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Abstract

A robust and selective late-stage deuteration methodology was applied to 13C-enriched amino and 

alpha hydroxy acids to increase spin-lattice relaxation constant T1 for hyperpolarized 13C 

magnetic resonance imaging. For the five substrates with 13C-labeling on the C1-position 

([1-13C]alanine, [1-13C]serine, [1-13C]lactate, [1-13C]glycine, and [1-13C]valine), significant 

increase of their T1 was observed at 3T with deuterium labeling (+26%, 22%, +16%, +25% and 

+29%, respectively). Remarkably, in the case of [2-13C]alanine, [2-13C]serine and [2-13C]lactate, 

deuterium labeling led to a greater than four fold increase in T1. [1-13C,2-2H]alanine, produced 

using this method, was applied to in vitro enzyme assays with alanine aminotransferase, 

demonstrating a kinetic isotope effect.

Magnetic resonance imaging employing hyperpolarized substrates (HP MRI) has recently 

emerged as a powerful tool for studying metabolism in cells, animal models and patients.1–9 

Polarization of substrates can be realized through a variety of mechanisms including 

dissolution dynamic nuclear polarization (DNP),10 parahydrogen induced polarization 

(PHIP),11,12 or signal amplification by reversible exchange (SABRE).13 While these are 

versatile methods that allow for real time imaging of metabolism, the short lifetime of the 

hyperpolarized signal, which decays exponentially based upon the spin lattice relaxation 

time T1, remains one of the key limiting factors in the implementation of this technology. 

The most widely used HP 13C probe is [1-13C]pyruvate, a key metabolic intermediate, which 

has a T1 of 67 s at 3T. However, other 13C nuclei, especially those with directly attached 

protons, are not feasible HP 13C probes due to very short T1’s (less than 5s).14 One approach 

to increase T1 is the substitution of 1H with 2H (or D), a quadrupolar nucleus with a 

gyromagnetic ratio γ about 6.5-fold smaller than the one for 1H.15–29 This use of deuterated 

substrates has proved particularly fruitful in the case of SABRE13 and PHIP11,12 methods. 

This approach is effective when dipolar 13C-1H coupling contributes substantially to T1 
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relaxation. Fortunately, in the case of pyruvate, the incorporation of deuterium is 

straightforward owing to lack of stereocenters.30 However, the synthesis of multiply labelled 

molecules containing stereocenters including both 13C and 2H is generally both expensive 

and time consuming, and most isotopically enriched molecules require multi-step syntheses. 

Therefore, a robust method for incorporation of deuterium in the final step of synthesis 

would be generally valuable in the field of HP MRI.

For the synthesis of deuterated molecules, late-stage isotopic exchange has several 

advantages over a synthetic pathway from enriched building blocks. Numerous methods 

based on homogeneous or heterogeneous catalysts for H/D exchange have already been 

described, but the development of a deuteration methodology with mild reaction conditions, 

high selectivity and deuterium incorporation is still a challenge.31,32 In order to develop 

[13C,2H]labelled probes for HP MRI, we considered the regioselective deuteration, at the α-

position of aliphatic alcohols and sugars, developed by Sajiki et al., as a straightforward way 

to the deuterium labelling of 13C-substrates with attached O or N.33,34 In this manuscript, 

we report the application of this methodology to a variety of 13C-enriched compounds, 

enabling high incorporation yields with retention of configuration, and demonstrate a 

significant increase in T1 of the resulting deuterated substrates. One of the probes, [1-13C,

2-2H]alanine, was studied in an in vitro enzymatic assay with alanine aminotransferase 

(ALT), revealing a deuterium kinetic isotope effect.

Initially, we evaluated the performance of the labelling methodology with a variety of 

labelled substrates including α-amino and hydroxy acids. We performed the one-step 

deuterium labelling reaction on position C2 of several commercial 13C-labeled substrates 

(Scheme 1, Table 1). Reactions were incubated in D2O in the presence of RuC 5% (40 wt%), 

under H2, overnight, at 80°C (Table S1, ESI†). Efficient deuterium incorporation on position 

C2 (95–97 %) was observed for aliphatic amino acids [1-13C,2-2H] and [2-13C,2-2H]alanine 

(1 and 6), [1-13C,2-2H2]glycine 4 and [1-13C,2-2H]valine 5, with enantiomeric excesses 

greater than 99%. Isotopic enrichments on position C2 of [1-13C,2-2H] and [2-13C,

2-2H]sodium lactate (3 and 8) were 97% and 98%, respectively, with lower enantiomeric 

excesses (86 and 94%). Moderate chemical yield on [1-13C,2-2H] valine 5, 53%, may be due 

to its lower solubility in D2O. Enantiomeric excess was 98% for both [1-13C,2-2H] and 

[2-13C,2-2H]serine (2 and 7) whereas chemical yields were 78% and 77%, respectively. 

Their lower isotopic enrichments on position C2 (52 and 90%) may be due to the additional 

deuterium labelling on their position C3. In a few cases, side reactions were encountered 

which led to decomposition of the desired product (ESI†). Taken together with prior reports,
27,35 our data indicate that this is a versatile method for deuterium incorporation in 

biologically relevant molecules.

In order to determine the impact of deuterium incorporation on T1, we then prepared the 

labelled substrates for hyperpolarization. Solutions of 4 to 6 M substrate with 1 to 1.2 

equivalents NaOH and 23 to 24 mM free radical (OX063) were prepared for 

†Electronic Supplementary Information (ESI) available: Reagents and procedures for deuteration reaction, deuterium incorporation 
quantification, characterization for compounds 1 to 8, experimental details for T1 measurements in solution, in vivo and in vitro 
enzyme experiments. See DOI: 10.1039/x0xx00000x
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hyperpolarization using DNP.36 Following polarization, T1 measurements were performed 

on a 3T preclinical MR scanner. Deuterium substitution at the C2 position yielded 

significant improvements of the T1 with 13C at the C1 position, ranging from 16–29% 

(Figure 1). The relatively modest improvement in T1 yielded larger signal gains at later time 

points. For example, in the case of [1-13C]alanine, deuteration yielded an increase in signal 

to noise ratio of 60% at 90s after the start of the experiment (Figure S68c, ESI†). 

Remarkably, in the case of [2-13C,2-2H]alanine 6, [2-13C,2,3-2H]serine 7 and [2-13C,

2-2H]lactate 8, deuterium labelling led to a greater than four-fold increase in T1. Due to 

rapid signal decay on [2-13C]alanine, [2-13C]serine and [2-13C]lactate, their T1 could not be 

measured using a hyperpolarized method36 and were instead assayed using an inversion 

recovery-sequence. Part of the reason why the T1 gains due to deuteration are relatively 

limited is because of chemical shift anisotropy (CSA) which is likely the dominant 

relaxation mechanism at 3T.37,38 Therefore, at 1.5T, there could be further improvements in 

T1 prolongation.39

We then evaluated the T1 of one of our substrates, [1-13C,2-2H]alanine 1, in an in vivo 
experiment in a mouse model and compared its properties with those of [1-13C]alanine. MR 

measurements where performed on a preclinical 3T scanner (Figure S71, ESI†). 300 μL of 

80 mM solutions of hyperpolarized [1-13C]alanine and [1-13C,2-2H]alanine 1 were injected 

intravenously immediately followed by dynamic acquisition of 13C MRS spectra. As 

expected, based on the in vitro studies, we found an increase in the apparent in vivo T1 at 3T, 

from 32 s, for [1-13C]alanine, to 42 s, for [1-13C,2-2H]alanine 1.

As a demonstration of the utility of the deuteration method, we next applied the labelled 

alanine probes in an in vitro enzyme assay using alanine transaminase (ALT). ALT is an 

abundant enzyme and a biomarker for liver disease, which converts alanine and α-

ketoglutarate to pyruvate and glutamate, respectively (Figure 2a). Previous reports have 

studied this enzyme both in vitro and in vivo using hyperpolarized 13C methods.36,40,41 

Therefore, we developed an assay for the detection of 13C pyruvate production by incubation 

of polarized [1-13C]alanine or [1-13C,2-2H]alanine 1 with α-ketoglutarate, glutamate and 

ALT based on prior reports.42 As expected, 13C pyruvate was rapidly formed during the time 

course of the hyperpolarized experiment (Figures 2b-d). Furthermore, the initial rate of 

pyruvate signal growth, which approximates the forward conversion rate, was about 2.42-

fold lower for the [1-13C,2-2H]alanine 1 as compared with the [1-13C]alanine (n = 3 each, p 

< 0.002, neutral pH). This agrees closely with the previously reported kinetic isotope effect 

of 2.3.42 In order to confirm these findings, we fit the dynamic alanine and pyruvate MRS 

data to a kinetic model accounting for HP signal exchange between protonated and 

deuterated [1-13C]alanine and [1-13C]pyruvate pools as well as signal loss due to RF 

sampling and T1 loss (Fig. S72, ESI†).43 We thus obtained pseudo-first order rate constants 

of (1.87 ± 0.174) x 10−3 s−1 (n = 3) and (0.736 ± 0.015) × 10−3 s−1 (n = 3) for protonated 

and deuterated alanine, respectively. This difference in kinetic rates suggested a kinetic 

isotope effect of 2.53, in close agreement with our previous analysis and with the literature.
42

In summary, these data indicate that the RuC labelling method represents a versatile method 

for high-yield deuteration of 13C labelled substrates, ideal for application to hyperpolarized 
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13C MRI. When the deuterium was incorporated adjacent to a 13C-enriched carbonyl, the 

effect on T1 prolongation was moderate, ranging from 16–29%. In contrast, when applied to 
13C nuclei with directly attached protons ([2-13C,2-2H]alanine 6, [2-13C,2,3-2H]serine 7 and 

[2-13C,2-2H]lactate 8), an approximately 4-fold increase in T1 was observed. To further 

study the behavior of doubly-enriched substrates, we applied [1-13C]alanine and [1-13C,

2-2H]alanine 1 to an in vitro enzyme assay with purified ALT enzyme, demonstrating a 

kinetic isotope effect, in agreement with prior reports. We anticipate that this versatile 

method will find application to a variety of substrates for hyperpolarized 13C MRI.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Scheme 1: 
Regioselective catalytic deuterium labelling via 1H/2H exchange using ruthenium on carbon 

(RuC).
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Figure 1: 
T1 relaxation times at 3T for proton and deuterium-labelled 13C-substrates (n = 3, ± s.d., p < 
0.02). Due to very low polarization for commercial non-deuterium labeled [2–13C]alanine, 

[2–13C]serine and [2–13C]lactate, T1 could not be evaluated using hyperpolarized methods, 

and inversion-recovery was used at 11.7T: T1 = 4.9 s, 3.6 s and 7.2 s, respectively.
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Figure 2: 
Influence of deuterium labelling on [1–13C]pyruvate formation after conversion from [1–
13C]alanine and from [1–13C,2–2H]alanine 1 in solution in the presence of ALT enzyme. a) 

Metabolic pathways of hyperpolarized [1–13C]alanine and [1–13C,2–2H]alanine 1 via ALT. 

b) and c) Time courses of integrated spectra showing the evolution of HP [1–13C]alanine,[1–
13C,2–2H]alanine 1 and their metabolite [1–13C]pyruvate (normalized peak integrations) (n 
= 3, ± s.d.). For clarity, pyruvate integrals were ten-fold upscaled. Shaded areas denote the 

experimental error bars. Spectral acquisition started 11s (b) and 10 s (c) after incubation of 
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the HP probe and the enzyme solution in an NMR tube. d) Measurements of [1–
13C]pyruvate/total 13C-labeled signals (tC) ratios (n = 3, ± s.d.).
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Table 1:

Structures of 13C-enriched molecules after deuterium enrichment. The bracketed number indicates the isotopic 

enrichment determined by 1H,13C NMR and HRMS (analyses described in the ESI†). ee: enantiomeric excess.

Molecule Structure Chemical yield ee

13C on position C1 and 2H on position C2

[1-13C,2-2H]alanine 1 99 % 99 %

[1-13C,2,3-2H3]serine 2 78 % 98 %

[1-13C,2-2H]lactate 3 98 % 86 %

[1-13C,2-2H2]glycine 4 79 % -

[1-13C,2-2H]valine 5 53 % 99 %

13C on position C2 and 2H on position C2

[2-13C,2-2H]alanine 6 89 % 99 %

[2-13C,2,3-2H3]serine 7 77 % 98 %

[2-13C,2-2H]lactate 8 99 % 94 %
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