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A physical model for efficient ranking in networks
Caterina De Bacco1,2*†, Daniel B. Larremore2,3,4*†, Cristopher Moore2†

We present a physically inspired model and an efficient algorithm to infer hierarchical rankings of nodes in directed
networks. It assigns real-valued ranks to nodes rather than simply ordinal ranks, and it formalizes the assumption that
interactions aremore likely to occur between individuals with similar ranks. It provides a natural statistical significance
test for the inferred hierarchy, and it can be used to perform inference tasks such as predicting the existence or direc-
tionof edges. The ranking is obtainedby solving a linear systemof equations,which is sparse if thenetwork is; thus, the
resulting algorithm is extremely efficient and scalable.We illustrate these findingsby analyzing real and synthetic data,
including data sets from animal behavior, faculty hiring, social support networks, and sports tournaments. We show
that ourmethod often outperforms a variety of others, in both speed and accuracy, in recovering the underlying ranks
and predicting edge directions.
INTRODUCTION
In systems of many individual entities, interactions and their outcomes
are often correlated with these entities’ ranks or positions in a hierarchy.
While inmost cases these rankings are hidden from us, their presence is
nevertheless revealed in the asymmetric patterns of interactions that we
observe. For example, some social groups of birds, primates, and ele-
phants are organized according to dominance hierarchies, reflected in
patterns of repeated interactions in which dominant animals tend to
assert themselves over less powerful subordinates (1). Social positions
are not directly visible to researchers, but we can infer each animal’s
position in the hierarchy by observing the network of pairwise interac-
tions. Similar latent hierarchies have been hypothesized in systems of
endorsement in which status is due to prestige, reputation, or social
position (2, 3). For example, in academia, universitiesmay bemore likely
to hire faculty candidates fromequally ormore prestigious universities (3).

In all these cases, the direction of the interactions is affected by the
status, prestige, or social position of the entities involved. But it is often
the case that even the existence of an interaction, rather than its direc-
tion, contains some information about those entities’ relative prestige.
For example, in some species, animals are more likely to interact with
others who are close in dominance rank (4–8); human beings tend to
claim friendships with others of similar or slightly higher status (9); and
sports tournaments and league structures are often designed to match
players or teams on the basis of similar skill levels (10, 11). This suggests
thatwe can infer the ranks of individuals in a social hierarchy using both
the existence and the direction of their pairwise interactions. It also sug-
gests assigning real-valued ranks to entities rather than simply ordinal
rankings, for instance, to infer clusters of entities with roughly equal
status with gaps between them.

Here, we introduce a physically inspired model that addresses the
problems of hierarchy inference, edge prediction, and significance test-
ing. Themodel, whichwe call SpringRank,maps each directed edge to a
directed spring between the nodes that it connects and finds real-valued
positions of the nodes that minimize the total energy of these springs.
Because this optimization problem requires only linear algebra, it can be
solved for networks of millions of nodes and edges in seconds.
We also introduce a generative model for hierarchical networks in
which the existence and direction of edges depend on the relative ranks
of the nodes. This model formalizes the assumption that individuals
tend to interact with others of similar rank, and it can be used to create
synthetic benchmark networks with tunable levels of hierarchy and
noise. It can also predict unobserved edges, allowing us to use cross-
validation as a test of accuracy and statistical significance. Moreover,
the maximum likelihood estimates of the ranks coincide with Spring-
Rank asymptotically.

We test SpringRank and its generative model version on both syn-
thetic and real data sets, including data from animal behavior, faculty
hiring, social support networks, and sports tournaments.We find that it
infers accurate rankings, provides a simple significance test for hierar-
chical structure, and can predict the existence and direction of as-yet
unobserved edges. In particular, we find that SpringRank often predicts
the direction of unobserved edges more accurately than a variety of
existing methods, including popular spectral techniques, minimum
violation ranking (MVR), and the Bradley-Terry-Luce (BTL) method.

Related work
Ranking entities in a system from pairwise comparisons or interactions
is a fundamental problem in many contexts, and many methods have
been proposed. One family consists of spectral methods such as eigen-
vector centrality (12), PageRank (13), rank centrality (14), and the
method of Callaghan et al. (15). These methods propose various types
of random walks on the directed network and therefore produce real-
valued scores. However, by design, these methods tend to give high
ranks to a small number of important nodes, giving us little information
about the lower-ranked nodes. In addition, they often require explicit
regularization by adding a small term to every element of the adjacency
matrix if the graph of comparisons is not strongly connected.

A second family focuses on ordinal rankings, that is, permutations,
that minimize various penalty functions. This family includes MVR
(16–18), SerialRank (19), and SyncRank (20). MVR imposes a uniform
penalty for every violation or “upset,” defined as an edge that has a di-
rection opposite to the one expected by the rank difference between the
two nodes. Nonuniform penalties and other generalizations are often
referred to as agony methods (21). For common choices of the penalty
function,minimization can be computationally difficult (17, 22), forcing
us to use simple heuristics that find local minima.

SerialRank constructs amatrix of similarity scores between each pair
of nodes by examining whether they produce similar outcomes when
comparedwith the other nodes, thereby relating the ranking problem to
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a more general ordering problem called seriation. SyncRank is a hybrid
method that first solves a spectral problem based on synchronization,
embeds node positions on a half-circle in the complex plane, and then
chooses among the circular permutations of those ranks byminimizing
the number of violations as in MVR.

Random utility models (23), such as the BTL model (24, 25), are
designed to infer real-valued ranks from data on pairwise preferences.
Thesemodels assign a probability to the direction of an edge conditioned
on its existence, but they do not assign a probability to the existence of an
edge. They are appropriate, for instance, when an experimenter presents
subjectswithchoicesbetweenpairsof itemsandasks themwhich theyprefer.

Methods such as David’s score (26) and the Colley matrix (27)
compute rankings from proportions of wins and losses. The latter,
which was originally developed by making mathematical adjustments
to winning percentages, is equivalent to a particular case of the general
method we introduce below. Elo score (28), Go rank (29), and TrueSkill
(30) are also widely used win-loss methods, but these schemes update
the ranks after each match rather than taking all previous interactions
into account. This specialization makes them useful when ranks evolve
over sequential matches, but less useful otherwise.

Finally, there are fully generative models such as the probabilistic
niche model of ecology (31–33), models of friendship based on social
status (9), and, more generally, latent space models (34), which assign
probabilities to the existence and direction of edges based on real-valued
positions in social space. However, inference of thesemodels tends to
be difficult, with many local optima. Our generative model can be
viewed as a special case of thesemodels for which inference is especially
easy.

In the absence of ground-truth rankings, we can compare the accuracy
of thesemethods using cross-validation, computing the ranks using a sub-
set of the edges in the network, and then using those ranks to predict the
direction of the remaining edges. Equivalently, we can ask them to predict
unobserved edges, such as which of two sports teams will win a game.
However, these methods do not all make the same kinds of predictions,
requiring us to use different kinds of cross-validation. Methods such as
BTL produce probabilistic predictions about the direction of an edge, that
is, they estimate the probability that one itemwill be preferred to another.
Fully generative models also predict the probability that an edge exists,
that is, that a given pair of nodes in the network interact. On the other
hand, ordinal ranking methods such as MVR do not make probabilistic
predictions, but we can interpret their ranking as a coarse prediction that
an edge is more likely to point in one direction than another.
RESULTS
The SpringRank model
We represent interactions between N entities as a weighted, directed
network, where Aij is the number of interactions i→ j suggesting that
i is ranked above j. This allows both ordinal and cardinal input, includ-
ing where pairs interact multiple times. For instance, Aij could be the
number of fights between i and j that i has won or the number of times
that j has endorsed i.

Given the adjacency matrix A, our goal is to find a ranking of the
nodes. To do so, the SpringRank model computes the optimal location
of nodes in a hierarchy by imagining the network as a physical sys-
tem. Specifically, each node i is embedded at a real-valued position or
rank si, and each directed edge i→ j becomes an oriented spring with
a nonzero resting length and displacement si − sj. Since we are free to
rescale the latent space and the energy scale, we set the spring con-
De Bacco et al., Sci. Adv. 2018;4 : eaar8260 20 July 2018
stant and the resting length to 1. Thus, the spring corresponding to
an edge i → j has energy

Hij ¼ 1
2
ðsi � sj � 1Þ2 ð1Þ

which is minimized when si − sj = 1.
This version of themodel has no tunable parameters. Alternately, we

could allow each edge to have its own rest length or spring constant,
based on the strength of each edge. However, this would create a large
number of parameters, which we would have to infer from the data or
choose a priori. We do not explore this here.

According to this model, the optimal rankings of the nodes are the
ranks s* ¼ ðs1*;…; sN*Þ, which minimize the total energy of the system
given by the Hamiltonian

HðsÞ ¼ ∑
N

i;j¼1
AijHij ¼ 1

2
∑
i;j
Aijðsi � sj � 1Þ2 ð2Þ

Since thisHamiltonian is convex in s,we can find s*by setting∇H(s)=0,
yielding the linear system

Dout þ Din � ðAþ ATÞ� �
s� ¼ Dout � Din

� �
1 ð3Þ

where 1 is the all-ones vector andDout andDin are diagonalmatrices whose
entries are theweighted in- and out-degrees,Dout

ii ¼ ∑jAij andDin
ii ¼ ∑jAji.

See section S1 for detailed derivations.
Thematrix on the left side of Eq. 3 is not invertible. This is becauseH

is translation-invariant: It depends only on the relative ranks si − sj, so
that if s* = {si} minimizesH(s), then so does {si + a} for any constant a.
One way to break this symmetry is to invert the matrix in the subspace
orthogonal to its nullspace by computing a Moore-Penrose pseudoin-
verse. If the network consists of a single component, then the nullspace
is spanned by the eigenvector 1, in which case, this method finds the s*
where the average rank (1/N)∑isi= (1/N)s* ⋅ 1 is zero. This is related to the
randomwalkmethodof (15): If a randomwalkmoves along each directed
edge with rate 1

2 þ e and against each one with rate 1
2 � e, then s* is pro-

portional to the perturbation to the stationary distribution to first order in e.
In practice, it is more efficient and accurate to fix the rank of one of

the nodes and solve the resulting equation using a sparse iterative solver
(see section S1). Faster still, because this matrix is a Laplacian, recent
results (35, 36) allow us to solve Eq. 3 in nearly linear time in M, the
number of nonzero edges in A.

Another way to break translation invariance is to introduce an “ex-
ternal field” H0ðsiÞ ¼ 1

2 as
2
i affecting each node, so that the combined

Hamiltonian is

HaðsÞ ¼ HðsÞ þ a
2
∑
N

i¼1
s2i ð4Þ

The field H0 corresponds to a spring that attracts every node to the
origin. We can think of this as imposing a Gaussian prior on the ranks
or as a regularization term that quadratically penalizes ranks with large
absolute values. This version of the model has a single tunable
parameter, namely, the spring constant a. Since H(s) scales with the
total edge weightM = ∑i,jAij whileH0(s) scales withN, for a fixed value
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of a, this regularization becomes less relevant as networks become denser
and the average (weighted) degreeM/N increases.

For a > 0, there is a unique s* that minimizes Ha, given by

Dout þ Din � ðAþ ATÞ þ aI
� �

s� ¼ Dout � Din
� �

1 ð5Þ

where I is the identity matrix. The matrix on the left side is now
invertible, since the eigenvector 1 has eigenvalues a instead of 0. In
the limit a → 0, we recover Eq. 3; the value a = 2 corresponds to
the Colley matrix method (27).

MinimizingH(s), or the regularized versionHa(s), corresponds to
finding the “ground state” s* of the model. In the next section, we
show that this corresponds to a maximum likelihood estimate of
the ranks in a generative model. However, we can use SpringRank not
just to maximize the likelihood, but to compute a joint distribution of
the ranks as a Boltzmann distribution withHamiltonian Eq. 4, and thus
estimate the uncertainty and correlations between the ranks. In particular,
the ranks si are random variables following anN-dimensional Gaussian
distribution with mean s* and covariance matrix (section S4)

∑ ¼ 1
b

"
Dout þ Din � ðAþ AT þ aIÞ

#�1

ð6Þ

Here, b is an inverse temperature controlling the amount of noise in
the model. In the limit b→∞, the rankings are sharply peaked around
the ground state s*, while for b→ 0, they are noisy. Aswe discuss below,
we can estimate b from the observed data in various ways.

The rankings givenby SpringRankEq. 3 and its regularized formEq. 5
are easily and rapidly computed by standard linear solvers. In particular,
iterative solvers that take advantage of the sparsity of the systemcan find s*
for networks with millions of nodes and edges in seconds. However, as
defined above, SpringRank is not a fully generative model that assigns
probabilities to the data and allows for Bayesian inference. In the next
section, we introduce a generative model for hierarchical networks and
show that it converges to SpringRank in the limit of strong hierarchy.

A generative model
In this section, we propose a probabilistic generativemodel that takes as
its input a set of node ranks s1,…, sN and produces a weighted, directed
network. The model also has a temperature or noise parameter b and a
density parameter c. Edges between each pair of nodes i, j are generated
independently of other pairs, conditioned on the ranks. The expected
number of edges from i to j is proportional to the Boltzmann weight of
the corresponding term in the Hamiltonian Eq. 2

E½Aij� ¼ c expð�bHijÞ ¼ c exp � b
2
ðsi � sj � 1Þ2

� �

where the actual edge weight Aij is drawn from a Poisson distribution
with this mean. The parameter c controls the overall density of the
network, giving an expected number of edges

E½M� ¼ ∑
i;j
E½Aij� ¼ c∑

i;j
exp � b

2
ðsi � sj � 1Þ2

� �
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while the inverse temperature b controls the extent to which edges re-
spect (or defy) the ranks s. For smaller b, edges are more likely to
violate the hierarchy or to connect distant nodes, decreasing the cor-
relation between the ranks and the directions of the interactions: For
b = 0, the model generates a directed Erdős-Rényi graph, while in the
limit b → ∞, edges only exist between nodes i, j with si − sj = 1, and
only in the direction i → j.

The Poisson distribution may generate multiple edges between a
pair of nodes, so this model generates directed multigraphs. This is
consistent with the interpretation thatAij is the number, or total weight,
of edges from i to j. However, in the limit E½Aij�→0, the Poisson
distribution approaches a Bernoulli distribution, generating binary net-
works with Aij ∈ {0, 1}.

The likelihood of observing a network A given ranks s, inverse
temperature b, and density c is

PðAjs; b; cÞ ¼∏
i;j

ce�
b
2ðsi�sj�1Þ2

h iAij

Aij !
exp �ce�

b
2ðsi�sj�1Þ2

h i
ð7Þ

Taking logs, substituting the maximum likelihood value of c, and
discarding constants that do not depend on s or b yields a log likelihood
(see section S2)

LðAjs; bÞ ¼ �bHðsÞ �M log ∑
i;j
e�

b
2ðsi�sj�1Þ2

� �
ð8Þ

where H(s) is the SpringRank energy defined in Eq. 2. In the limit of
large b where the hierarchical structure is strong, the ŝ that maximizes
Eq. 8 approaches the solution s* of Eq. 3 that minimizesH(s). Thus, the
maximum likelihood estimate ŝ of the rankings in this model approaches
the SpringRank ground state.

As discussed above, we can break translational symmetry by adding
a field H0 that attracts the ranks to the origin. This is is equivalent to
imposing a prior PðsÞº∏N

i¼1e
�ab

2 ðsi�1Þ2 . The maximum a posteriori
estimate ŝ then approaches the ground state s* of the Hamiltonian in
Eq. 4, which is given by Eq. 5.

This model belongs to a larger family of generative models con-
sidered in ecology and network theory (9, 31, 32), and, more generally,
the class of latent space models (34), where an edge points from i to j
with probability f(si − sj) for some function f. These models typically
have complicated posterior distributions with many local optima, re-
quiring Monte Carlo methods [for example, (33)] that do not scale
efficiently to large networks. In our case, f(si − sj) is a Gaussian centered
at 1, and the posterior converges to the multivariate Gaussian Eq. 6 in
the limit of strong structure.

Predicting edge directions
If hierarchical structure plays an important role in a system, then it
should allow us to predict the direction of previously unobserved inter-
actions, such as the winner of an upcoming match or which direction
social support will flow between two individuals. This is a kind of cross-
validation, which lets us test the statistical significance of hierarchical
structure. It is also a principledway of comparing the accuracy of various
ranking methods for data sets where no ground-truth ranks are known.

We formulate the edge prediction question as follows: Given a set of
known interactions, and given that there is an edge between i and j, in
3 of 10
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which direction does it point? In one sense, any ranking method pro-
vides an answer to this question, since we can predict the direction
according to whether i or j is ranked higher on the basis of the known
interactions.When comparing SpringRank tomethods such as SyncRank,
SerialRank, and MVR, we use these “bitwise” predictions and define
the accuracy sb as the fraction of edges whose direction is consistent
with the inferred ranking.

But we want to know the odds on each game, not just the likely
winner—that is, we want to estimate the probability that an edge goes in
each direction. A priori, a ranking algorithm does not provide these
probabilities unless we make further assumptions about how they de-
pend on the relative ranks. These assumptions yield generative models
such as the one defined above, where the conditional probability of an
edge i→ j is

PijðbÞ ¼ e�bHij

e�bHij þ e�bHji
¼ 1

1þ e�2bðsi�sjÞ ð9Þ

The density parameter c affects the probability that an edge exists,
but not its direction. Thus, our probabilistic prediction method has a
single tunable parameter, b.

Note that Pij is a logistic curve, is monotonic in the rank dif-
ference si − sj, and has width determined by the inverse temperature
b. SpringRank has this in common with two other ranking methods:
Setting gi ¼ e2bsi recovers the BTL model (24, 25) for which Pij = gi/
(gi + gj), and setting k = 2b recovers the probability that i beats j in the
Go rank (29), where Pij ¼ 1=ð1þ e�kðsi�sjÞÞ. However, SpringRank
differs from these methods in how it infers the ranks from observed
interactions, so SpringRank and BTL make different probabilistic
predictions.

In our experiments below, we test various ranking methods for
edge prediction by giving them access to 80% of the edges in the
network (the training data) and then asking them to predict the di-
rection of the remaining edges (the test data). We consider two mea-
sures of accuracy: sa is the average probability assigned to the correct
direction of an edge, and sL is the log likelihood of generating the
directed edges given their existence. For simple directed graphs where
Aij + Aji ∈ {0, 1}, these are

sa ¼ ∑
i;j
AijPij and sL ¼ ∑

i;j
AijlogPij ð10Þ

In themultigraph case, we ask howwellPij approximates the fraction
of interactions between i and j that point from i to j (see Eqs. 12 and 13).
For a discussion of other performance measures, see section S9.

We perform our probabilistic prediction experiments as follows.
Given the training data, we infer the ranks using Eq. 5. We then choose
the temperature parameter b by maximizing either sa or sL on the
training data while holding the ranks fixed. The resulting values of b,
which we denote b̂a and b̂L , respectively, are generally distinct (table
S2 and section S7). This is intuitive, since a single severe mistake where
Aij = 1 but Pij≈ 0 reduces the likelihood by a large amount, while only
reducing the accuracy by one edge. As a result, predictions using b̂a pro-
duce fewer incorrectly oriented edges, achieving a higher sa on the test
set, while predictions using b̂Lwill produce fewer markedly incorrect
predictions where Pij is very low, and thus achieve higher sL on the
test set.
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Statistical significance using the
ground-state energy
We can measure statistical significance using any test statistic, by
asking whether its value on a given data set would be highly im-
probable in a null model. One such statistic is the accuracy of edge
prediction using a method such as the one described above. However,
thismay become computationally expensive for cross-validation studies
withmany replicates, since each fold of each replicate requires inference
of the parameter b̂a. Here, we propose a test statistic that is very easy to
compute, inspired by the physical model behind SpringRank: namely, the
ground-state energy. For the unregularized version Eq. 2, the energy per
edge is (see section S3)

Hðs*Þ
M

¼ 1
2M
∑
i
ðdini � douti Þs�i þ 1

2
ð11Þ

Since the ground-state energy depends on many aspects of the
network structure, and since hierarchical structure is statistically signifi-
cant if it helps us predict edge directions, we focus on the following null
model, used previously by de Silva et al. (37):We randomize the direction
of each edge while preserving the total number �Aij ¼ Aij þ Aji of edges
between each pair of vertices. If the real network has a ground-state
energy, which is much lower than typical networks drawn from this
null model, then we can conclude that the hierarchical structure is
statistically significant.

This test correctly concludes that directed Erdős-Rényi graphs have
no significant structure. It also finds no significant structure for net-
works created using the generative model Eq. 7 with b = 0.1, that is,
when the temperature or noise level 1/b is sufficiently large, the ranks
are no longer relevant to edge existence or direction (fig. S2). However,
we see in the next section that it shows statistically significant hierarchy
for a variety of real-world data sets, showing that H(s*) is both useful
and computationally efficient as a test statistic.

Performance on real and synthetic data
Having introduced SpringRank, an efficient procedure for inferring
real-valued ranks, a corresponding generativemodel, amethod for edge
prediction, and a test for the statistical significance of hierarchical struc-
ture, we now demonstrate it by applying it to both real and synthetic
data. For synthetic data sets where the ground-truth ranks are known,
our goal is to see to what extent SpringRank and other algorithms can
recover the actual ranks. For real-world data sets, inmost cases, we have
no ground-truth ranking, so we apply the statistical significance test
defined above and compare the ability of SpringRank and other algo-
rithms to predict edge directions given a subset of the interactions.

We compare SpringRank to other widely usedmethods: the spectral
methods PageRank (13), eigenvector centrality (12), and rank centrality
(14);MVR (16, 17), SerialRank (19), and SyncRank (20), which produce
ordinal rankings; David’s score (26); and the BTL random utility model
(24, 25) using the algorithm proposed in (38), which, like our generative
model, makes probabilistic predictions.We also compare unregularized
SpringRank with the regularized version a = 2, corresponding to the
Colley matrix method (27). Unfortunately, eigenvector centrality, rank
centrality, David’s score, and BTL are undefined when the network is
not strongly connected, for example, when there are nodes with zero in-
or out-degree. In these cases, we follow the common regularization
procedure of adding low-weight edges between every pair of nodes
(see section S10).
4 of 10
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Performance for synthetic networks
We study two types of synthetic networks, generated by the model de-
scribed above. Of course, since the log likelihood in this model
corresponds to the SpringRank energy in the limit of large b, we expect
SpringRank to do well on these networks, and its performance should
be viewed largely as a consistency check. But by varying the distribution
of ranks and the noise level, we can illustrate types of structure that may
exist in real-world data and test each algorithm’s ability to identify them.

In the first type, the ranks are normally distributed with mean zero
and variance one (Fig. 1A). In the second type, the ranks are drawn from
anequalmixture of threeGaussianswithdifferentmeans andvariances, so
that nodes cluster into high, middle, and low tiers (Fig. 1C). This sec-
ond type is intended to focus on the importance of real-valued ranks and
to measure the performance of algorithms that (implicitly or explicitly)
impose strong priors on the rankswhen the data defy their expectations.
In both cases, we vary the amount of noise by changing b while keeping
the total number of edges constant (see Materials and Methods).
De Bacco et al., Sci. Adv. 2018;4 : eaar8260 20 July 2018
Since we wish to compare SpringRank both to methods such as
MVR that only produce ordinal rankings and to those like PageRank
and David’s score that produce real-valued ranks, we measure the ac-
curacy of each algorithm according to the Spearman correlation r be-
tween its inferred rank order and the true one. Results for the Pearson
correlation, where we measure the algorithms’ ability to infer the real-
valued ranks as opposed to just their ordering, are shown in fig. S1.

We find that all the algorithms do well on the first type of synthetic
network. As b increases so that the network becomes more structured,
with fewer edges (shown in red in Fig. 1A) pointing in the “wrong” di-
rection, all algorithms infer ranks that are more correlated with the
ground truth. SpringRank and SyncRank have the highest accuracy,
followed closely by the Colley matrix method and BTL (Fig. 1B). Pre-
sumably, the Colleymatrix workswell here because the ranks are drawn
from a Gaussian prior, as it implicitly assumes.

Results for the second type of network are more nuanced. The
accuracy of SpringRank and SyncRank increases rapidly with b
A B

C D

= 0.3 = 2.1

Fig. 1. Performance on synthetic data. (A) A synthetic network ofN= 100 nodes, with ranks drawn from a standard Gaussian and edges drawn via the generativemodel Eq. 7
for twodifferent values of b and averagedegree 5. Blue edges point down thehierarchy and red edges point up, indicated by arrows. (B) Accuracy of the inferred ordering defined
as the Spearman correlation averaged over 100 independently generated networks. Error bars indicate 1 SD. (C andD) Identical to (A) and (B) butwith ranks drawn from amixture
of three Gaussians so that the nodes cluster into three tiers (Materials and Methods). See fig. S1 for performance curves for Pearson correlation r.
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with exact recovery around b = 1. SerialRank also performs quite
well on average. The other methods do not improve as b increases,
and many of them decrease beyond a certain point (Fig. 1D). This
suggests that these algorithms become confused when the nodes
are clustered into tiers, even when the noise is small enough that
most edges have directions consistent with the hierarchy. Spring-
Rank takes advantage of the fact that edges are more likely be-
tween nodes in the same tier (Fig. 1C), so the mere existence of
edges helps it cluster the ranks.

These synthetic tests suggest that real-valued ranks capture in-
formation that ordinal ranks do not and that many ranking methods
perform poorly when there are substructures in the data such as tiered
groups. Of course, inmost real-world scenarios, the ground-truth ranks
are not known, and thus edge prediction and other forms of cross-
validation should be used instead. We turn to edge prediction in the
next section.
Performance for real-world networks
As discussed above, in most real-world networks, we have no ground
truth for the ranks. Thus, we focus on our ability to predict edge
directions from a subset of the data and measure the statistical signifi-
cance of the inferred hierarchy.

We apply our methods to data sets from a diverse set of fields, with
sizes ranging up to N = 415 nodes and up to 7000 edges (see table S2):
three North American academic hiring networks, whereAij is the num-
ber of faculty at university jwho received their doctorate fromuniversity
i, for History (illustrated in Fig. 2, A and B), Business, and Computer
Science departments (3); two networks of animal dominance among
captivemonk parakeets (5) and one amongAsian elephants (37), where
Aij is the number of dominating acts by animal i toward animal j; and
social support networks from two villages inTamilNadu referred to (for
privacy reasons) by the pseudonyms “Tenpat.t.i” and “Alakāpuram,”
where Aij is the number of distinct social relationships (up to five)
through which person i supports person j (2); and 53 networks of Na-
tional Collegiate Athletic Association (NCAA) Women’s and Men’s
college basketball matches during the regular season, spanning
1985–2017 (Men) and 1998–2017 (Women), where Aij = 1 if team i
beat team j. Each year’s network comprises a different number of
matches, ranging from 747 to 1079 (39).

Together, these examples cover prestige, dominance, and social
hierarchies. In each of these domains, inferring ranks from interac-
tions is key to further analysis. Prestige hierarchies play an unequivocal
role in the dynamics of academic labor markets (40); in behavioral
ecology, higher-ranked individuals in dominance hierarchies are be-
lieved to have higher fitness (1, 41); and patterns of aggression are
believed to reveal animal strategies and cognitive capacities (4–8).
Finally, in social support networks, higher-ranked individuals have
greater social capital and reputational standing (42, 43), particularly
in settings in which social support is a primary way to express and gain
respect and prestige (44).

We first applied our ground-state energy test for the presence of
statistically significant hierarchy, rejecting the null hypothesis with
P < 10− 4 in almost all cases (for example, for history faculty hiring,
see Fig. 2C). The one exception is the Asian elephants network for
which P > 0.4. This corroborates the original study of this network
(37), which found that counting triad motifs shows no significant
hierarchy (45). This is despite the fact that one can find an appealing
ordering of the elephants using the MVR method, with just a few
violating edges (fig. S9). Thus, the hierarchy found byMVRmay well
be illusory.
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As described above, we performed edge prediction experiments
using fivefold cross-validation, where 80% of the edges are available
to the algorithm as training data, and a test set consisting of 20% of
the edges is held out (seeMaterials andMethods). To test SpringRank’s
ability to make probabilistic predictions, we compare it to BTL.

We found that SpringRank outperforms BTL, both in terms of the
accuracy sa (Fig. 3A) and, for most networks, the log likelihood sL (Fig.
3B). The accuracy of both methods has a fairly broad distribution over
the trials of cross-validation, since in each network some subsets of the
edges are harder to predict than others when they are held out. How-
ever, as shown in Fig. 4, in most trials, SpringRank was more accurate
than BTL. Figure 3A and Table 1 show that SpringRank predicts edge
directions more accurately in the majority of trials of cross-validation
for all nine real-world networks, where this majority ranges from 62%
for the parakeet networks to 100% for the computer science hiring
network.

Table 1 shows that SpringRank also obtained a higher log likelihood
sL than BTL for six of the nine real-world networks. Regularizing
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Fig. 2. Ranking the history faculty hiring network. (A) Linear hierarchy diagram
with nodes embedded at their inferred SpringRank scores. Blue edges point down the
hierarchy and red edges point up. (B) Histogram of the empirical distribution of ranks,
with a vertical axis of ranksmatched to (A). (C) Histogramof ground-state energies from
10,000 randomizations of the network according to the null model where edge
directions are random. The dashed red line shows the ground-state energy of the em-
pirical network depicted in (A) and (B). The fact that the ground-state energy is so far
below the tail of the null model is overwhelming evidence that the hierarchical struc-
ture is statistically significant, with P < 10− 4.
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SpringRank with a = 2 does not appear to significantly improve either
measure of accuracy (Fig. 3). We did not attempt to tune the regular-
ization parameter a.

To compare SpringRank with methods that do not make prob-
abilistic predictions, including those that produce ordinal rankings,
we measured the accuracy sb of bitwise predictions, that is, the
fraction of edges consistent with the inferred ranking. We found
that spectral methods perform poorly here, as does SerialRank.
BTL does better on the NCAA networks in terms of bitwise predic-
tion than it does for probabilistic predictions, suggesting that it is
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better at rank-ordering teams than determining their real-valued
position.

We found that SyncRank is the strongest of the ordinal methods,
matching SpringRank’s accuracy on the parakeet and business school
networks, but SpringRank outperforms SyncRank on the social support
and NCAA networks (see fig. S4). We show a trial-by-trial comparison
of SpringRank and SyncRank in Fig. 5, showing that in most trials of
cross-validation, SpringRank makes more accurate predictions for the
NCAA networks.

To check whether our results were dependent on the choice of
holding out 20%of the data, we repeated our experiments using twofold
cross-validation, that is, using 50% of network edges as training data
and trying to predict the other 50%. We show these results in fig. S5.
While all algorithms are less accurate in this setting, the comparison
between algorithms is similar to that for fivefold cross-validation.

Finally, the real-valued ranks found by SpringRank shed light on the
organization and assembly of real-world networks (see figs. S6, S7, S8,
S12, and S13). For example, we found that ranks in the faculty hiring
networks have a long tail at the top, suggesting that themost prestigious
universities are more separated from those below them than an ordinal
ranking would reveal. In contrast, ranks in the social support networks
have a long tail at the bottom, suggesting a set of peoplewhodonot have
sufficient social status to provide support to others. SpringRank’s ability
to find real-valued ranks makes these distributions amenable to statis-
tical analysis, and we suggest this as a direction for future work.
DISCUSSION
SpringRank is a mathematically principled, physics-inspired model for
hierarchical structure in networks of directed interactions. It yields a
simple and highly scalable algorithm, requiring only sparse linear
algebra, which enables analysis of networks with millions of nodes
and edges in seconds. Its ground-state energy provides a natural test
statistic for the statistical significance of hierarchical structure.
Fig. 3. Edge prediction accuracy over BTL. Distribution of differences in performance of edge prediction of SpringRank compared to BTL on real and synthetic
networks defined as (A) edge prediction accuracy sa Eq. 12 and (B) the conditional log likelihood sL Eq. 13. Error bars indicate quartiles and markers show medians,
corresponding to 50 independent trials of fivefold cross-validation, for a total of 250 test sets for each network. The two synthetic networks are generated with N = 100,
average degree 5, and Gaussian-distributed ranks as in Fig. 1A, with inverse temperatures b = 1 and b = 5. For each experiment shown, the fractions of trials in which
each method performed equal to or better than BTL are shown in Table 1. These differences correspond to prediction of an additional 1 to 12 more correct edge
directions, on average.
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While the basic SpringRank algorithm is nonparametric, a parame-
terized regularization term can be included as well, corresponding to a
Gaussian prior. While regularization is often required for BTL, eigen-
vector centrality, and other commonly usedmethods (section S10), it
is not necessary for SpringRank, and our tests indicate that its effects
are mixed.

We also presented a generative model that allows one to create syn-
thetic networks with tunable levels of hierarchy and noise, whose pos-
terior coincides with SpringRank in the limit where the effect of the
hierarchy is strong. By tuning a single temperature parameter, we can
use thismodel tomake probabilistic predictions of edge directions, gen-
eralizing from observed to unobserved interactions. Therefore, after
confirming its ability to infer ranks in synthetic networks where
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ground-truth ranks are known, we measured SpringRank’s ability to
predict edge directions in real networks. We found that in networks
of faculty hiring, animal interactions, social support, and NCAA
basketball, SpringRank often makes better probabilistic predictions of
edge predictions than the popular BTL model and performs as well
or better than SyncRank and a variety of other methods that produce
ordinal rankings.

SpringRank is based on springs with quadratic potentials, but
other potentials may be of interest. For instance, to make the system
more tolerant to outliers while remaining convex, one might consid-
er a piecewise potential that is quadratic for small displacements and
linear otherwise. We leave this investigation of alternative potentials to
future work. Given its simplicity, speed, and high performance, we
believe that SpringRank will be useful in a wide variety of fields
where hierarchical structure appears because of dominance, social
status, or prestige.
MATERIALS AND METHODS
Synthetic network generation
Networks were generated in three steps. First, node ranks splanted were
drawn from a chosen distribution. For test 1,N = 100 ranks were drawn
from a standard normal distribution, while for test 2, 34 ranks were
drawn from each of three Gaussians, Nð�4; 2Þ, Nð0; 12Þ, and Nð4; 1Þ,
for a total of N = 102. Second, an average degree < k > and a value of the
inverse temperature b were chosen. Third, edges were drawn generated to
Eq. 7 with c = < k > N/∑i,j exp [−(b/2)(si − sj − 1)2] so that the expected
mean degree is < k > (see section S6).

This procedure resulted in directed networks with the desired hier-
archical structure, mean degree, and noise level. Tests were conducted
for < k > ∈ [5, 15], b ∈ [0.1, 5], and all performance plots showmeans
and SDs for 100 replicates.
Table 1. Edge prediction with BTL as a benchmark. During 50 independent trials of fivefold cross-validation (250 total folds per network), columns show the
percentages of instances in which SpringRank Eq. 3 and regularized SpringRank Eq. 5 with a = 2 produced probabilistic predictions with equal or higher
accuracy than BTL. Distributions of accuracy improvements are shown in Fig. 3. Center columns show accuracy sa, and right columns show sL (Materials and
Methods). Italics indicate where BTL outperformed SpringRank for more than 50% of tests. NCAA Basketball data sets were analyzed 1 year at a time.
Data set
 Type

% Trials higher sa versus BTL
 % Trials higher sL versus BTL
SpringRank
 +Regularization
 SpringRank
 +Regularization
Computer science (3)
 Faculty hiring
 100.0
 97.2
 100.0
 99.6
Alakāpuram (2)
 Social support
 99.2*
 99.6
 100.0
 100.0
Synthetic b = 5
 Synthetic
 98.4
 63.2
 76.4
 46.4
History (3)
 Faculty hiring
 97.6*
 96.8
 98.8
 98.8
NCAA Women (1998–2017) (39)
 Basketball
 94.4*
 87.0
 69.1
 51.0
Tenpat.t.i (2)
 Social support
 88.8
 93.6
 100.0
 100.0
Synthetic b = 1
 Synthetic
 83.2
 65.2
 98.4
 98.4
NCAA Men (1985–2017) (39)
 Basketball
 76.0*
 62.3
 68.5
 52.4
Parakeet G1 (5)
 Animal dominance
 71.2*
 56.8
 41.2
 37.2
Business (3)
 Faculty hiring
 66.8*
 59.2
 39.2
 36.8
Parakeet G2 (5)
 Animal dominance
 62.0
 51.6
 47.6
 47.2
*Tests that are shown in detail in Fig. 4.
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Performance measures for edge prediction
For multigraphs, we defined the accuracy of probabilistic edge predic-
tion as the extent to which Pij is a good estimate of the fraction of inter-
actions between i and j that point from i to j, given that there are any
edges to predict at all, that is, assuming �Aij ¼ Aij þ Aji > 0. If this pre-
diction were perfect, then we would have Aij ¼ �AijPij. We defined sA
as 1 minus the sum of the absolute values of the difference betweenAij

and this estimate

sa ¼ 1� 1
2M
∑
i;j
jAij � �AijPijj ð12Þ

whereM is the number of directed edges in the subset of the network
under consideration, for example, the training or test set. Then, sa =
1 if Pij ¼ Aij=�Aij for all i, j, and sa= 0 if for each i, j all the edges go from
i to j (for example) but Pij = 0 and Pji = 1.

To measure accuracy via the conditional log likelihood, we
asked with what probability we would get the directed network A
from the undirected network �A if each edge between i and j points
from i→ j with probability Pij and from j→ i with probability Pji =
1 − Pij. This gives

sL ¼ log Pr½A j �A� ¼ ∑
i;j
log

Aij þ Aji

Aij

� �
þ log P

Aij

ij ½1� Pij�
Aji

h i
ð13Þ

where ðxyÞ is the binomial coefficient. We disregarded the first term
of this sum since it does not depend on P. If we wish to compare
networks of different sizes as in Fig. 3, then we can normalize sL by
the number of edges. For an extensive discussion of performance
metrics, see section S9.

Statistical significance of ranks
We computed a standard left-tailed P value for the statistical sig-
nificance of the ranks s* by comparing the ground-state energy Eq.
11 of the real network A with the null distribution of ground-state
energies of an ensemble of networks ~A drawn from the null model
where �Aij is kept fixed, but the direction of each edge is randomized.

P ¼ Pr½Hðs�;AÞ≤Hð~s�~AÞ� ð14Þ

In practice, this P value is estimated by drawing many samples
from the null distribution by randomizing the edge directions of A
to produce ~A, computing the ranks ~s* from Eq. 3, and then com-
puting the ground-state energy Eq. 11 of each.

Cross-validation tests
We performed edge prediction using fivefold cross-validation. In
each realization, we divided the interacting pairs i, j, that is, those
with nonzero �Aij ¼ Aij þ Aji, into five equal groups. We used four
of these groups as a training set, inferring the ranks and setting b to
maximize sa or sL (on the left and right of Fig. 3, respectively). We
then used the fifth group as a test set, asking the algorithm for Pij
for each pair i, j in that group, and reported sa or sL on that test
set. By varying which group we used as the test set, we got five trials
per realization: For instance, 50 realizations gave us 250 trials of
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cross-validation. Results for twofold cross-validation are reported
in the Supplementary Materials.
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