flow velocity and direction. In 2007, a microfluidic device called
CTC-Chip was developed. It consists of a collection of microposts coated with anti-EpCAM
antibody specifically designed for CTC enrichment [43]. Precise control of fluid flow
promoted isolation of viable CTCs from blood of patients with metastatic prostate, breast,
pancreatic, colon, and lung cancer [43]. This lead to further microfluidic-based enrichment
techniques, such as a geometrically enhanced differential immunocapture (GEDI) device,
which uses a combination of antibody-coated microposts (positive enrichment) and
hydrodynamic chromatography (size-based margination) to reduce non-specific leukocyte
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adhesion. This technique was used to isolate CTCs in samples from patients with castration-
resistant prostate cancer (PSMA+/CD45- cells) [44], as well as breast and gastric cancer
[45].

Although promising, these micropost devices have limitations, such as their nontransparent
nature combined with post structures (difficult for high-resolution imaging) and complexity
of production at a larger scale. As a result, new surface-capture microfluidic devices have
been developed, including a herringbone (HB) chip [46], a graphene oxide (GO) chip [47],
and a geometrically enhanced mixing (GEM) chip [48]. By using surface-coated antibodies,
these transparent devices allow high-resolution imaging of CTCs suited for large-scale
production. However, trypsinization is required to retrieve CTCs, which are immobilized
on these devices [47,48]; this step could cleave major surface receptors on CTCs important
for their characterization. To address this problem, magnetic sifters (small microfluidic
chips) were developed with a dense array of magnetic pores arranged in a honeycomb
pattern. These chips sieve samples by vertical flow centrifugation and reportedly allow
efficient capture of CTCs followed by high-throughput release [49]. Another device called
the Ephesia chip contains antibody-coated magnetic beads self-assembled in the microchip;
these were reported to capture CTCs in samples from patients with prostate and breast
cancer [50,51].

Currently, a few automated commercial hybrid CTC enrichment platforms are also available
based on both microfluidic and immunomagnetic principles (Table 1). These include Liquid
Biopsy® (Cyvenio), an automated authenticated platform that captures CTCs labelled with
magnetic nanoparticles from blood samples, and can be used in next-generation sequencing
studies [52]. IsoFlux (Fluxion Biosciences) is a system using three interconnected fluidic
reservoirs to separate cells labelled with anti-EpCAM coated magnetic beads from unbound
cells, under the influence of a high magnetic field. This method was more sensitive

than CellSearch in detecting CTCs in prostate cancer samples [53]. The CTC-iChip
(Janssen Diagnostics), a microfluidic immunomagnetic-based CTC enrichment technique
[54], allows sequential separation of different blood components through a micropillar array,
hydrodynamic size-based sorting, and magnetophoresis. CTC-iChip uses inertial fluidics to
focus all the nucleated cells and then use a positive or negative selection using magnetic
beads to pull CTCs or WBCs [54,55].

Another class of microfluidics based separation technologies uses inertial hydrodynamic
forces in microfluidic channels to separate the cells based on size, hence named “label free
technologies” [56]. The advantage of these technologies is their high throughput. Using
inertial forces either in linear or curved channels, cells can be focused and diverted into
different streamlines based on their size. Spiral Microfluidics (Clearbridge Biomedics), a
straightforward spiral microfluidic device with a trapezoidal cross-section for label-free
enrichment of CTCs, leads to greater accuracy in genome sequencing and mapping, as well
as in single-cell analysis [57,58]. More recently, a microfluidic labyrinth was developed to
isolate CTCs at a 2.5 mL/min flow rate entirely based on size, with no positive or negative
selection [59].
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Other currently used methods are MetaCell®, a size-based enrichment technique for viable
CTC enrichment from peripheral blood [60]; and Lymphoprep™ by Nycomed Pharm AS
[61]; and Ficoll-Paque by GE-Amersham Biosciences, a density-based approach followed
by RT-PCR analysis which has been used to detect CTCs in colorectal cancer [62].
OncoQuick® Plus by Greiner Bio One uses a combined approach of density gradient
centrifugation and filtration to capture CTCs, and its use in samples from patients with
metastatic breast cancer has been reported [63]. RosetteSep CTC Enrichment Cocktail
(STEMCELL Technologies) is designed to enrich CTCs by negative selection, and unwanted
cells are removed using tetrameric antibody complexes recognizing CD2, CD16, CD19,
CD36, CD38, CD45, CD66b and glycophorin A, followed by centrifugation over a density
gradient medium. Epithelial ImmunoSPOT Assay (EPISPOT), a secreted protein-based
approach, has been used to capture CTCs in samples from patients with several different
cancers [64,65].

Other commercial kits/systems based on filter-based size exclusion technologies use both
molecular and cytopathologic approaches [66]. These include Isolation by Size of Epithelial
Tumor cells (ISET technology) by Rare Cell Diagnostics; this technology was used to
isolate CTCs as intact cells, without a previous immune-based selection, from a variety

of cancer types [67,68]. ScreenCell® is a small filter-based device used to isolate and
characterize CTCs [69,70]. These new technologies could overcome the drawbacks of
existing technologies and facilitate long-term culture of CTCs in 2D and 3D organoid
models.

3. CTC applications in cell culture models

3.1. 2D and 3D cell culture models

Cancer-related mortality rates remain high, in part, because of a high rate of failure in drug
development due to the lack of sufficient clinically relevant preclinical models. Currently
available cancer cell lines fall short of expectations as an effective clinically relevant

model because of issues related to genotypic drift, cross-contamination with other cell
lines, difficulty in establishment of permanent cell lines from primary tumors, loss of tumor
heterogeneity, and adaptation to /7 vitro growth [71]. Furthermore, for several cancer types,
sufficient numbers of clinically relevant cell lines are not available. For example, although
prostate cancer is among the most common malignancies, hardly any cell lines for primary
prostate cancer are available in public repositories. Further, cancer cell lines representing
different races are also not available. These limitations demand novel measures to develop
cancer cell culture models more representative of clinical situations. As CTCs are mostly
derived from primary tumors, CTCs in culture could be a potential source of information
about molecular drivers of cancer progression that could inform treatment decisions.

Due to the rareness of CTCs (/.e. approx. 1 in 1,000,000 of circulating cells), it has been
challenging to establish cell culture and permanent cell lines /in vitro or grow them in
xenografts (/n vivo) to perform functional analyses. However, significant advances have
been made towards isolation and culture of CTCs. Alix-Panabieres et al. (2005) introduced
the concept of short-term culture of CTCs /n vitro on a membrane coated with antibodies to
capture the secreted proteins and detect CTCs [64].
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In 2013, Zhang et al. established primary cultures from CTCs (an ex-vivo expansion)
obtained from patients with advanced stage breast cancer [72]. After isolating EpCAM (=)
CTCs with the brain metastasis-selected markers (BMSMs) HER2(+)/EGFR(+)/HPSE(+)/
Notchl(+), this group studied the invasiveness of these CTC lines [72]. CTC lines with
BMSMs had high invasiveness and led to development of brain and lung metastasis in nude
mice [72].

One year later, Yu et al. (2014) established six CTC lines using samples from ER+ breast
cancer patients, through CTC-iChip technology [73]. They maintained the CTCs in serum-
free media for>6 months, with basic fibroblast growth factor (FGF) and epidermal growth
factor (EGF), under hypoxic conditions (4% O,) [73]. Genome sequencing confirmed the
mutational status of P/IK3CA gene, estrogen receptor gene (ESRI) and fibroblast growth
factor receptor gene (FGFR2) in these CTC-derived cell lines. Moreover, they confirmed the
cytological similarity between cultured CTCs and primary CTCs (isolated from a patient)
and tumorigenic properties of these cell lines in mice [73]. In another study, Zhang et al.
(2014) established a three-dimensional (3D) co-culture model for better /r+situ capture and
culture of CTCs [74]. After isolating CTCs in samples from patients with lung cancer,

they cultured CTCs on microfluidic chips along with tumor-associated fibroblasts and
extracellular matrix proteins to construct a tumor microenvironment favorable for growth of
CTCs. Matched mutations were detected between expanded CTCs and primary tumors [74].
In another study, this 3D co-culture model [74] was used to capture and expand CTCs from
multiple blood draws through the treatment cycle of a patient with lung adenocarcinoma
[75]. This study demonstrated the usefulness of CTCs to assess ALK rearrangement as well
as serial genetic alterations, matching similar observations in tumor biopsies [75].

3.2. Organoid culture model

Organoids are miniscule models of tissues grown in a 3D semisolid extracellular matrix
with specific growth factor—supplemented medium [76,77]. Single epithelial cells can form
organoids in 7-10 days; these can be dissociated into single cells to reinitiate organoid
formation. A major achievement in organoid culture emerged in 2009, when Sato et al.
established the mini gut culture system from mouse small intestinal crypts with defined
media conditions for better growth [77]. The technology was subsequently adapted for other
digestive epithelial tissues, such as the epithelium of stomach, colon, pancreatic ducts, and
liver bile ducts, as well as various cancer types [76,78-80].

In organoid culture systems, isolated single cells are grown in Matrigel® (as a substitute
for basal lamina), a 3D laminin and collagen-rich matrix along with optimal niche factors
to form organoids. The niche factors (briefly summarized in Table 2) include B27, N2,
R-spondinl, noggin, N-acetylcysteine, recombinant EGF, nicotinamide, recombinant FGF,
recombinant FGF10, and SB-431542. R-spondin-1 (Wnt signal-enhancer) is considered
responsible for long-term expansion of intestinal epithelial organoids [77] and for prostate
development, including luminal cell differentiation [81]. Noggin is a known inhibitor of
bone morphogenetic protein (BMP) signaling [82] and considered essential for proliferation
of epithelial cells and prostate budding. Therefore, it is used to promote organoid formation
and expansion. EGF, FGF2, FGF10, and prostaglandin E2 (PGEZ2) support epithelial cell
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proliferation and are important factors in human small intestinal cultures [83,84]. SB202190
(p38 inhibitor) and nicotinamide also are considered essential for human small intestinal
cultures [76] and SB202190 is considered important for keratinization [85]. A83-01
(AIK3/4/5 inhibitor) is included to prevent the proliferative block in prostate cells via
inhibition of the TGF- signaling cascade [86]. The Rho/ROCK kinase inhibitor Y-27632 is
necessary for long-term expansion of primary prostate epithelial and stroma-derived feeder
cells [87]. Dihydrotestosterone (DHT) in media significantly enhances the efficiency of
prostate organoid formation [85]. Differentiation can be achieved by withdrawing growth
factors and simultaneously blocking Notch signaling (dibenzazepine, a -y-secretase inhibitor)
[76,83]. In contrast to normal human tissues, several niche factors could be dispensable for
the growth of organoids derived from cancerous tissue.

3D organoids have been successfully developed from primary tumors, metastatic lesions,
and CTCs [80,88,89]. Patient-derived organoids are easy to initiate, propagate and store;
represent and maintain tumor heterogeneity; are biologically stable; can easily be used

for genetic manipulations, and are suitable for high-throughput screening assays [88].

Gao et al. (2014) established seven 3D organoid cultures from biopsies of metastatic
prostate cancer and CTCs from blood samples of patients with prostate cancer [89]. For
isolation of CTCs, they used a simple Ficoll-Paque technique with a CD45 depletion
cocktail; and used germline and organoid DNA to characterize the organoid lines at
molecular level including mutational status (by whole exome sequencing), copy number
alterations (by array comparative genomic hybridization), and identification of the fusion
gene and transcriptional landscape (using paired-end RNA sequencing) [89]. These organoid
lines showed histologic features highly reminiscent of the parent prostate tumor [89].
Importantly, these organoid lines harbor genetic alterations quite similar to the parent
prostate cancer, including PTEN loss, TMPRSS2-ERG interstitial deletion, SPOP and
FOXA1 mutations, and CHDL1 loss [89]. These genomic alterations remained even after
months of subsequent culturing, confirming the maintenance of tumor heterogeneity in
organoids [89]. Furthermore, the organoid lines presented the phenotypic diversity of
castration-resistant prostate cancer (CRPC), including androgen receptor (AR)-dependent
adenocarcinoma, AR-negative adenocarcinoma, neuroendocrine carcinoma, and squamous
differentiation [89]. Although, it is easier to develop organoids from metastatic tumor
tissues, it is not always practical or possible to obtain a metastatic tumor biopsy for organoid
culture. Therefore, CTCs are the most preferred biological tissue for organoid culture.

3.3. Patient-derived xenograft (PDX) versus organoid model

In PDX models, freshly resected tumor pieces are subcutaneously or orthotopically
implanted into immunocompromised mice [90]. These models mimic the original tumor
conditions more closely than /n vitro conditions and show less genetic divergence when
compared to cancer cell lines [91]. In addition, several sub-clones grow in parallel and
partially conserve parental tumor heterogeneity. These benefits make PDX models valid for
preclinical research and allow assays to test drug efficacy and develop predictive biomarkers
for standard and novel anticancer drugs based studies [92]. However, PDX models have
several caveats. These include the delay between murine engraftment and patient treatment,
and lymphomagenesis of human tumors in mice. Most importantly, this model is expensive,
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time-consuming, labor-intensive, not amenable to high-throughput drug screening, and could
be ethically problematic [93]. Further, it is quite challenging to develop PDX models in
slow-growing cancers such as prostate cancer.

On the other hand, organoids have architectural and physiological similarities to native
organ systems, and are superior to traditional two-dimensional homogeneous cell lines [94].
Additionally, organoids have self-organizing ability, are easy to handle, are accessible to
genetic engineering, can be used for large-scale drug screening within a shorter time span,
and are cheaper than PDX models [80]. The success rate of establishment of organoids
from early-stage tumors is much higher compared to cancer cell lines or PDX models

[80]. Organoids fall between purely clonal cancer cell lines and PDX models in terms of
tumor heterogeneity. They can also be used as tools for genetic relatedness, identification of
biomarkers, screening of drugs, and preclinical evaluation of precision medicine strategies
[95,96]. With these advantages, organoids may be poised to become a model that fits
research needs between simple cancer cell lines and complex PDX models.

4. Potential applications of CTC-derived organoid cultures

4.1. Disease modeling

Carcinogenesis is a complicated process, and it is challenging to link specific genetic

events with different stages in carcinogenesis, such as angiogenesis, metastasis, and
drug-resistance development. Organoids could be easily manipulated using retroviruses,
inhibitors, and/or CRISPR/Cas9 approaches; therefore, organoids are useful in cancer
modeling and in identifying key “driver mutations” involved in cancer development [97—
99]. Drost et al. (2015) used a human intestinal organoid model to identify specific genetic
alterations involved in colorectal cancer (CRC) growth and progression [97]. They used

a CRISPR/Cas 9 genomic editing tool to generate organoids (small intestine and colon)

with specific mutations (APCKO, TP53KO, KRASC12D and SMADA4KO); they reported

that these organoids could grow /n vitro in the absence of all stem-cell-niche factors

[97]. /n vivo, organoids with triple mutations (APCKO, TP53KO, and KRASCE12D) showed
slower growth resembling ‘adenoma’ when injected subcutaneously in immunodeficient
mice; however, organoids with quadruple mutations (APCKO, TP53K0, KRAS®12D and
SMADA4KO) showed highly proliferative and invasive growth similar to ‘invasive carcinoma’
[97]. Using a similar human colon organoid model, Fumagalli et al. (2017) showed

that sequential accumulation of oncogenic mutations (APCKO, TP53K0, KRASC12D and
SMAD4KO) facilitates primary tumor growth, migration and metastasis following orthotopic
transplantation of organoids [98]. Boj et al. (2015) reported the utility of an organoid

model to better understand the development of pancreatic ductal adenocarcinoma (PDA)
[99]. Following transplantation, organoids derived from murine and human PDA generated
lesions reminiscent of pancreatic intraepithelial neoplasia, which then progressed to invasive
PDA [99]. Further, they demonstrated the utility of organoids to identify molecular pathways
correlated with PDA progression, offering novel therapeutic and diagnostic opportunities
[99]. CTC-derived organoids could be immensely useful to model metastatic progression
and drug-induced selection, by establishing multiple organoid lines from the same patient
over a period of time (e.g. early, progressing, and metastasized cancers; pre-treatment and
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posttreatment) or patients treated in parallel. In future, biobanking of organoids derived
from diseased tissues will be useful in better understanding disease pathogenesis and the
development of new diagnostic tools (Fig. 2).

4.2. Genetic instability

Genetic instability is considered an absolute requirement for the generation of multiple
mutations that underlie cancer. Organoid models have proven useful in characterizing the
importance of genetic instability during cancer development and progression [97,100].
Matano et al. (2015) showed that besides driver mutations, genetic instability is required
for metastatic progression of CRC [100]. Using a CRISPR/Cas9 genome editing system,
genetic alterations (deletion of APC, TP53, and SMAD4; and point mutations in KRASG12Y
and PIK3CAE345K) were introduced into organoids derived from normal human intestinal
epithelium [100]. Importantly, even with these driver mutations, the engineered organoids
were largely devoid of aneuploidy or copy number alterations, indicative of genomic
stability [100]. Importantly, when xenotransplanted in NOG mice, these organoids did not
metastasize. However, metastases were produced when driver mutations were introduced
into colorectal adenoma organoid lines with proven chromosomal instability [100]. Drost
et al. (2015), using a human intestinal organoid model, showed that loss of both APC and
p53 promote chromosomal instability and aneuploidy and render cells sensitive of further
accumulation of genetic alterations [97]. Van de Wetering et al. (2015) showed the presence
of common genomic alterations and microsatellite instabilities of CRCs in organoid culture
[101]. Webber et al. (2015) reported similar finding in human CRCs with identical somatic
mutations and DNA copy number between organoids and tumor biopsy of the same patient
[88]. Zhang et al. (2017) used 3D cultures of CTCs isolated from the blood of a patient with
lung adenocarcinoma to detect ALK rearrangement (EML4-ALK fusion) [75], suggesting
the usefulness of CTCs-derived organoids in analyzing genetic instability.

4.3. Drug discovery

Patient-derived organoid models are a reliable, robust, and biomimetic screening platform
that could bridge the gap between primary 2D cell-based drug screening and PDX animal
models. Organoids could be useful for testing drug efficacy, drug toxicity studies in liver
organoids, or drug bioavailability studies in intestinal organoids [102,103]. In particular,
CTC-derived models with relevant pathologies of patients could be a key link to screening
specific drug/s [75,89,104]. Gao et al. (2014) reported the usefulness of prostate cancer
patient-derived organoid lines, including CTCs-derived organoids for testing the second-
generation androgen receptor antagonist (enzalutamide) and PI3K-kinase pathway inhibitors
(everolimus and BKM-120) [89]. Hodgkinson et al. (2014) reported that CTCs derived
from patients with small-cell lung carcinoma were tumorigenic in immune-compromised
mice, and mirrored the donor patient’s response to platinum and etoposide treatment [105].
This study suggested that CTC-derived explants could be useful to monitor the changing
patterns of a tumor’s drug susceptibility and to identify potential new therapeutic targets
[105]. Boehnke et al. (2016) demonstrated the usefulness of patient-derived CRC organoids
for high-throughput screening and drug discovery [106]. Van de Wetering et al. (2015)

also demonstrated the successful application of human CRC organoids in a systematic

and unbiased high-throughput screening to identify clinically relevant biomarkers [101].
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Therefore, all these studies suggest the possibility and efficacy of organoid technology in
unraveling the molecular basis of drug response.

4.4. Precision medicine

Precision medicine is an emerging approach for disease treatment and prevention that takes
into account individual variability in genes, environment, and lifestyle for each person
[107]. Next-generation sequencing and mutational analyses of tumor tissues have allowed
identification of molecular biomarkers predicting success or resistance to specific therapies
[108]. In this regard, organoids could be useful both in ‘bottom-up’ functional oncogene
validation in wild-type tissue organoids to identify “‘driver mutations’, as well as in ‘top-
down’ target validation and drug screening for precision therapy [109]. As mentioned
above, several studies have characterized the function of driver mutations in carcinogenesis
using organoid models [97-99]. Similarly, Van de Wetering et al. (2015) reported that
tumor organoids could be useful to study various CRC molecular subtypes as well as to
perform gene-drug association studies [101]. This study also showed that porcupine (a
small molecule inhibitor of Wnt secretion) was effective only against a patient-derived
organoid line carrying a mutation in the Wnt feedback regulator RNF43 [101], suggesting
the usefulness of this inhibitor in a subset of CRC patients carrying the RNF43 mutation.

Bartucci et al. (2016) described an interdisciplinary approach to develop patient-derived
organoids by using adaptive T cell and chimeric antigen receptor immunotherapy [110].
Recent studies have also indicated that CTC-derived models could be useful in longitudinal
genetic profiling to monitor the evolving mutational landscape and drug sensitivity patterns
and customize therapies for individual patients [75,105,111]. For example, CTCs accurately
predicted ALK rearrangement as well as ALK mutations over time in a patient with lung
adenocarcinoma; and CTC /n vitro culture also predicted the treatment response to specific
ALK inhibitors (ceritinib and crizotinib) [75]. Therefore, CTC-derived organoids offer a
useful tool to screen drugs in the pipeline, based on the most recent genetic profiling as
patients develop resistance or do not respond to specific treatment (Fig. 2).

5. Challenges and future directions

Because CTCs are extremely rare in the blood, the biggest challenge at present is rapid
enrichment and isolation of viable CTCs from patient blood samples. Currently, the
CellSearch® system is the only FDA-approved method for CTC detection and enumeration.
However, there is increasing interest in developing novel tools and technologies for quick
isolation and characterization of CTCs. Sequential analyses of CTCs and/or CTC-derived
organoids could answer several important clinical questions, such as: How do metastatic
progression and treatment relapse develop over the course of disease in real time? What
factors are responsible for cancer dormancy? Answers to such questions could help in
targeting metastatic progression, micrometastasis, and disease relapse. Further, CTC-derived
organoids offer more predictive drug screening platforms and could play an important role in
developing patient-specific treatments (Fig. 2).

However, CTC-derived organoid cultures still have some inherent limitations. These models
lack the complexity of the /n vivo immune system, vascularization, or fibroblasts and cannot
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determine the ratelimiting organ toxicity of drugs. Therefore, the efficacy of single organoid
models to recapitulate interactions at the tissue level in the human body is still limiting. It
is also not clear if CTC-derived organoids capture the complete heterogeneity of the tumor.

F

urther investigations are required to establish sophisticated co-culture organoid models

(e.g. with cancer-associated fibroblasts, endothelial cells, or immune cells) as reproducible
and standardized tools for translational research and drug discovery. By further improving

0

ur understanding of the impact of the microenvironment on tumor progression, we may

be able to generate predictive data from more biologically relevant organoid models that
incorporate multicellular constituents and physical properties of a tumor.
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CTC-derived 3D organoids could be useful in genome and transcriptome profiling, high-
throughput drug screening, disease modeling, biobanking, and genome editing.
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Table 2

Organoid media composition.
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Organoids Culture conditions Function Reference
Intestine WNT3A and FGF4 Differentiation (hindgut [76,112]
specification and
morphogenesis)
R-spondin 1, Noggin, EGF, FGF4, WNT, L-glutamine, HEPES, N2 Maturation
supplement, B27 supplement
Colon EGF, R-spondin 1, Noggin, WNT3A, Nicotinamide, Gastrin, TGFf Establishment [76]
inhibitor (A-83-01), p38 inhibitor (SB202190)
Without WNT3A, p38 MAP kinase inhibitor and nicotinamide Differentiation
Gastric EGF, R-spondin 1, Noggin, FGF10, WNT, Gastrin, Nicotinamide, A-83-01, Organoid formation [113,114]
RHOK (Y-27632), insulin-like growth factor (IGF), SB202190, (GSK)3p
inhibitor (CHIR99021); prostaglandin E (PGE)2, retinoic acid
IGF, p38 inhibitor, GSK3b inhibitor, and A-83-01 Induced budding
structures
Liver Noggin, WNT, ROCK inhibitor Establishment [115]
N2 supplement, B27 supplement, N-Acetylcysteine, Gastrin, EGF, R- Differentiation
spondin 1, FGF10, Hepatocyte growth factor, Nicotinamide, A83-01,
Forskolin
Pancreas A83-01, Noggin, R-spondin 1, WNT3A, EGF, FGF10, Nicotinamide, PGE2  Establishment [99]
Prostate EGF, R-spondin 1, Noggin, A83-01, SB202190, FGF10, FGF2, PGE2, Establishment [85,89,116]
Nicotinamide and Dihydrotestosterone (DHT)
Lung Wht, FGF, cAMP and Glucocorticoids Establishment [117]
Brain (cerebral N2 supplement, Glutamax, Non-essential aminoacid (NEAA) and heparin Formation of [118]
organoid) neuroepithelial tissues
N2 supplement, B27 supplement without vitamin A, Glutamax, NEAA, Maturation
2-mercaptoethanol and insulin
B27 supplement with Vitamin A, Retinoic acid Differentiation
Kidney GSK3a inhibitor (CHIR99021) Differentiation [119]

FGF9, Heparin

(Nephrogenesis)

Organoid formation
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