
A Generally Efficient Targeted Minimum Loss Based Estimator 
based on the Highly Adaptive Lasso

Mark van der Laan*

University of California, Berkeley, USA

Abstract

Suppose we observe n independent and identically distributed observations of a finite dimensional 

bounded random variable. This article is concerned with the construction of an efficient targeted 

minimum loss-based estimator (TMLE) of a pathwise differentiable target parameter of the data 

distribution based on a realistic statistical model. The only smoothness condition we will enforce 

on the statistical model is that the nuisance parameters of the data distribution that are needed to 

evaluate the canonical gradient of the pathwise derivative of the target parameter are multivariate 

real valued cadlag functions (right-continuous and left-hand limits, (G. Neuhaus. On weak 

convergence of stochastic processes with multidimensional time parameter. Ann Stat 

1971;42:1285–1295.) and have a finite supremum and (sectional) variation norm. Each nuisance 

parameter is defined as a minimizer of the expectation of a loss function over over all functions it 

its parameter space. For each nuisance parameter, we propose a new minimum loss based 

estimator that minimizes the loss-specific empirical risk over the functions in its parameter space 

under the additional constraint that the variation norm of the function is bounded by a set constant. 

The constant is selected with cross-validation. We show such an MLE can be represented as the 

minimizer of the empirical risk over linear combinations of indicator basis functions under the 

constraint that the sum of the absolute value of the coefficients is bounded by the constant: i.e., the 

variation norm corresponds with this L1-norm of the vector of coefficients. We will refer to this 

estimator as the highly adaptive Lasso (HAL)-estimator. We prove that for all models the HAL-

estimator converges to the true nuisance parameter value at a rate that is faster than n−1/4 w.r.t. 

square-root of the loss-based dissimilarity. We also show that if this HAL-estimator is included in 

the library of an ensemble super-learner, then the super-learner will at minimal achieve the rate of 

convergence of the HAL, but, by previous results, it will actually be asymptotically equivalent 

with the oracle (i.e., in some sense best) estimator in the library. Subsequently, we establish that a 

one-step TMLE using such a super-learner as initial estimator for each of the nuisance parameters 

is asymptotically efficient at any data generating distribution in the model, under weak structural 

conditions on the target parameter mapping and model and a strong positivity assumption (e.g., the 

canonical gradient is uniformly bounded). We demonstrate our general theorem by constructing 

such a one-step TMLE of the average causal effect in a nonparametric model, and establishing that 

it is asymptotically efficient.
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1 Introduction

We consider the general statistical estimation problem defined by a statistical model for the 

data distribution, a Euclidean valued target parameter mapping defined on the statistical 

model, and observing n independent and identically distributed draws from the data 

distribution. Our goal is to construct a generally asymptotically efficient substitution 

estimator of the target parameter. An estimator is asymptotically efficient if and only if it is 

asymptotically linear with influence curve equal to the canonical gradient (also called the 

efficient influence curve) of the pathwise derivative of the target parameter [1]. For realistic 

statistical models construction of efficient estimators requires using highly data adaptive 

estimators of the relevant parts of the data distribution the efficient influence curve depends 

upon. We will refer to these relevant parts of the data distribution as nuisance parameters.

One can construct an asymptotically efficient estimator with the following two general 

methods. Firstly, the one-step estimator is defined by adding to an initial plug-in estimator of 

the target parameter an empirical mean of an estimator of the efficient influence curve at this 

same initial estimator [1]. In the special case that the efficient influence curve can be 

represented as an estimating function, one can represent this methodology as the first step of 

the Newton-Raphson algorithm for solving the estimating equation defined by setting the 

empirical mean of the efficient influence curve equal to zero. Such general estimating 

equation methodology for construction of efficient estimators has been developed for 

censored and causal inference models in the literature (e.g., [2, 3]). Secondly, the TMLE 

defines a least favorable parametric submodel through an initial estimator of the relevant 

parts (nuisance parameters) of the data distribution, and updates the initial estimator with the 

MLE over this least favorable parametric submodel. The one-step TMLE of the target 

parameter is now the resulting plug-in estimator [4–6]. In this article we focus on the one-

step TMLE since it is a more robust estimator by respecting the global constraints of the 

statistical model, which becomes evident when comparing the one-step estimator and TMLE 

in simulations for which the information is low for the target parameter (e.g., even resulting 

in one-step estimators of probabilities that are outside the (0, 1) range) (e.g., [7–9]). 

Nonetheless, the results in this article have immediate analogues for the one-step estimator 

and estimating equation method.

The asymptotic linearity and efficiency of the TMLE and one-step estimator relies on a 

second order remainder to be oP(n−1/2), which typically requires that the nuisance 

parameters are estimated at a rate faster than n−1/4 w.r.t. an L2(P0)-norm (e.g., see our 

example in Section 7). To make the TMLE highly data adaptive and thereby efficient for 

large statistical models we have recommended to estimate the nuisance parameters with a 

super-learner based on a large library of candidate estimators [10–13]. Due to the oracle 
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inequality for the cross-validation selector, the super-learner will be asymptotically 

equivalent with the oracle selected estimator w.r.t. loss-based dissimilarity, even when the 

number of candidate estimators in the library grows polynomial in sample size. The loss-

based dissimilarity (e.g., Kullback-Leibler divergence or loss-based dissimilarity for the 

squared error loss) behaves as a square of an L2(P0)-norm (see, for example Lemma 4 in our 

example). Therefore, in order to control the second order remainder, our goal should be to 

construct a candidate estimator in the library of the super-learner which will converge at a 

faster rate than n−1/4 w.r.t. square-root of the loss-based dissimilarity.

In this article, for each nuisance parameter, we propose a new minimum loss based estimator 

that minim-izes the loss-specific empirical risk over its parameter space under the additional 

constraint that the variation norm is bounded by a set constant. The constant is selected with 

cross-validation. We show that these MLEs can be represented as the minimizer of the 

empirical risk over linear combinations of indicator basis functions under the constraint that 

the sum of the absolute value of the coefficients is bounded by the constant: i.e., the 

variation norm corresponds with this L1-norm of the vector of coefficients. We will refer to 

this estimator as the highly adaptive Lasso (HAL)-estimator. We prove that the HAL-

estimator converges at a rate that is for all models faster than n−1/4 w.r.t. square-root of the 

loss-based dissimilarity. This even holds if the model only assumes that the true nuisance 

parameters have a finite variation norm. As a corollary of the general oracle inequality for 

cross-validation, we will then show that the super-learner including this HAL-estimator it its 

library is guaranteed to converge to its true counterparts at the same rate as this HAL-

estimator (and thus faster than n−1/4). By also including a large variety of other estimators in 

the library of the super-learner, the super-learner will also have excellent practical 

performance for finite samples relative to competing estimators [14]. Based on this 

fundamental result for the HAL-estimator and the super-learner, we proceed in this article 

with proving a general theorem for asymptotic efficiency of the one-step TMLE for arbitrary 

statistical models. In this article we will use a one-step cross-validated-TMLE (CV-TMLE), 

which avoids the Donsker-class entropy condition on the nuisance parameter space, in order 

to further minimize the conditions for asymptotic efficiency [5, 15]. In our accompanying 

technical report [16] we present the analogue results for the one-step TMLE. Beyond 

establishing these fundamental theoretical general results, we will also discuss the practical 

implementation of the HAL-estimator and corresponding TMLE.

2 Example: Treatment specific mean in nonparametric model

Before we start the main part of this article, in this section we will first introduce an 

example, and use this example to provide the reader with a guide through the different 

sections.

2.1 Defining the statistical estimation problem

Let O = (W, A, Y) ∼ P0 be a d-dimensional random variable consisting of a (d − 2)-

dimensional vector of baseline covariates W, binary treatment A ∈ {0, 1} and binary 

outcome Y ∈ {0, 1}. We observe n i.i.d. copies O1, …, On of O ∼ P0. Let 

Q P W = EP Y A = 1, W  and G P W = EP A W . Let Q2(P) be the marginal cumulative 
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probability distribution of W, and Q = Q1 = Q, Q2 . Let the statistical model be of the form 

ℳ = P:G P ∈ 𝒢, Q P ∈ 𝒬 , where 𝒢 is a possibly restricted set, and 𝒬 is nonparametric. 

The only key assumption we will enforce on 𝒬 and 𝒢 is that for each P ∈ ℳ, W Q P W
and W G P W  are cadlag functions in W on a set [0, τP] ⊂ ℝd−2 [17], and that the 

variation norm of these functions Q P  and G P  are bounded. The definition of variation 

norm will be presented in the next section. Suppose that 𝒢 assumes that G only depends on 

W through a subset of covariates of dimension d2 ≤ d − 2: if d2 = d − 2, then this does not 

represent an assumption.

Our target parameter Ψ:ℳ ℝ is defined by Ψ P = ∫ Q w dQ2 w ≡ Ψ1 Q1 = Q, Q2 . For 

notational convenience, we will use Ψ for both mappings Ψ and Ψ1. It is well known that Ψ 
is pathwise differentiable so that for each 1-dimensional parametric submodel Pε:ε ⊂ ℳ

through P with score S at ε = 0, we have

d
dεΨ Pε ε = 0

= PD P S = ∫o
D P o S o dP o ,

for some D(P) ∈ L2(P), where L2(P) is the Hilbert space of functions of O with mean zero 

endowed with inner product 〈f, g〉P = Pfg. Here we use the notation Pf ≡ ∫ f(o)dP(o). Such 

an object D(P) is called a gradient at P of the pathwise derivative. The unique gradient that is 

also an element of the tangent space T(P) is defined as the canonical gradient. The tangent 

space T(P) at P is defined as the closure of the linear span of the set of scores of the class of 

1-dimensional parametric submodels we consider. In this example the canonical gradient 

D*(P) = D*(Q(P), G(P)) at P is given by:

D∗ Q, G O = A
G W

Y − Q W + Q W − Ψ Q .

Let D1
∗ Q, G = A/G W Y − Q W  and D2

∗ Q = Q W − Ψ Q  and note that 

D∗ Q, G = D1
∗ Q, G + D2

∗ Q .

An estimator ψn of ψ0 = Ψ(P0) is asymptotically efficient (among the class of all regular 

estimators) if and only if it is asymptotically linear with influence curve equal to the 

canonical gradient D*(P0) [1]:

ψn − ψ0 = PnD∗ P0 + oP(n−1/2),

where Pn is the empirical probability distribution of O1, …, On. Therefore, the canonical 

gradient is also called the efficient influence curve.

We have that
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Ψ P − Ψ P0 = P − P0 D∗ Q, G + R20 Q, G , Q0, G0 , (1)

where Q = Q(P), G = G(P), and the second order remainder R20() is defined as follows:

R20 Q, G , Q0, G0 ≡ ∫ G w − G0 w

G w
Q w − Q0 w dP0 w .

Of course, PD*(Q, G) = 0.

We define the following two log-likelihood loss functions for Q, Q2 and G, respectively:

L11 Q O = − A YlogQ W + 1 − Y log 1 − Q W ; L12 Q2 O = − logdQ2 W ; L2 G O =
− AlogG W + 1 − A log 1 − G W .

We also define the corresponding Kullback-Leibler dissimilarities 

d10, 1 Q, Q0 = P0 L11 Q − L11 Q0 , d10,2(Q2, Q20) = P0{L12(Q2) − L12(Q20)}, and 

d20 G, G0 = P0 L2 G − L2 G0 . Here Q2 represents an easy to estimate parameter which we 

will estimate with the empirical probability distribution Q2n = Q̂2 Pn  of W1, …, Wn.

Let the submodel ℳ δ ⊂ ℳ be defined by the extra restriction that δ < Q W < 1 − δ and 

G W > δ P0-a.e. If we would replace the log-likelihood loss L11 Q  (which becomes 

unbounded if Q approximates 0 or 1) by a squared error loss Y − Q W 2A, then one can 

remove the restriction δ < Q W < 1 − δ in the definition of ℳ δ . Given a sequence δn → 0 

as n → ∞, we can define a sequence of models ℳn = ℳ δn  which grows from below to ℳ

as n → ∞. By assumption, there exists an N0 = N(P0) < ∞ so that for n > N0 we have 

P0 ∈ ℳn.

Let 𝒬n = 𝒬1n × 𝒬2n and 𝒢n be the corresponding parameter spaces for Q = Q, Q2  and G, 

respectively, and specifically, 𝒬1n = Q:δn < Q < 1 − δn , while 𝒬2n = 𝒬2.

2.2 One step CV-TMLE

Let Q̂:ℳnonp 𝒬1n and Ĝ:ℳnonp 𝒢n be initial estimators of Q0, G0, respectively, where 

ℳnonp denotes a nonparametric model so that the estimator is defined for all realizations of 

the empirical probability distribution. Let Q̂:ℳnonp 𝒬n be the estimator 

Q̂(Pn) = (Q̂(Pn), Q̂2(Pn)) of Q0 = (Q0, Q20). For a given cross-validation scheme Bn ∈ {0, 1}n, 

let Pn, Bn
1 , Pn, Bn

0  be the empirical probability distributions of the validation sample {Oi : Bn(i) 

= 1} and training sample { Oi : Bn(i) = 0}, respectively. It is assumed that the proportion of 

observations in the validation sample (i.e., Σi Bn(i)/n) is between δ and 1−δ for some 0 < δ < 
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1. Let Qn, Bn
= (Qn, Bn

, Q2n, Bn
) = Q̂(Pn, Bn

0 ) and Gn, Bn
= Ĝ(Pn, Bn

0 ) be the estimators applied to 

the training sample Pn, Bn
0 . Given a Q, G , consider the uniform least favorable submodel 

(van der Laan and Gruber, 2015)

LogitQε1
= LogitQ + ε1HG

through Q at ε1 = 0, where HG W = 1/G W . We indeed have d
dε1

L11(Qε1
) = D1

∗(Qε1
, G) for 

all ε1. Given a Q = Q, Q2 , consider also the local least favorable submodel

dQ2, ε2
lfm W = dQ2 W 1 + ε2D2

∗ Q W

through Q2 at ε2 = 0. Indeed, d
dε2

L12(Q2, ε2
lfm )

ε2 = 0
= D2

∗(Q, Q2). This local least favorable 

submodel implies the following uniform least favorable submodel (van der Laan and Gruber, 

2015): for ε2 ≥ 0

dQ2, ε2
= dQ2exp ∫0

ε2
D2

∗(Q, Q2, x)dx .

This universal least favorable submodel implies a recursive construction of Q2,ε for all ε-

values, by starting at ε = 0 and moving upwards. For negative values of ε2, we define 

∫0

ε2
= ∫

ε2

0
. For all ε2, d

dε2
L12(Q2, ε2

) = D2
∗(Q, Q2, ε2

), which shows that this is indeed a 

universal least favorable submodel for Q2.

Let ε1n = arg minε1
EBn

Pn, Bn
1 L11(Qn, Bn, ε1

), and Qn, Bn
∗ = Qn, Bn, ε1n

. The score equation for ε1n 

shows that EBn
Pn, Bn

1 D1
∗(Qn, Bn

∗ , Gn, Bn
) = 0. Let ε2n = arg minε2

EBn
Pn, Bn

1 L12(Q2n, Bn, ε2
) and 

Q2n, Bn
∗ = Q2n, Bnε2n

. The score equation for ε2n shows that EBn
Pn, Bn

1 D2
∗(Qn, Bn

∗ , Q2n, Bn
∗ ) = 0, 

which implies

EBn
Pn, Bn

1 Qn, Bn
∗ = EBn

Q2n, Bn
∗ Qn, Bn

∗ . (2)

The CV-TMLE of Ψ(Q0) is defined as ψn
∗ ≡ EBn

Ψ(Qn, Bn
∗ ), where Qn, Bn

∗ = (Qn, Bn
∗ , Q2n, Bn

∗ ). By 

eq. (2) this implies that the CV-TMLE can also be represented as:
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ψn
∗ = EBn

Pn, Bn
1 Qn, Bn

∗ . (3)

Note that this latter representation proves that we never have to carry out the TMLE-update 

step for Q2n, but that the CV-TMLE is a simple empirical mean of Qn, Bn
∗  over the validation 

sample, averaged across the different splits Bn. We also conclude that this one-step CV-

TMLE solves the crucial cross-validated efficient influence curve equation

EBn
Pn, Bn

1 D∗(Qn, Bn
∗ , Gn, Bn

) = 0. (4)

2.3 Guide for article based on this example

Section 3: Formulation of general estimation problem—The goal of this article is 

far beyond establishing asymptotic efficiency of the CV-TMLE eq. (3) in this example. 

Therefore, we start in Section 3 by defining a general model and general target parameter, 

essentially generalizing the above notation for this example. Therefore, having read the 

above example, the presentation in Section 3 of a very general estimation problem will be 

easier to follow. Our subsequent definition and results for the HAL-estimator, the HAL-

super-learner, and the CV-TMLE in the subsequent Sections 4-6 apply now to our general 

model and target parameter, thereby establishing asymptotic efficiency of the CV-TMLE for 

an enormous large class of semi-parametric statistical estimation problems, including our 

example as a special case.

Let’s now return to our example to point out the specific tasks that are solved in each section 

of this article. By eqs (1) and (4), we have the following starting identity for the CV-TMLE:

EBn
Ψ(Qn, Bn

∗ ) − Ψ(Q0) = EBn
(Pn, Bn

1 − P0)D∗(Qn, Bn
∗ , Gn, Bn

)

+ EBn
R20((Qn, Bn

∗ , Gn, Bn
), (Q0, G0)) .

(5)

By the Cauchy-Schwarz inequality and bounding 1/Gn, Bn
 by 1/δn, we can bound the second 

order remainder as follows:

|EBn
R20((Qn, Bn

∗ , Gn, Bn
), (Q0, G0)) | ≤ 1

δn
EBn

‖Qn, Bn
∗ − Q0‖

P0
‖Gn, Bn

− G0‖
P0

, (6)

where ‖ f ‖P0
≡ (P0 f 2)1/2

. Suppose we can construct estimators Q̂ and Ĝ of Q0 and G0 so that 

‖Qn − Q0‖
P0

= OP(n
−1/4 − α1) and ‖Gn − G0‖

P0
= OP(n

−1/4 − α2) for some α1 > 0, α2 > 0. 
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Since the training sample is proportional to sample size n, this immediately implies 

‖Gn, Bn
− G0‖

P0
= OP(n

−1/4 − α2) and ‖Qn, Bn
− Q0‖

P0
= OP(n

−1/4 − α1). In addition, it is easy 

to show (as we will formally establish in general) that the rate of convergence of the initial 

estimator Qn, Bn
 carries over to its targeted version so that ‖Qn, Bn

∗ − Q0‖
P0

= OP(n
−1/4 − α1). 

Thus, with such initial estimators, we obtain

EBn
R20((Qn, Bn

∗ , Gn, Bn
), (Q0, G0)) = oP(δn

−1n
−1/2 − α1 − α2) . (7)

Thus, by selecting δn so that δn
−1n

−α1 − α2 0, we obtain 

EBn
R20((Qn, Bn

∗ , Gn, Bn
), (Q0, G0)) = oP(n−1/2).

Section 4: Construction and analysis of an M-specific HAL-estimator that 
converges at a rate faster than n−1/4—This challenge of constructing such estimators 

Q̂ and Ĝ is addressed in Section 4. In the context of our example, in Section 4 we define a 

minimum loss estimator (MLE) Qn, M = arg min‖Q‖ν < M PnL11(Q) that minimizes the 

empirical risk over all cadlag functions with variation norm smaller than M. In Section 4 we 

then show that, if M is chosen larger than the variation norm of Q0, d10, 1
1/2 (Qn, M, Q0)

converges to zero at a faster rate than n
−1/4 − α1 for some α1 = α1(d) > 0 (for each 

dimension d). We provide an explicit representation eq. (17) of a cadlag function with finite 

variation norm M as an infinite linear combination of indicator functions for which the sum 

of the absolute value of the coefficients is bounded by M. As a consequence, it is shown in 

Appendix D that this M-specific minimum loss-based estimator can be approximated by (or 

can be exactly defined as) a Lasso-generalized linear regression problem in which the sum 

of the absolute values of the coefficients is bounded by M. Therefore, we will refer to Qn, M

as the M-specific HAL-estimator. Our proof of Lemma 1 in Section 4, which establishes the 

rate of convergence of the M-specific HAL-estimator, relies on an empirical process result 

by [18] that expresses the upper bound for this rate of convergence in terms of the entropy of 

the model space 𝒬1 of Q. The representation eq. (17) demonstrates that the set of cadlag 

functions that have variation norm smaller than a constant M is a difference of a“convex” 

hull of indicator functions, and, as a consequence of a general convex hull result in [19] this 

proves that it is a Donsker class with a specified upper bound on its entropy. In this way, we 

obtain an explicit entropy bound for our model space 𝒬1. Given this explicit upper bound for 

the entropy, the result in [18] establishes a rate of convergence of the M-specific HAL-

estimator faster than n
−1/4 − α1for a specified α1 > 0. By selecting M larger than the 

unknown variation norm of the true nuisance parameter value, we obtain an HAL-estimator 

that converges at a faster rate than n−1/4.
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Section 5: Construction and analysis of an HAL-super-learner—Instead of 

assuming that the the variation norm of Q0 is bounded by a known M and use the 

corresponding M-specific HAL-estimator, in Section 5 we define a a collection of such M-

specific estimators for a set of M-values for which the maximum value converges to infinity 

as sample size converges to infinity. We then use cross-validation to data adaptively select 

M. We now show that the resulting cross-validated selected estimator of Q0 will be 

asymptotically equivalent with the oracle (i.e., best w.r.t. loss-based dissimilarity) choice. 

This follows from a previously established oracle inequality for the cross-validation selector, 

as long as the supremum norm bound on the loss-function at the candidate estimators does 

not grow too fast to infinity as a function of sample size (e.g., [11, 13]). By using such a data 

adaptively selected M one obtains an estimator with better practical performance and it 

avoids having to know an upper bound M. As a consequence, our statistical model does not 

need to assume a universal bound M on the variation norm of the nuisance parameters, but it 

only needs to assume that each nuisance parameter value has a finite variation norm. For the 

sake of finite sample performance, we want to use a super-learner that uses cross-validation 

to select an estimator from a library of candidate estimators that includes these M-specific 

estimators as candidates, beyond other candidate estimators. In this way, the choice of 

estimator will be adapted to what works well for the actual data set. Therefore, in Section 5, 

we actually define such a general super-learner Q̂ and Theorem 2 states that it will converge 

at least as fast as the best choice in the library, and thus certainly as fast as the M-specific 

HAL-estimator using M equal to the true variation norm of Q0. We refer to a super-learner 

whose library includes this collection of M-specific HAL-estimators as an HAL-super-

learner. We will use an analogue HAL-super-learner of G0 (Theorem 6).

The convergence results for this super-learner in terms of the Kullback-Leibler loss-based 

dissimilarities also imply corresponding results for L2(P0)-convergence as needed to control 

the second order remainder eq. (6): see Lemma 4.

Section 6: Construction and analysis of HAL-CV-TMLE—To control the remainder 

we need to understand the behavior of the updated initial estimator Qn, Bn
∗  instead of the 

initial estimator Qn, Bn
 itself. In our example, since the updated estimator only involves a 

single updating step of the initial estimator, using a cross-validated MLE selector of ε, we 

can easily show that Qn, Bn
∗  converges at same rate to Q0 as the initial estimator Qn, Bn

. In 

general, in Section 6 we define a one-step CV-TMLE for our general model and target 

parameter so that the targeted versions of the initial estimator of Q0 converges at the same 

rate as the initial HAL-super-learner estimator Qn. (Since the initial estimator is an HAL-

super-learner, we refer to this type of CV-TMLE as an HAL-CV-TMLE.) This concerns a 

choice of least favorable submodel for which the CV-TMLE-step separately updates each of 

the components of the initial estimator Q̂. We then show that with this choice of least 

favorable submodel the CV-TMLE-step preserves the convergence rate of the initial 

estimator (Lemma 3). We also establish in Appendix D that the one-step CV-TMLE already 
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solves the desired cross-validated efficient influence curve equation (4) up till an oP(n−1/2)-

term, so that an iterative CV-TMLE can be avoided (Lemma 13 and Lemma 14). At that 

point, we have shown that the generalized analogue of eq. (7) indeed holds with a specified 

α1 > 0, α2 > 0. In the final subsection of Section 6, Theorem 1 then establish the asymptotic 

efficiency of the HAL-CV-TMLE, which now also involves analyzing the cross-validated 

empirical process term, specifically, showing that

EBn
(Pn, Bn

1 − P0)D∗(Qn, Bn
∗ , Gn, Bn

) = (Pn − P0)D∗(Q0, G0) + oP(n−1/2) . (8)

This will hold under weak conditions, given that we have estimators Qn, Bn
∗ , Gn, Bn

 that 

converge at specified rates to their true counterparts and that, for each split Bn, conditional 

on the training sample, the empirical process is indexed by a finite dimensional (i.e., 

dimension of :) class of functions.

Section 7: Returning to our example—In Section 7 we return to our example to 

present a formal Theorem 2 with specified conditions, involving an application of our 

general efficiency Theorem 1 in Section 6.

Appendix: Various technical results are presented in the Appendix.

3 Statistical formulation of the estimation problem

Let O1, …, On be n independent and identically distributed copies of a d-dimensional 

random variable O with probability distribution P0 that is known to be an element of a 

statistical model ℳ. Let Ψ:ℳ ℝ be a one-dimensional target parameter, so that ψ0 = 

Ψ(P0) is the estimand of interest we aim to learn from the n observations o1, …, on. We 

assume that Ψ is pathwise differentiable at any P ∈ ℳ with canonical gradient D*(P): for a 

specified rich class of one-dimensional submodels Pε:ε ∈ (−δ, δ) ⊂ ℳ through P at ε = 0 

and score S = d
dε logdPε/dP

ε = 0, we have

d
dεΨ(Pε)

ε = 0
= PD∗(P)S ≡ ∫o

D∗(P)(o)S(o)dP(o) .

Our goal in this article is to construct a substitution estimator (i.e., a TMLE Ψ(Pn
∗) for a 

targeted estimator Pn
∗ of P0) that is asymptotically efficient under minimal conditions.

Relevant nuisance parameters Q, G and their loss functions

Let Q(P) be a nuisance parameter of P so that Ψ(P) = Ψ1(Q(P)) for some Ψ1, so that Ψ(P) 

only depends on P through Q(P). Let 𝒬 = Q(ℳ) = Q(P):P ∈ ℳ  be the parameter space of 

this parameter Q:ℳ 𝒬. Suppose that Q(P) = (Qj(P) : j = 1, …, k1 + 1) has k1 + 1 

components, and Q j:ℳ 𝒬 j are variation independent parameters j = 1, …, k1 + 1. Let 
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𝒬 j = Q j(ℳ) be the parameter space of Qj. Thus, the parameter space of Q is a cartesian 

product 𝒬 = ∏ j = 1
k1 + 1

𝒬 j. In addition, suppose that for j = 1, …, k1 + 1, 

Q j(P0) = arg minQ j ∈ 𝒬 j
P0L1 j(Q j) for specified loss functions (O, Qj) ↦ L1j(Qj)(O). Let 

Q = (Q1, …, Qk1
) represent parameters that require data adaptive estimation trading off 

variance and bias (e.g., densities), while Qk1+1 represents an easy to estimate parameter for 

which we have an empirical estimator Q̂k1 + 1 available with negligible bias. In our treatment 

specific mean example above Q = (Q1 = Q, Q2), where the easy to estimate parameter Q2 was 

the probability distribution of W which is naturally estimated with the empirical probability 

distribution. The parameter Q(P0) will be estimated with our proposed loss-based HAL-

super-learner. In the special case that each of the components of Q require a super-learner 

type-estimator, we define Qk1 + 1 as empty (or equivalently, a known value), and in that case 

Q = Q. We define corresponding loss-based dissimilarities d10j(Qj, Qj0) = P0L1j(Qj)

−P0L1j(Qj0), j = 1, …, k1 + 1. We assume that 

d10(k1 + 1)(Q̂k1 + 1(Pn), Q(k1 + 1)0) = OP(rQ, k1 + 1(n)) for a known rate of convergence 

rQ, k1 + 1(n). Let

d10(Q, Q0) = (d10 j(Q j, Q j0): j = 1, …, k1 + 1) (9)

be the collection of these k1 + 1 loss-based dissimilarities. We use the notation 

d10(Q, Q0) = (d10 j(Q j, Q j0): j = 1, …k1) for the vector of k1 loss-based dissimilarities for Q.

Suppose that D*(P) only depends on P through Q(P) and an additional nuisance parameter 

G(P). In the special case that D*(P) only depends on P through Q(P), we define G as empty 

(or equivalently, as a known value). Let G = (G1, …, Gk2 + 1) be a collection of (k2 + 1)-

variation independent parameters of G for some integer k2 + 1 ≥ 1. Thus the parameter space 

of G is a cartesian product 𝒢 = ∏ j = 1
k2 + 1

𝒢 j, where 𝒢 j is the parameter space of 𝒢 j:ℳ 𝒢 j. 

Let G j0 = arg minG ∈ 𝒢 j
P0L2 j(G j) for a loss function (O, Gj) ↦ L2j(Gj)(O), and let d2j0(Gj, 

Gj0) = P0L2j(Gj) − P0L2j(Gj0) be the corresponding loss-based dissimilarity, j = 1, …, k2 + 1. 

Let Gk2 + 1 represents an easy to estimate parameter for which we have a well behaved and 

understood estimator Ĝk2 + 1 available. The parameter G(P0) will be estimated with our 

proposed HAL-super-learner. We assume that 

d20(k2 + 1)(Ĝk2 + 1(Pn), G(k2 + 1)0) = OP(rG, k2 + 1(n)) for a known rate of convergence 

rG, k2 + 1(n). As above, let d20(G, G0) = (d20 j(G j, G j0): j = 1, …, k2 + 1) be the collection of 

these loss-based dissimilarities, and let d20(G, G0) = (d20 j(G j, G j0): j = 1, …, k2), where 
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G = (G1, …, Gk2
). In the special case that each Gj requires a super-learner based estimator, 

then we define Gk2 + 1 as empty, and G = G.

We also define

d0((Q, G), (Q0, G0)) = (d10 j1
(Q j1

, Q j10), d20 j2
(G j2

, G j20): j1, j2) (10)

as the vector of k1 + k2 + 2 loss-based dissimilarities. We will also use the short-hand 

notation d0(P, P0) for d0((Q, G), (Q0, G0)).

We define

L1(Q) = (L1 j(Q j): j = 1, …, k1 + 1) (11)

as the vector of k1 + 1-loss functions for Q = (Q1, …, Qk1 + 1), and similarly we define

L2(G) = (L2 j(G j): j = 1, …, k2 + 1) . (12)

We will also use the notation L1(Q) = (L1(Q j): j = 1, …, k1) and L2(G) = (L2 j(G j): j = 1, …, k2). 

We will assume that Q L1(Q) is a convex function in the sense that, for any 

Q1 = (Q j1: j = 1, …, k1), …, Qm = (Q jm: j = 1, …k1), for each j = 1, …, k1

P0L1 j ∑
k = 1

m
αkQ jk ≤ ∑

k = 1

m
αkP0L1 j(Q jk) (13)

when Σk αk = 1 and mink αk ≥ 0. Similarly, we assume G L2(G) is a convex function. Our 

results for the TMLE generalize to non-convex loss functions, but the convexity of the loss 

functions allows a nicer representation for the super-learner oracle inequality, and in most 

applications a natural convex loss function is available.

We will abuse notation by also denoting Ψ(P) and D*(P) with Ψ(Q) and D*(Q, G), 

respectively. A special case is that D*(P) = D*(Q(P)) does not depend on an additional 

nuisance parameter G: for example, if O ∈ ℝ, ℳ is nonparametric, and Ψ(P) = ∫p(o)2do is 

the integral of the square of the Lebesgue density p of P, then the canonical gradient is given 

by D*(P) = 2p2 − 2Ψ(P), so that one would define Q(P) = p, and there is no G.

Second order remainder for target parameter

We define the second order remainder R2(P, P0) as follows:

van der Laan Page 12

Int J Biostat. Author manuscript; available in PMC 2018 July 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



R2(P, P0) ≡ Ψ(P) − Ψ(P0) + P0D∗(P) . (14)

We will also denote R2(P, P0) with R20((Q, G), (Q0, G0)) to indicate that it involves 

differences between Q and Q0 and G and G0, beyond possibly some additional dependence 

on P0. In our experience, this remainder R2(P, P0) can be represented as a sum of terms of 

the type ∫(H1(P) − H1(P0))(H2(P) − H2(P0))f(P, P0)dP0(o) for some functionals H1, H2 and 

f, where, typically, H1(P) and H2(P) represent functions of Q(P) or G(P). In certain classes of 

problems we have that R2(P, P0) only involves cross-terms of the type ∫(H1(Q) − H1(Q0))

(H2(G) − H2(G0))f(P, P0)dP0, so that R20((Q, G), (Q0, G0)) = 0 if either Q = Q0 or G = G0. 

In these cases, we say that the efficient influence curve is double robust w.r.t. 

misspecification of Q0 and G0:

P0D∗(P) = Ψ(P0) − Ψ(P) if G(P) = G(P0) or Q(P) = Q(P0) .

Given the above double robustness property of the canonical gradient (i.e, of the target 

parameter), if P solves P0D*(P) = 0, and either G(P) = G0 or Q(P) = Q0, then Ψ(P) = Ψ(P0). 

This allows for the construction of so called double robust estimators of ψ0 that will be 

consistent if either the estimator of Q0 is consistent or the estimator of G0 is consistent.

Support of data distribution

The support of P ∈ ℳ is defined as a set 𝒪P ⊂ ℝd so that P(𝒪P) = 1. It is assumed that for 

each P ∈ ℳ, 𝒪P ⊂ 0, τP  for some finite τP ∈ ℝ > 0
d . We define

τ = sup
P ∈ ℳ

τP, (15)

so that [0, τP] ⊂ [0, τ] for all P ∈ ℳ, where τ = ∞ is allowed, in which case 0, τ ≡ ℝ ≥ 0
d . 

That is, [0, τ] is an upper bound of all the supports, and the model ℳ states that the support 

of the data structure O is known to be contained in [0, τ].

Cadlag functions on [0, τ], supremum norm and variation norm

Suppose τ is finite, and, in fact, if τ is not finite, then we will apply the definitions below to 

a τ = τn that is finite and converges to τ. Let 𝔻 0, τ  be the Banach space of d-variate real 

valued cadlag functions (right-continuous with left-hand limits) [17]. For a f ∈ 𝔻 0, τ , let ‖ f 
‖∞ = supx∈[0,τ] | f(x) | be the supremum norm. For a f ∈ 𝔻 0, τ , we define the variation norm 

of f [20] as

‖ f ‖ν = f (0) + ∑
s ⊂ 1, …, d

∫
(0s, τs)

f (dxs, 0−s) . (16)
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For a subset s ⊂ {1, …, d}, xs = (xj : j ∈ s), x−s = (xj : j ∉ s), and the Σs in the above 

definition of the variation norm is over all subsets of {1, …, d}. In addition, xs → f(xs, 0−s)) 

is the s-specific section of x → f(x) that sets the coordinates in the compliment of s equal to 

0. Note that ‖ f ‖ν is the sum of variation norms of s-specific sections of f (including f itself). 

Therefore, one might refer to this norm as the sectional variation norm, but, for convenience, 

for the purpose of this article, we will just refer to it as variation norm. If ‖ f ‖ν < ∞, then 

we can, in fact, represent f as follows [20]:

f (x) = f (0) + ∑
s ⊂ 1, …, d

∫
0s, xs

f (dus, 0−s), (17)

where f(dus, 0−s) is the measure generated by the cadlag function us ↦ f(us, 0−s). For a M ∈ 
ℝ≥0, let

ℱν, M = { f ∈ 𝔻(0, τ):‖ f ‖ν < M}

denote the set of cadlag functions f : [0, 4] → ℝ with variation norm bounded by M.

Cartesian product of cadlag function spaces, and its component-wise operations

Let Dk[0, τ] be the product Banach space of k-dimensional (f1, …, fk) where each 

f j ∈ 𝔻 0, τ , j = 1, …, k. If f ∈ Dk[0, τ], then we define ‖ f ‖∞ = (‖ fj ‖∞ : j = 1, …, k) as a 

vector whose j-th component equals the supremum norm of the j-th component fj of f. 
Similarly we define a variation norm of f ∈ Dk[0, τ] as a vector

‖ f ‖ν = (‖ f j‖ν
: j = 1, …, k)

of variation norms. If f ∈ Dk[0, τ], then ‖ f ‖P0= (‖ fj ‖P0: j = 1, …, k) is a vector whose 

components are the L2(P0)-norms of the components of f. Generally speaking, in this paper 

any operation on a function f ∈ Dk[0, τ], such as taking a norm ‖ f ‖P0
, an expectation P0f, 

operations on a pair of functions f, g ∈ Dk[0, τ], such as f/g, f × g, max(f, g) or an inequality 

f < g, is carried out component wise: for example, max(f, g) = (max(fj, gj) : j = 1, …, k) and 

infQ ∈ 𝒬P0L1(Q) = (infQ j ∈ 𝒬 j
P0L1 j(Q j): j = 1, …, k1 + 1). In a similar manner, for an 

M ∈ ℝ > 0
k , let ℱν, M = ∏ j = 1

k ℱν, M j
 denote the cartesian product. This general notation 

allows us to present results with minimal notation, avoiding the need to continuously having 

to enumerate all the components.

Our results will hold for general models and pathwise differentiable target parameters, as 

long as the statistical model satisfies the following key smoothness assumption:
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Assumption 1. (Smoothness Assumption)

For each P ∈ ℳ, Q = Q(P) ∈ 𝔻
k1 0, τ , G = G(P) ∈ 𝔻

k2 0, τ , D∗(P) = D∗(Q, G) ∈ 𝔻 0, τ , 

L1(Q) ∈ 𝔻
k1 0, τ , L2(G) ∈ 𝔻

k2 0, τ , and Q, G, D*(P), L1(Q), L2(G) have a finite supremum and 

variation norm.

Definition of bounds on the statistical model

The properties of the super-learner and TMLE rely on bounds on the model ℳ. Our 

estimators will also allow for unbounded models by using a sieve of models for which its 

finite bounds slowly approximate the actual model bound as sample size converges to 

infinity. These bounds will be defined now:

τ = τ(ℳ) = sup
P ∈ ℳ

τ(P),

M1Q = M1Q(ℳ) = sup
Q, Q0 ∈ 𝒬

‖L1(Q) − L1(Q0)‖∞,

M2Q = M2Q(ℳ) = sup
P, P0 ∈ ℳ

‖L1(Q) − L1(Q0)‖
P0

d10(Q, Q0) 1/2 ,

M1G = M1G(ℳ) = sup
G, G0 ∈ 𝒢

‖L2(G) − L2(G0)‖∞,

M2G = M2G(ℳ) = sup
P, P0 ∈ ℳ

‖L2(G) − L2(G0)‖
P0

d20(G, G0) 1/2 ,

M
D∗ = M

D∗(ℳ) = sup
P ∈ ℳ

‖D∗(P)‖∞ .

(18)

Note that M1Q, M2Q ∈ ℝ ≥ 0
k1  and M1G, M2G ∈ ℝ ≥ 0

k2  are defined as vectors of constants, a 

constant for each component of Q and G, respectively. The bounds M1Q, M2Q guarantee 

excellent properties of the cross-validation selector based on the loss-function L1(Q) (e.g., 

[11, 13]). A bound on M2Q shows that the loss-based dissimilarity d01(Q, Q0) behaves as a 

square of a difference between Q and Q0. Similarly, the bounds M1G, M2G control the 

behavior of the cross-validation selector based on the loss function L2(G).

Bounded and Unbounded Models

We will call the model ℳ bounded if it is a model for which τ < ∞ (i.e., universally 

bounded support), M1Q, M2Q, M1G, M2G, M
D∗ are finite. In words, in essence, a bounded 

model is a model for which the support and the supremum norm of Q(P), G(P), L1(Q), L2(G)
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and D*(Q, G) are uniformly (over the model) bounded. Any model that is not bounded will 

be called an unbounded model.

Sequence of bounded submodels approximating the unbounded model

For an unbounded model ℳ, our initial estimators (Qn, Gn) of (Q0, G0) are defined in terms of 

a sequence of bounded submodels ℳn ⊂ ℳ that are increasing in n and approximate the 

actual model ℳ as n converges to infinity. The counterparts of the above defined universal 

bounds on ℳ applied to ℳn are denoted with τn, M1Q,n, M2Q,n, M1G,n, M2G,n, M
D∗, n

. The 

conditions of our general asymptotic efficiency Theorem 1 will enforce that these bounds 

converge slowly enough to infinity (in the case the corresponding true model bound is 

infinity). This model ℳn could be defined as the largest subset of ℳ for which these latter 

bounds apply. By Assumption 1, with this choice of definition of ℳn, for any P0 ∈ ℳ, there 

exists an N0 = N(P0), so that for n > N0 P0 ∈ ℳn. Either way, we assume that ℳn is defined 

such that the latter is true.

Let 𝒬n = Q(ℳn) and 𝒢n = G(ℳn) be the parameter spaces of Q and G under model ℳn, and 

let 𝒬n = Q(ℳn) and 𝒢n = G(ℳn) be the parameter spaces of Q and G. We define the 

following true parameters corresponding with this model ℳn:

Q0n = arg min
Q ∈ 𝒬n

P0L1(Q)

G0n = arg min
G ∈ 𝒢n

P0L2(G) .

We will assume that ℳn is chosen so that Qk1 + 1(P0n) = Qk1 + 1(P0) and 

Gk2 + 1(P0n) = Gk2 + 1(P0), where P0n = arg maxP∈ℳn
P0log dP

dP0
. That is, our sieve is not 

affecting the estimation of the “easy” nuisance parameters Q(k1 + 1)0 and G(k2 + 1)0. Note that 

for n > N0, we have Q0n = Q0 and G0n = G0.

In this paper our initial estimators of Q0 and G0 are always enforced to be in the parameter 

spaces of this sequence of models ℳn, but if the model ℳ is already bounded, then one can 

set ℳn = ℳ for all n. However, even for bounded models ℳ, the utilization of a sequence of 

submodels ℳn with stronger universal bounds than ℳ could result in finite sample 

improvements (e.g., if the universal bounds on ℳ are very large relative to sample size and 

the dimension of the data).
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4 Highly adaptive Lasso estimator of Nuisance parameters

Let M1 < ∞ be given. Our M1-specific HAL-estimator of Q0 is defined as the minimizer of 

the empirical risk PnL1(Q) over Q ∈ 𝒬n for which L1(Q) has a variation norm bounded by M1 

(see eq. (21)). The rate of convergence of a minimum empirical risk estimator is driven by 

the rate of convergence of the covering number of the parameter space over which one 

minimizes (e.g., [19]). This explains why the rate of convergence of the covering number of 

this set of functions L1(Q) defines a minimal rate of convergence for this HAL-estimator 

(while M1 will be selected with the cross-validation selector). Similarly, this applies to our 

HAL-estimator of G0. In the next subsection we define the relevant covering numbers and 

their rates α1, α2, and establish an upper bound on them. Subsequently, we establish in 

Lemma 1 the minimal rate of convergence of the HAL-estimator in terms of these rates α1, 

α2.

4.1 Upper bounding the entropy of the parameter space for the HAL-estimator

We remind the reader that a covering number N(ε, ℱ, L2(Λ)) is defined as the minimal 

number of balls of size ε w.r.t. L2(Λ)-norm that are needed to cover the set ℱ of functions 

embedded in L2(Λ). Let α1 ∈ ℝ ≥ 0
k1  and α2 ∈ ℝ ≥ 0

k2  be such that for fixed M1, M2

sup
Λ

log1/2(N(ε, L1(𝒬n, M1
), L2(Λ)) = O(ε

−(1 − α1)
)

sup
Λ

log1/2(N(ε, L2(𝒬n, M2
), L2(Λ)) = O(ε

−(1 − α2)
),

(19)

where L1(𝒬n, M1
) = {L1(Q):Q ∈ 𝒬n, M1

}, L2(𝒢n, M2
) = {L1(G):G ∈ 𝒢n, M2

}, and

𝒬n, M1
≡ {Q ∈ 𝒬n:‖L1(Q)‖

ν
< M1}

𝒢n, M2
≡ {G ∈ 𝒬n:‖L2(G)‖

ν
< M2} .

(20)

The minimal rates of convergence of our HAL-estimator of Q0 and G0 are defined in terms 

of α1 and α2, respectively.

By eq. (17) it follows that any cadlag function with finite variation norm can be represented 

as a difference of two bounded monotone increasing functions (i.e., cumulative distribution 

function). The class of d-variate monotone increasing/cumulative distribution functions is a 

convex hull of d-variate indicator functions, which is again concretely implied by the 

representation eq. (17) by noting that ∫0

x
d f (u) = ∫ I(u ≤ x)d f (u) Thus, ℱν, M consists of a 

difference of two convex hulls of d-variate indicator functions. By Theorem 2.6.9 in [19], 

which maps the covering number of a set of functions into a covering number of the convex 
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hull of these functions, for a fixed M < ∞, we have that the universal covering number of 

ℱν, M is bounded as follows:

sup
Λ

log1/2(N(ε, ℱν, M, L2(Λ)) = O(ε−(1 − α(d))),

where α(d) = 2/(d + 2). Let d1 ∈ ℕ > 0
k1  be the vector of integers indicating the dimension of 

the domain of Q = (Q1, …, Qk1
), and similarly, let d2 ∈ ℝ > 0

k2  be the vector of integers 

indicating the dimension of the domain of G = (G1, …, Gk2
). Since L1(𝒬n, M1

) ⊂ ℱν, M1
 with d 

= d1, L2(𝒢n, M2
) ⊂ ℱν, M2

 with d = d2, we have that α1 ≥ α(d1) and α2 ≥ α(d2).

4.2 Minimal rate of convergence of the HAL-estimator

Lemma 1 below proves that the minimal rates rQ, 1:k1
(n) ∈ ℝ

k1 and rG, 1:k2
(n) ∈ ℝ

k2 of our 

HAL-estimator of Q0 and G0 w.r.t. the loss-based dissimilarities d01(Q, Q0) and d02(G, G0) 

are given by:

rQ(n) = rQ, 1:k1
(n) = n

−(1/2 + α1/4)

rG(n) = rG, 1:k2
(n) = n

−(1/2 + α2/4)
.

Let rQ, k1 + 1 and rG, k2 + 1 be the rates of the simple estimators Q̂k1 + 1 and Ĝk2 + 1 of 

Q(k1 + 1)0 and G(k2 + 1)0, respectively. This defines rQ(n) ∈ ℝ
k1 + 1

 and rG(n) ∈ ℝ
k2 + 1

.

Lemma 1—For a given vector M ∈ ℝ ≥ 0
k1  of constants, let 

𝒬n, M ⊂ Q ∈ 𝒬n:‖L1(Q)‖
ν

≤ M ⊂ ℱν, M be the set of all functions in the parameter space 𝒬n

for Q0n for which the variation norm of its loss is smaller than M < ∞. (In this definition one 

can also incorporate some extra M-constraints, as long as 𝒬n, M = ∞ = 𝒬n.) Let Q0n
M ∈ 𝒬n, M

be so that P0L1(Q0n
M ) = infQ ∈ 𝒬n, M

P0L1(Q). Assume that for a fixed M < ∞,

M2Q, M ≡ lim sup
n ∞

sup
Q ∈ 𝒬n, M

‖L1(Q) − L1(Q0n
M )‖

P0

{d10(Q, Q0n
M )}1/2 < ∞ .

Consider an estimator Qn
M for which
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PnL1(Qn
M) = inf

Q ∈ 𝒬n, M

PnL1(Q) + rn, (21)

where rn = oP(n−1/2). then

0 ≤ d01(Qn
M, Q0n

M ) ≤ − (Pn − P0){L1(Qn
M) − L1(Q0n

M )} + rn, (22)

and

d01(Qn
M, Q0n

M ) = OP(rQ(n)) + rn .

Proof—We have

0 ≤ d01(Qn
M, Q0n

M ) = P0{L1(Qn
M) − L1(Q0n

M )}

= − (Pn − P0){L1(Qn
M) − L1(Q0n

M )} + Pn{L1(Qn
M) − L1(Q0n

M )}

≤ − (Pn − P0){L1(Qn
M) − L1(Q0n

M )} + rn,

which proves eq. (22). Since L1(Qn
M) − L1(Q0n

M ) falls in a P0-Donsker class ℱν, M, it follows 

that the right-hand side is OP(n−1/2), and thus d01(Qn
M, Q0n

M ) = OP(n−1/2). Since M2,Q,M < ∞, 

this also implies that ‖L1(Qn
M) − L1(Q0n

M )‖
P0

2 = OP(n−1/2). By empirical process theory we 

have that n1/2(Pn − P0)fn →p 0 if fn falls in a P0-Donsker class with probability tending to 1, 

and P0 f n
2

p 0 as n → ∞. Applying this to f n = L1(Qn
M) − L1(Q0n

M ) shows that 

(Pn − P0)(L1(Qn
M) − L(Q0n

M )) = oP(n−1/2), which proves d01(Qn
M, Q0n

M ) = oP(n−1/2).

We now apply Lemma 7 with ℱn = {L1(Q) − L1(Q0n
M ):Q ∈ 𝒬n, M}, α = α1 (see eq. (19)), 

envelope bound Mn = M and r0(n) = n−1/4, which proves that

n1/2(Pn − P0) f n = OP(n
−α1/4

) .

This proves d01(Qn
M, Q0n

M ) = OP(n
−(1/2 + α1/4)

) + rn □
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5 Super-learning: HAL-estimator tuning the variation norm of the fit with 

cross-validation

Defining the library of candidate estimators

For an M ∈ ℝ > 0
k1 , let Q̂M :ℳnonp 𝒬n, M ⊂ ℱν, M be the HAL-estimator eq. (21) and let 

Qn, M = Q̂M(Pn). By Lemma 1 we have d01(Qn, M = Q̂M(Pn), Q0n
M ) = OP(rQ

2 (n)), assuming that 

the numerical approximation error rn is of smaller order. Let 𝒦1, n, ν be an ordered collection 

M1
n < M2

n < … < MK1, n, ν
 of k1-dimensional constants, and consider the corresponding 

collection of K1,n,v candidate estimators Q̂M with M ∈ 𝒦1, n, ν. We impose that this index set 

𝒦1, n, ν is increasing in n such that limsupn ∞MK1, n, ν
 equals supP ∈ ℳ‖L1(Q(P))‖

ν
, so that 

for any P ∈ ℳ, there exists an N(P) so that for n > N(P), we will have that 

MK1, n, ν
> ‖L1(Q(P))‖

ν
. Note that for all M ∈ 𝒦1, n, ν with M > ‖L1(Q0)‖

ν
, we have that 

d01(Q̂M(Pn), Q0) = OP(rQ
2 (n)). In addition, let Q̂ j:ℳnonp 𝒬n, j ∈ 𝒦1, n, a be an additional 

collection of K1,n,a estimators of Q0. For example, these candidate estimators could include 

a variety of parametric model as well as machine learning based estimators. This defines an 

index set 𝒦1, n = 𝒦1, n, ν ∪ 𝒦1, n, a representing a collection of K1n = K1,n,ν + K1,n,a 

candidate estimators {Q̂k:k ∈ 𝒦1n}.

Super Learner

Let Bn ∈ {0, 1}n denote a random cross-validation scheme that randomly splits the sample 

{O1, …, On} in a training sample {Oi : Bn(i) = 0} and validation sample {Oi : Bn(i) = 1}. 

Let qn = ∑i = 1
n Bn(i)/n denote the proportion of observations in the validation sample. We 

impose throughout the article that q < qn ≤ 1/2 for some q > 0 and that this random vector Bn 

has a finite number V possible realizations for a fixed V < ∞. In addition, Pn, Bn
1 , Pn, Bn

0  will 

denote the empirical probability distributions of the validation and training sample, 

respectively. Thus, the cross-validated risk of an estimator Q̂:ℳnonp 𝒬n of Q0 is defined as 

EBn
Pn, Bn

1 L1(Q̂(Pn, Bn
0 )).

We define the cross-validation selector as the index

k1n = K̂1(Pn) = arg min
k ∈ 𝒦1n

EBn
Pn, Bn

1 L1(Q̂k(Pn, Bn
0 ))

that minimizes the cross-validated risk EBn
PnL1(Q̂k(Pn, Bn

0 )) over all choices k ∈ 𝒦1n of 

candidate estimators. Our proposed super-learner is defined by
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Qn = Q̂(Pn) ≡ EBn
Q̂k1n

(Pn, Bn
0 ) . (23)

The following lemma proves that the super-learner Q̂(Pn) converges to Q0 at least at the rate 

rQ(n) the HAL-estimator converges to Q0:d01(Q̂(Pn), Q0) = OP(rQ(n)). This lemma also shows 

that the super-learner is either asymptotically equivalent with the oracle selected candidate 

estimator, or achieves the parametric rate 1/n of a correctly specified parametric model.

Lemma 2

Recall the definition of the model bounds M1Q,n, M2Q,n eq. (18), and let 

C(M1, M2, δ) ≡ 2(1 + δ)2(2M1/3 + M2
2/δ).

For any fixed δ > 0,

d01(Qn, Q0n) ≤ (1 + 2δ)EBn
min

k ∈ 𝒦1n
d01(Q̂k(Pn, Bn

0 ), Q0n)

+ OP C(M1Q, n, M2Q, n, δ)
logK1n

n .

If for each fixed δ > 0, C(M1Q,n, M2Q,n, δ) log K1n/n divided by 

EBn
mink d01(Q̂k(Pn, Bn

0 ), Q0n) is oP(1), then

d01(Q̂(Pn), Q0n)

EBn
mink d01(Q̂k(Pn, Bn

0 ), Q0n)
− 1 = oP(1) .

If for each fixed δ > 0, EBn
mink d01(Q̂k(Pn, Bn

0 ), Q0n) = OP(C(M1Q, n, M2Q, n, δ)logK1n/n), then

d01(Q̂(Pn), Q0n) = OP
C(M1n, M2n, δ)logK1n

n .

Suppose that for each finite M, the conditions of Lemma 1 hold with negligible numerical 

approximation error rn, so that d01(Qn, M = Q̂M(Pn), Q0n
M ) = OP(rQ

2 (n)). Let λ1 ∈ ℝ > 0
k1  be 

chosen so that rQ
2 (n) = O(n

−λ1). For each fixed δ > 0, we have

d01(Qn, Q0n) = OP(n
−λ1) + OP C(M1Q, n, M2Q, n, δ)

logK1n
n . (24)
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The proof of this lemma is a simple corollary of the finite sample oracle inequality for cross-

validation [11, 13, 21, 33, 34], also presented in Lemma 5 in Section A of the Appendix. It 

uses the convexity of the loss function to bring the EBn
 inside the loss-based dissimilarity.

In the Appendix we present the analogue super-learner eq. (37) of G0 and its corresponding 

Lemma 6.

6 One-step CV-HAL-TMLE

Cross-validated TMLE (CV-TMLE) robustifies the bias-reduction of the TMLE-step by 

selecting : based on the cross-validated risk [5, 15]. In the next subsection we define the CV-

TMLE. In this subsection we propose a particular type of local least favorable submodel that 

separately updates the initial estimator of Qj0 for each j = 1, …, k1. Due to this choice, in 

subsection 2 we now easily establish that the CV-TMLE of Q0 converges at the same rate to 

Q0 as the initial estimator, which is important for control of the second order remainder in 

the asymptotic efficiency proof of the CV-TMLE. In subsection 3 we establish the 

asymptotic efficiency of the CV-TMLE.

6.1 The CV-HAL-TMLE

Definition of one-step CV-HAL-TMLE for general local least favorable 

submodel—Let L1(Q) ≡ ∑ j = 1
k1 + 1

L1 j(Q j) be the sum loss-function. For a given (Q, G), let 

{Qε:ε} ⊂ 𝒬n ⊂ 𝒬 be a parametric submodel through Q at ε = 0 such that the linear span of 

d
dε L1(Qε) at ε = 0 includes the canonical gradient D*(Q, G). Let Q̂:ℳnonp 𝒬n and 

Ĝ:ℳnonp 𝒢n be our initial estimators of Q0 = (Q0, Q0, k1 + 1) and G0 = (G0, G0, k2 + 1. We 

recommend defining the initial estimators Q̂ and Ĝ of Q0 and G0 to be HAL-super-learners as 

defined by eqs (23) and (37), so that d10(Q̂(Pn), Q0n) = OP(rQ
2 (n)) and 

d20(Ĝ(Pn), G0n) = OP(rG
2 (n)). Given a cross-validation scheme Bn ∈ {0, 1}n, let 

Qn, Bn
= Q̂(Pn, Bn

0 ) ∈ 𝒬n be the estimator Q̂ applied to the training sample Pn, Bn
0 . Similarly, let 

Gn, Bn
= Ĝ(Pn, Bn

0 ). Let {Qn, Bn, ε:ε} be the above submodel with (Q, G) = (Qn, Bn
, Gn, Bn

)

through Qn, Bn
 at ε = 0. Let

εn = arg min
ε

EBn
Pn, Bn

1 L(Qn, Bn, ε)

be the MLE of ε minimizing the cross-validated empirical risk. This defines 

Qn, Bn
∗ = Qn, Bn, εn

 as the Bn-specific targeted fit of Q0. The one-step CV-TMLE of ψ0 is 

defined as
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ψn
∗ = EBn

Ψ(Qn, Bn
∗ ) .

One-step CV-HAL-TMLE solves cross-validated efficient score equation—Our 

efficiency Theorem 1 assumes that

EBn
Pn, Bn

1 D∗(Qn, Bn
∗ , Gn, Bn

) = oP(n−1/2) . (25)

That is, it is assumed that the one-step CV-TMLE already solves the cross-validated efficient 

influence curve equation up till an asymptotically negligible approximation error. By 

definition of εn we have that it solves its score equation EBn
Pn, Bn

1 d
dεn

L(Qn, Bn, εn
) = 0, which 

provides a basis for verifying eq. (25). As formalized by Lemma 13 in the Appendix D, for 

our choice of n−(1/4+)-consistent initial estimators Qn, Gn of Q0, G0, a one-step CV-TMLE 

will satisfy eq. (25) for one-dimensional local least favorable submodels under weak 

regularity conditions. We believe that such a result can be proved in great generality for 

arbitrary (also multivariate) local least favorable submodels. Instead, below we propose a 

particular class of multivariate local least favorable submodels eq. (26) for which we 

establish eq. (25) under regularity conditions. In (van der Laan and Gruber, 2015) it is shown 

that one can always construct a so called universal least favorable submodel through Q with 

a one dimensional ε so that d
dε L1(Qε) = D∗(Qε, G) at each ε so that 

EBn
Pn, Bn

1 D∗(Qn, Bn, εn
∗ , Gn, Bn

) = 0(exactly), independent of the properties of the initial 

estimator (Qn, Gn).

One-step CV-HAL-TMLE preserves fast rate of convergence of initial estimator

—Our efficiency Theorem 1 also assumes that the updated estimator Qn, Bn
∗  satisfies for each 

split Bnd01(Qn, Bn
∗ , Q0) = oP(n−1/2). This is generally a very reasonable condition given that 

d01(Qn, Bn
, Q0) = OP(n

−λ1) for a specified λ1 > 1/2. Our proposed class of local least 

favorable submodels eq. (26) below guarantees that the rate of convergence of the initial 

estimator Qn, Bn
 is completely preserved by Qn, Bn

∗ , so that this condition is automatically 

guaranteed to hold.

A class of multivariate local least favorable submodels that separately 
updates each nuisance parameter component—One way to guarantee that 

d01(Qn, Bn
∗ , Q0) = oP(n−1/2) is to make sure that the updated estimator Qn, Bn

∗  converges as fast 

to Q0 as the initial estimator Qn, Bn
. For that purpose we propose a k1 + 1-dimensional local 

least favorable submodel of the type
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Qε = (Q1, ε1
, …, Qk1 + 1, εk1 + 1

)such that d
dε j

L1 j(Q j, ε j
)

ε j = 0
= D j

∗(Q, G), (26)

for j = 1, …, k1 + 1, and where D∗(Q, G) = ∑ j = 1
k1 + 1

D j
∗(Q, G). By using such a submodel we 

have Q j, n, Bn
∗ = Q j, n, Bn, εn( j) and εn( j) = arg minε EBn

Pn, Bn
1 L1 j(Q j, n, Bn, ε). Thus, in this case 

Q j, n, Bn
 is updated with its own εn(j), j = 1, …, k1 + 1. The advantage of such a least 

favorable submodel is that the one-step update of Q j, n, Bn
 is not affected by the statistical 

behavior of the other estimators Ql, n, Bn
, l ≠ j. On the other hand, if one uses a local least 

favorable submodel with a single ε, the MLE εn is very much driven by the worst 

performing estimator Q j, n, Bn
. Lemma 3 shows that, by using such a k1 + 1-variate local least 

favorable submodel satisfying eq. (26), the rate of convergence of the initial estimator Q j, n is 

fully preserved by the TMLE-update Q j, n, Bn
∗  (see Lemma 3 below).

How to construct a local least favorable submodel of type eq. (26)—A general 

approach for constructing such a k1 + 1-variate least favorable submodel is the following. 

Let D j
∗(P) be the efficient influence curve at a P for the parameter Ψ j, P:ℳ ℝ defined by 

Ψj,P(P1) = Ψ(Q−j(P), Qj(P1)) that sets all the other components of Ql with l ≠ j equal to its 

true value under P, j = 1, …, k1 +1. Then, it follows immediately from the definition of 

pathwise derivative that

D∗(P) ∑
j = 1

k1 + 1
D j

∗(P),

so that, D*(P) is an element of the linear span of {D j
∗(P): j = 1, …, k1 + 1}. Let 

{Q j, ε( j):ε( j)} ⊂ 𝒬 jn be a one-dimensional submodel through Qj so that

d
dε( j)L1 j(Q j, ε( j)) ε( j) = 0

= D j
∗(Q, G), j = 1, …, k1 + 1.

That is, {Qj,ε(j) : ε(j)} is a local least favorable submodel at (Q, G) for the parameter 

Ψ j, Q:ℳ ℝ, j = 1, …, k1 + 1. Now, define (Qε:ε) ⊂ 𝒬n by Qε = (Qj,ε(j) : j = 1, …, k1 + 1). 

Then, we have

d
dεL(Qε)

ε = 0
= (D j

∗(Q, G): j = 1, …, k1 + 1)⊤,
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so that the submodel is indeed a local least favorable submodel.

Lemma 14 provides a sufficient set of minor conditions under which the one-step-HAL-CV-

TMLE using a local least favorable submodel of the type eq. (26) will satisfy eq. (25). 

Therefore, the class of local least favorable submodels eq. (26) yields both crucial conditions 

for the HAL-CV-TMLE: it solves eq. (25) and it preserve the rate of convergence of the 

initial estimator.

6.2 Preservation of the rate of initial estimator for the one-step CV-HAL-TMLE using eq. 
(26)

Consider the submodel {Qε : ε} of the type eq. (26) presented above. Given an initial 

estimator Q̂:ℳnonp 𝒬n, recall the definition Qn, Bn, ε = Q̂ε(Pn, Bn
0 ) as the fluctuated version 

of the initial estimator applied to the training sample, and εn = arg minε EBn
Pn, Bn

1 L1(Qn, Bn, ε). 

We want to show that Qn, Bn, εn
 converges to Q0 at the same rate as the initial estimator Qn, Bn

(and thus also Q̂(Pn)). The following lemma establishes this result and it is an immediate 

consequence of the oracle inequality of the cross-validation selector for the loss function L1j, 

applied to the set of candidate estimators Pn Q jn, ε( j) = Q̂ j, ε( j)(Pn) indexed by ε(j), for each 

j = 1, …, k1 +1.

Lemma 3—Let εn = arg minε EBn
Pn, Bn

1 L1(Qn, Bn, ε). We have

EBn
d01(Q̂εn

(Pn, Bn
0 ), Q0n) ≤ (1 + 2δ) min EBn

d01(Q̂ε(Pn, Bn
0 ), Q0n) + OP

C(M1Q, n, M2Q, n, δ)logK1n
nq .

By convexity of the loss function L1(Q), this implies

d01(EBn
Q̂εn

(Pn, Bn
0 ), O0n) ≤ (1 + 2δ) min EBn

d01(Q̂ε(Pn, Bn
0 ), Q0n) + OP

C(M1Q, n, M2Q, n, δ)logK1n
nq .

We have

min
ε

EBn
d01(Q̂ε(Pn, Bn

0 ), Q0n) ≤ EBn
d01(Q̂(Pn, Bn

0 ), Q0n) .

Thus, if for some λ1 > 0 C(M1Q, n, M2Q, n, δ)logK1n/(nq) = O(n
−λ1) and for each 

Bn d01(Q̂(Pn, Bn
0 ), Q0n) = OP(n

−λ1), then

d01(EBn
Qn, Bn, εn

, Q0n) = OP(n
−λ1) .
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It then also follows that for each Bn, d01(Q̂εn
(Pn, Bn

0 ), Q0n) = OP(n
−λ1).

6.3 Efficiency of the one-step CV-HAL-TMLE

We have the following theorem.

Theorem 1—Consider the above defined corresponding one-step CV-TMLE 

ψn
∗ = EBn

Ψ(Qn, Bn, εn
) of Ψ(Q0).

Initial estimator conditions: Consider the HAL-super-learners Q̂(Pn) and Ĝ(Pn) defined by 

eqs (23) and (37), respectively, and, recall that we are given simple estimators Q̂k1 + 1 and 

Ĝk2 + 1 of Q0, k1 + 1 and G0, k2 + 1. Let λ1 and λ2 be chosen so that rQ(n) = O(n
−λ1) and 

rG(n) = O(n
−λ2). Assume the conditions of Theorem 2 and Theorem 6 so that we have

d01(Q̂(Pn), Q0) = OP(n
−λ1(1:k1)

) + OP(C(M1Q, n, M2Q, n, δ)logK1n/n)

d02(Ĝ(Pn), G0) = OP(n
−λ2(1:k2)

) + OP(C(M1G, n, M2G, n, δ)logK2n/n),

where λ1(1 : k1) > 1/2 and λ2(1 : k2) > 1/2. Let Q̂ = (Q̂, Q̂k1 + 1) and Ĝ = (Ĝ, Ĝk2 + 1) be the 

corresponding estimators of Q0 and G0, respectively.

“Preserve rate of convergence of initial estimator”-condition: In addition, assume that 

either (Case A) the CV-TMLE uses a local least favorable submodel of the type eq. (26) so 

that Lemma 3 applies, or (Case B) assume that for each split Bn d01(Qn, Bn
∗ , Q0) = OP(n

−λ1
∗
)

for some λ1
∗ > 1/2.

Efficient influence curve score equation condition and second order remainder 

condition: Define f n, ε = D∗(Q̂ε(Pn, Bn
0 ), Gn, Bn

) − D∗(Q0, G0) and the class of functions 

ℱn = { f n, ε:ε}. Assume

EBn
Pn, Bn

1 D∗(Qn, Bn, εn
, Gn, Bn

) = oP(n−1/2), (27)

‖D∗(Qn, Bn
∗ , Gn, Bn

) − D∗(Q0, G0)‖
P0

= oP(r
D∗, n

) for r
D∗, n

= o(1), (28)
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EBn
R20((Qn, Bn

∗ , Gn, Bn
), (Q0, G0)) = oP(n−1/2), (29)

max (M1Q, n, M2Q, n
2 )logK1n

n = O(n
−λ1), (30)

max (M1G, n, M2G, n
2 )logK2n

n = O(n
−λ1), (31)

sup
Λ

N(εM
D∗, n

, ℱn, L2(Λ)) < Kε− p for a K < ∞, p < ∞ . (32)

In Case A, for verification of assumption eq. (27) one could apply Lemma 14.

In Case A, for verification of the two assumptions eqs (28) and (29) one can use that for 

each of the V realizations of Bn, d0(Qn, Bn
∗ , Q0) = OP(n

−λ1) and d02(Gn, Bn
, G0) = OP(n

−λ2).

In Case B, for verification of the latter two assumptions eqs (28) and (29) one can use that 

for each of the V realizations of Bn, d0(Qn, Bn
∗ , Q0) = OP(n

−λ1
∗
) and d02(Gn, Bn

, G0) = OP(n
−λ2).

Then, ψn
∗ = EBn

Ψ(Qn, Bn, εn
) is asymptotically efficient:

ψn
∗ − ψ0 = (Pn − P0)D∗(Q0, G0) + oP(n−1/2) . (33)

Condition eq. (32) will practically always trivially hold for p = k1 + 1 equal to the dimension 

of ε: note that this is even true for unbounded models due to the normalizing constant 

M
D∗, n

. We already discussed the crucial condition eq. (27) in our subsection defining the 

CV-TMLE. Conditions eqs (30) and (31) are easily satisfied by controlling the speed at 

which the model bounds M1Q,n, M2Q,n, M1G,n, M2G,n can converge to infinity, and are 

always true for bounded models (as long as the size of the library of the super-learner 

behaves as a polynomial power of sample size). For bounded models ℳ, condition eq. (28) 

will typically hold with r
D∗, n

= n−λ and λ equal to the minimum of the components of λ1/2 

and λ2/2: i.e., the efficient influence curve estimator will converge to its true counterpart as 

fast as the slowest converging nuisance parameter estimator. If the model ℳ is unbounded so 
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that the model bounds of the sieve ℳn will converge to infinity, then eq. (28) will hold with 

r
D∗, n

= n−λMn for some Mn converging to infinity (e.g., Mn = M
D∗, n

). So, in the latter case 

one has to control the rate at which the model bounds of the sieve ℳn, such as the supremum 

norm bound M
D∗, n

 for the efficient influence curve, converge to infinity. Finally, the crucial 

condition eq. (29) will easily hold for bounded models ℳ if this slowest rate λ is larger than 

1/4, which we know to be true for the HAL-estimator and its super-learner. For unbounded 

models, this condition eq. (29) will put a serious brake on the speed as which the model 

bounds of ℳn can converge to infinity.

Proof—By assumptions eqs (30) and (31), we have

d0((Q̂(Pn, Bn
0 ), Ĝ(Pn, Bn

0 ), (Q0, G0)) = OP(n
−λ1, n

−λ2) .

Consider Case A. Lemma 3 proves that under these same assumptions eqs (30), (31), we 

also have, for each Bn, d01(Qn, Bnεn
, Q0n) = OP(n

−λ1). This proves that for each Bn, 

d0((Qn, Bn
∗ = Qn, Bn, εn

, Gn, Bn
), (Q0, G0)) = OP(n

−λ1, n
−λ2). For Case B, we replace in latter 

expression λ1 by λ1
∗. Suppose n > N0 so that Q0n = Q0 and G0n = G0. By the identity 

Ψ(Qn, Bn
∗ ) − Ψ(Q0) = − P0D∗(Qn, Bn

∗ , Gn, Bn
) + R20((Qn, Bn

∗ , Gn, Bn
), (Q0, G0)), we have

EBn
Ψ(Qn, Bn

∗ ) − Ψ(Q0) = − EBn
P0D∗(Qn, Bn

∗ , Gn, Bn
) + EBn

R20((Qn, Bn
∗ , Gn, Bn

), (Q0, G0)) .

Combining this with eq. (27) yields the following identity:

ψn
∗ − Ψ(Q0) = EBn

Ψ(Qn, Bn
∗ ) − Ψ(Q0)

= EBn
(Pn, Bn

1 − P0)D∗(Qn, Bn
∗ , Gn, Bn

)

+ EBn
R20((Qn, Bn

∗ , Gn, Bn
), (Q0, G0)) + oP(n−1/2) .

By assumption eq. (29) we have that EBn
R20((Qn, Bn

∗ , Gn, Bn
), (Q0, G0)) = oP(n−1/2). Thus, we 

have shown

Ψ(Qn
∗) − Ψ(Q0) = EBn

(Pn, Bn
1 − P0)D∗(Qn, Bn

∗ , Gn, Bn
) + oP(n−1/2) .

We now note
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EBn
(Pn, Bn

1 − P0)D∗(Qn, Bn
∗ , Gn, Bn

) = EBn
(Pn, Bn

1 − P0)D∗(Q0, G0)

+ EBn
(Pn, Bn

1 − P0){D∗(Qn, Bn
∗ , Gn, Bn

) − D∗(Q0, G0)}

= (Pn − P0)D∗(Q0, G0) + EBn
(Pn, Bn

1 − P0){D∗(Qn, Bn
∗ , Gn, Bn

) − D∗(Q0, G0)} .

Thus, it remains to prove that EBn
(Pn, Bn

1 − P0){D∗(Qn, Bn
∗ , Gn, Bn

) − D∗(Q0, G0)} = oP(n−1/2). 

For this we apply Lemma 10 with f n, ε = D∗(Q̂ε(Pn, Bn
0 ), Gn, Bn

) − D∗(Q0, G0), conditional on 

Pn, Bn
0 , and ℱn = { f n, ε:ε}. By assumption eq. (28), there exists a rate r

D∗, n
= o(1) so that 

‖ f n, εn
‖

P0
= OP(r

D∗, n
), where (e.g., for Case A) this rate will be determined based upon 

d0((Qn, Bn
∗ , Gn, Bn

)(Q0, G0)) = OP(n
−λ1, n

−λ2). Note also that the envelope of ℱn satisfies 

‖Fn‖Λ ≤ M
D∗, n

 for any measure Λ (see eq. (18)). Since ε is p-dimensional for some integer 

p, the entropy of ℱn easily satisfies supΛ N(ε ‖ Fn ‖Λ, ℱn, L2(Λ)) = O(ε−p), which is 

assumed to hold by condition eq. (32). Application of Lemma 10 proves now that, if 

r
D∗, n

= o(1), then, given Pn, Bn
0 ,

(Pn, Bn
1 − P0) f n, εn

= oP(n−1/2) .

This proves also that EBn
(Pn, Bn

1 − P0) f n, εn
= oP(n−1/2). This completes the proof. □

7 Example: Treatment specific mean

We will now apply Theorem 1 to the example introduced in Section 2. We have the 

following sieve model bounds (van der Laan et al., 2004): M1Q, n = O(logδn
−1); 

M2Q, n = O(1/δn); M1G, n = O(logδn
−1); M2G, n = O(1/δn); M

D∗, n
= O(1/δn).

Since the parameter space 𝒬1n consists of the cadlag functions with bounded variation 

norms, without any further restrictions beyond the global bound δn, we can select the 

entropy quantities for 𝒬1 as follows: α1 = α(d1) = 2/(d1 + 2), where d1 = d−2 is the 

dimension of W. Similarly, if 𝒢n consists of all cadlag functions of dimension d2, without 

further meaningful restrictions beyond δn, then we can select the entropy quantities for 𝒢n as 

α2 = α(d2) = 2/(d2 + 2). If the model 𝒢 enforces more meaningful restrictions than that A 
only depends on W through a subset of W of dimension d2, then α2 can be replaced by a 

sharper upper bound than α(d2). We already established that condition eq. (27) in Theorem 1 

holds exactly. Condition eq. (32) trivially holds.

van der Laan Page 29

Int J Biostat. Author manuscript; available in PMC 2018 July 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Verification of eqs (30) and (31)

Let Qn ∈ 𝒬1n be a super-learner of Q0 of the type presented in eq. (23). Similarly, let Gn ∈ 𝒢n

be such a super-learner of G0 as presented in eq. (37). Suppose that 

max (M1Q, nM2Q, n
2 )logK1n/n = O(n

−λ(d1)
) and max (M1G, nM2G, n

2 )logK2n/n = O(n
−λ(d2)

), where 

λ(d) = 1/2+ α(d)/4. Then, by Lemma 2 and Lemma 6, we have d10, 1(Qn, Q0) = OP(n
−λ(d1)

)

and d02(Gn, G0) = OP(n
−λ(d2)

). Plugging in the above bounds for M1Q,n, M2Q,n, M1G,n, 

M2G,n, it follows that it suffices to select δn so that 

δn
−1 = O(n

1/2 − 1/2λ(d1)
( max (logK1n, logK2n))−1/2). (Improvements can be obtained by 

selecting a separate δ1n for truncating Q and δ2n for truncating G.) Let Kn = max(K n, K2n) 

and impose that logKn = O(n
1/2 − α(d1)/2

). Then, it follows that this bound for δn
−1 is larger 

than n
α(d1)/6

, so that this constraint on δn is dominated by our later constraint given below 

δn
−1 = o(n

α(d1)/6
).

Above we showed that if δn
−1 = O(n

1/2 − 1/2λ(d1)
( max (logK1n, logK2n))−1/2), then the two 

super-learners Qn, Bn
 and Gn, Bn

 of Q0 and G0 based on the training sample Pn, Bn
0  converge at 

the rate n
−λ(d1)

 and n
−λ(d2)

 w.r.t the loss-based dissimilarities d10,1 and d02, respectively. By 

Lemma 3, under the same conditions stated above for d01(Qn, Q0) = OP(n
−λ(d1)

), the TMLE 

update Qn, Bn
∗  converges at this same rate: for each split Bn, we have 

d01(Qn, Bn
∗ , Q0) = OP(n

−λ(d1)
).

Verification of eq. (28)

Using straightforward algebra and using the triangle inequality for a norm, we obtain

‖D∗(Qn, Bn
∗ , Gn, Bn

) − D∗(Q0, G0)‖
P0

≤ ‖A
Gn, Bn

− G0
Gn, Bn

G0
(Y − Q0)‖

P0

+ ‖ A
Gn, Bb

(Qn, Bn
∗ − Q0)‖

P0

+ ‖Qn, Bn
∗ − Q0‖

P0
+ EBn

Ψ(Qn, Bn
∗ ) − Ψ(Q0) .
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Using that min (Gn, Bn
G0) > δn and Y − Q0 < 1 it follows that the first term is bounded by 

δ−3/2‖Gn, Bn
− G0‖

P0
. Using that Gn, Bn

> δn, it follows that the second term is bounded by 

δn
−1‖Qn, Bn

∗ − Q0‖
P0

. So, we have

‖D∗(Qn, Bn
∗ , Gn, Bn

) − D∗(Q0, G0)‖
P0

≤ δn
−3/2‖Gn, Bn

− G0‖
P0

+ 2δn
−1‖Qn, Bn

∗ − Q0‖
P0

+ EBn
Ψ(Qn, Bn

∗ ) − Ψ(Q0) .

We bound the last term as follows:

EBn
Ψ(Qn, Bn

∗ ) − Ψ(Q0) = EBn
Q2n, Bn

1 Qn, Bn
∗ − Q20Q0

= EBn
(Q2n, Bn

1 − Q20)Q0 + EBn
Q2n, Bn

1 (Qn, Bn
∗ − Q0)

= OP(n−1/2) + EBn
(Q2n, Bn

1 − Q20)(Qn, Bn
∗ − Q0) + EBn

Q20(Qn, Bn
∗ − Q0)

= OP(n−1/2) + EBn
(Q2n, Bn

1 − Q20)(Qn, Bn
∗ − Q0) + OP(EBn

d10, 1
1/2 (Qn, Bn

∗ , Q0)),

where we used at the third equality that for each split Bn(O2n, Bn
1 − Q20)Q0 = OP(n−1/2), by 

the standard central limit theorem.

In order to bound the second empirical process term we apply Lemma 10 to the term 

n1/2(Q2n, Bn
1 − Q20)(Qn, Bn

∗ − Q0). Lemma 4 below shows that 

‖Qn, Bn
− Q0‖

P0
= OP(n

−λ(d1)/2
δn

−1/2). Therefore, we can apply Lemma 10 with r
D∗, n

 equal 

to this latter rate. This yields the following bound:

EBn
(Q2n, Bn

1 − Q20)(Qn, Bn
∗ − Q0) = OP(n

−λ(d1)/2
δn
−1/2(1 + logn + logδn)) .

Thus, we have shown

‖D∗(Qn, Bn
∗ , Gn, Bn

) − D∗(Q0, G0)‖
P0

= OP(n
−λ(d1)/2

δn
−1/2(1 + logn + logδn))

+ OP(δn
−1‖Qn, Bn

∗ − Q0‖
P0

) + OP(δn
−3/2‖Gn, Bn

− G0‖
P0

) .
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We have d10, 1(Qn, Bn
∗ , Q0) = OP(n

−λ(d1)
) and d02(Gn, Bn

, G0) = OP(n
−λ(d2)

). These rates first 

need to be translated in terms of L2(P0)-norms in order to utilize the above bound. Lemma 4 

below shows that ‖Qn, Bn
∗ − Q0‖

P0
= OP(n

−λ(d1)/2
δn

−1/2) and ‖Gn, Bn
− G0‖

P0
= OP(n

−λ(d2)
). So 

we obtain the following bound:

‖D∗(Qn, Bn
∗ , Gn, Bn

) − D∗(Q0, G0)‖
P0

= OP(n
−λ(d1)/2

δn
−1/2(1 + logn + logδn))

+ OP(δn
−3/2n

−λ(d1)/2
) + OP(δn

−3/2n
−λ(d2)/2

) .

We can conservatively bound this as follows:

‖D∗(Qn, Bn
∗ , Gn, Bn

) − D∗(Q0, G0)‖
P0

= OP(δn
−3/2n

−λ(d1)/2
logn),

where we used conservative bounding by not utilizing that d2 could be significantly smaller 

than d1. We conclude that we can set r
D∗, n

= δn
−3/2n

−λ(d1)/2
logn. We need that r

D∗, n
= o(1)

and thus that δn
−3/2 = o(n

λ(d1)/2
logn), or δn

−1 = o(n
1/6 + α(d1)/6

logn) The latter condition is 

dominated by the condition δn
−1 = o(n

α(d1)/6
) we need in the analysis below of the second 

order remainder.

Verification of eq. (29)

By eq. (6), we can bound the second order remainder as follows:

R20(Pn, Bn
∗ , P0) ≤ δn

−1‖Gn, Bn
− G0‖

P0
‖Qn, Bn

∗ − Q0‖
P0

= OP(δn
−3/2n

−λ(d1)/2 − λ(d2)/2
) .

Thus, it suffices to assume that δn
−3/2n

−λ(d1)
= o(n−1/2), and thus δn

−1 = o(n
α(d1)/6

).

We verified the conditions of Theorem 1. Application of Theorem 1 yields the following 

result.

Theorem 2—Consider the nonparametric statistical model ℳ for P0 of the d-dimensional 

O = (W , A, Y) P0 ∈ ℳ and target parameter Ψ:ℳ ℝ defined by Ψ(P) = EPEP(Y | A = 1, 

W). In this nonparametric model we only assume that for each P ∈ ℳ, 
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Q(P) = EP(Y A = 1, W) and G(P) = EP(A W) are cadlag functions on 0, τ ⊂ ℝ ≥ 0
d − 2 for some 

finite τ with finite variation norm.

Consider the above defined one-step CV-TMLE ψn
∗ = EBn

Ψ(Qn, Bn
∗ ) of Ψ(Q0) based on the 

HAL-super-learner Qn and Gn of type eqs (23) and (37), where Qn and Gn are enforced to be 

contained in interval (δn, 1 − δn). Let d1 = d − 2. Let α(d1) = 2/(d1 + 2), λ(d1) = 1/2 + 

α(d1)/4, and Kn = max(K1n, K2n).

Assume that logKn = O(n
1/2 − α(d1)/2

), and that dn
−1 converges slowly enough to ∞ so that 

δn
−1 = o(n

α(d1)/6
) Then ψn

∗ is a regular asymptotically linear estimator with influence curve 

equal to the efficient influence curve D*(P0), and is thus asymptotically efficient.

Thus for large dimension d, δn
−1 is only allowed to converge to infinity at a very slow rate. 

Note that δn
−1 immediately implies a bound on the efficient influence curve and such bounds 

are naturally very crucial.

Above we used the following lemma.

Lemma 4—We have

‖Q − Q0‖
P0
2 ≤ 4δn

−1d01(Q, Q0) . (34)

We also have

‖G − G0‖
P0
2 ≤ 4d02(G, G0) . (35)

Proof—We first prove eq. (34). Let

KL(Q(W), Q0(W)) = Q0(W)log
Q0(W)
Q(W) + (1 − Q0(W))log

1 − Q0(W)
1 − Q(W)

be the Kullback-Leibler divergence between the Bernoulli laws with probabilities Q(W) and 

Q0(W). Then,

d01(Q, Q0) = EP0
G0(W)KL(Q(W), Q0(W)) .
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In van der Vaart (1998, page 62) it is shown that for two densities p, p0, we have 

‖p1/2 − p0
1/2‖

P0

2 ≤ − ∫ log(p/ p0)dP0. Applying this inequality to Bernoulli laws with 

probabilities Q(W) and Q0(W) yields:

KL(Q( ⋅ )) ≥ Q0(Q1/2 − Q0
−1/2)2 + (1 − Q0)((1 − Q)1/2 − (1 − Q0)1/2)2 .

Applying the inequality (a − b)2 ≤ 4(a1/2 − b1/2)2 (for a, b ∈ [0, 1]) to the square terms on the 

right-hand side now yields:

KL(Q( ⋅ ), Q0( ⋅ )) ≥ 4−1(Q − Q0)2 . (36)

Now, note that d01(Q, Q0) = EP0
G0(W)KL(Q(W), Q0(W)). We can use that G0 > δn, which 

provides us with the following bound:

d01(Q, Q0) ≥ δnEP0
KL(Q(W), Q0(W))

≥ δn4−1EP0
(Q − Q0)2(W) = δn4−1‖Q − Q0‖

P0
2 .

This completes the proof of eq. (34). We have

d02(G, G0) = EP0
KL(G(W), G0(W)) .

Completely analogue to the derivation above of eq. (36) we obtain

KL(G( ⋅ ), G0( ⋅ )) ≥ 4−1(G − G0)2,

and thus

d02(G, G0) ≥ 4−1‖G − G0‖
P0
2 .

This proves eq. (35). □

8 Discussion

In this article we established that a one-step CV-TMLE, using a super-learner with a library 

that includes L1-penalized MLEs that minimize the empirical risk over high dimensional 

linear combinations of indicator basis functions under a series of L1-constraints, will be 

asymptotically efficient. This was shown to hold under remarkable weak conditions and for 

an arbitrary dimension of the data structure O.
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This remarkable fact is heavily driven by the fact that this super-learner will always converge 

at a rate faster than n−1/4 w.r.t. the loss-based dissimilarity, which is typically equivalent with 

the L2(P0)-norm. This holds for every dimension of the data and any underlying smoothness 

of the true nuisance parameter values, as long as these true nuisance parameter values have a 

finite variation norm. Since the second order remainder R2(Pn
∗, P0) of the first order 

expansion for the TMLE can be bounded in terms of these loss-based dissimilarities between 

the super-learner and its true counterpart, this rate of convergence is fast enough to make the 

second order remainder asymptotically negligible. As a consequence, the first order 

empirical mean of the canonical gradient/efficient influence curve drives the asymptotics of 

the TMLE.

In order to prove our theorems it was also important to establish that a one-step TMLE 

already approximately solves the efficient influence curve equation, under very general 

reasonable conditions. In this article we focused on a one-step TMLE that updates each 

nuisance parameter with its own one-dimensional MLE update step. This choice of local 

least favorable submodel guarantees that the one-step TMLE update of the super-learner of 

the nuisance parameters is not driven by the nuisance parameter component that is hardest to 

estimate, which might have finite sample advantages. Nonetheless, our asymptotic efficiency 

theorem applies to any local least favorable submodel.

The fact that a one-step TMLE already solves the efficient influence curve equation is 

particularly important in problems in which the TMLE update step is very demanding due to 

a high complexity of the efficient influence curve. In addition, a one-step TMLE has a more 

predictable robust behavior than a limit of an iterative algorithm. We could have focused on 

the universal least favorable submodels so that the TMLE is always a one-step TMLE, but in 

various problems local least favorable submodels are easier to fit and can thus have practical 

advantages.

By now, we also have implemented the HAL-estimator for nonparametric regression and 

dimensions d ≤ 10, and established that its practical performance appears to be very good 

[22]. In addition, we also implemented the HAL-TMLE for the ATE (i.e., our example) for 

such low dimensions and the coverage of the confidence intervals has been remarkable good 

for normal sample sizes, suggesting that the asymptotics of the HAL-TMLE kicks in at 

earlier sample sizes then theory would predict. We suspect that part of the reason for the 

excellent practical performance is the double robust nature of the second order remainder, 

which suggest more finite sample bias cancelation than an actual square of a difference. The 

practical implementation and evaluation of the HAL-estimator and HAL-TMLE across a 

diversity of problems remains an area of future research.

In this article we assumed independent and identically distributed observations. Nonetheless, 

this type of super learner and the resulting asymptotic efficiency of the one-step TMLE will 

be generalizable to a variety of dependent data structures such as data generated by a 

statistical graph that assumes sufficient conditional independencies so that the desired 

central limit theorems can still be established [4, 23–26].
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This article focused on a CV-TMLE that represents the statistical target parameter Ψ(P) as a 

function Ψ(Q1(P), …, Qk1 + 1(P)) of variation independent nuisance parameters 

(Q1, …, Qk1 + 1). However, there are key examples in which representing Ψ(P) in terms of 

recursively defined nuisance parameters has key advantages. For example, the longitudinal 

one-step TMLE of causal effects of multiple time point interventions in [27, 28] relies on a 

sequential regression representation of the target parameter [29]. In this case, the next 

regression is defined as the regression of the previous regression on a shrinking history, 

across a number of regressions, one for each time point at which an intervention takes place. 

In this case, a super-learner of nuisance parameter Qk is based on a loss function 

L1, k, Qk + 1
(Qk) that depends on a next nuisance parameter Qk+1 (representing the outcome 

for the regression defining Qk), k = 1, …, k1 + 1.. One would now start with obtaining the 

desired result for the super-learner of Qk1 + 1 whose loss function does not depend on other 

nuisance parameters. For the second super-learner of QK1
 based on candidate estimators 

Q̂k1, j, j = 1, …, J, we would use as cross-validated risk EBn
Pn, Bn

1 L
1, k1, Q̂k1 + 1(Pn, Bn

0 )
(Q̂k1, j). 

In other words, one estimates the nuisance parameter of the loss-function based on the 

training sample. In [11, 30, 31] we establish oracle inequalities for the cross-validation 

selector based on loss-functions indexed by an unknown nuisance parameter, which now 

also rely on a remainder concerning the rate at which Q̂k1 + 1(Pn) converges to Qk1 + 1, 0. In 

this manner, one can establish that the super-learner of Q̂k1, j will converge at the same or 

better rate than the super-learner of Qk1 + 1, 0. This process can be iterated to establish 

convergence of all the super-learners at the same or better rate than the initial super-learner 

of Qk1 + 1, 0. Our asymptotic efficiency results for the one-step TMLE and one-step CV-

TMLE can now be generalized to one-step TMLE and CV-TMLE that rely on sequential 

targeted learning. The disadvantage of sequential learning is that the behavior of previous 

super-learners affects the behavior of the next super-learners in the sequence, but the 

practical implementation of a sequential super-learner can be significantly easier.

Our general theorems and specifically the theorems for our example demonstrate that the 

model bound on the variance of the efficient influence curve heavily affects the stability of 

the TMLE, and that we can only let this bound converge to infinity at a slow rate when the 

dimension of the data is large. Therefore, knowing this bound instead of enforcing it in a 

data adaptive manner is crucial for good behavior of these efficient estimators. This is also 

evident from the well known finite sample behavior of various efficient estimators in causal 

inference and censored data models that almost always rely on using truncation of the 

treatment and/or censoring mechanism. If one uses highly data adaptive estimators, even 

when the censoring or treatment mechanism is bounded away from zero, the estimators of 

these nuisance parameters could easily get very close to zero, so that truncation is crucial. 
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Careful data adaptive selection of this truncation level is therefore an important component 

in the definition of these efficient estimators.

Alternatively, one can define target parameters in such a way that their variance of the 

efficient influence curve is uniformly bounded over the model (e.g., [32]). For example, in 

our example we could have defined the target parameter EYd1
− EYd0

, where 

d1(W) = I(Gn(W) > δ)π and d0(W) = 1 − I((1 − Gn(W) > δ), and Gn is the super-learner of 

G0 = E0(A W) and δ > 0 is a user supplied constant. In this case, the static interventions have 

been replaced by data dependent realistic dynamic interventions that approximate the static 

interventions but are guaranteed to only carry out the intervention when there is enough 

support in the data. Due to the fact that such parameters have a guaranteed amount of 

support in the data, the variance of the efficient influence curve is uniformly bounded over 

the model: i.e. M
D∗ < ∞.
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Appendix

A Oracle inequality for the cross-validation selector

Lemma 2 is a simple corollary of the following finite sample oracle inequality for cross-

validation [11, 13], combined with exploiting the convexity of the loss function allowing us 

to bring the EBn
 inside the loss-based dissimilarity.

Lemma 5

For any δ > 0, there exists a constant C(M1Q, n, M2Q, n, δ) = 2(1 + δ)2(2M1Q, n/3 + M2Q, n
2 /δ)

such that

E0{EBn
d01(Q̂k1n

(Pn, Bn
0 ), Q0)} ≤ (1 + 2δ)E0{EBn

min
k

d01(Q̂k(Pn, Bn
0 ), Q0)}

+ 2C(M1Q, n, M2Q, n, δ)
logK1n

nBn
.

Similarly, for any δ > 0,

EBn
d01(Q̂k1n

(Pn, Bn
0 ), Q0) ≤ (1 + 2δ)EBn

min
k

d01(Q̂k(Pn, Bn
0 ), Q0)} + Rn,

where ERn ≤ 2C(M1Q, n, M2Q, n, δ)
logK1n

nBn
.
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If log K1n/n divided by EBn
mink d01(Q̂k(Pn, Bn

0 ), Q0)} converges to zero in probability, then 

we also have

EBn
d01(Q̂kn

(Pn, Bn
0 , Q0)

EBn
mink d01(Q̂k(Pn, Bn

0 , Q0) p 1.

Similarly, if log K1n/n divided by E0EBn
mink d01(Q̂k(Pn, Bn

0 ), Q0)} converges to zero, then we 

also have

E0EBn
d01(Q̂kn

(Pn, Bn
0 , Q0)

E0EBn
mink d01(Q̂k(Pn, Bn

0 , Q0)
1.

B Super learner of G0

Completely analogue to the super-learner eq. (23), we can define such a super-learner of G0, 

which we will do here. For an M ∈ ℝ > 0
k2 , let ĜM :ℳnonp 𝒢n, M ⊂ ℱν, M be the MLE for 

which d02(Gn, M = ĜM(Pn), G0n
M ) = OP(rG

2 (n)). Let 𝒦2, n, ν be an ordered collection of k2-

dimensional constants, and consider the corresponding collection of candidate estimators 

ĜM with M ∈ 𝒦2, n, ν. We assume the index set 𝒦2, n, ν is increasing in n and that 

limsupn ∞MK2, n, ν
= max (MG, ν, ML2(G), ν). Note that for all M ∈ 𝒦2, n, ν with 

M > ‖L2(G0)‖
ν
, we have that d02(ĜM(Pn), G0) = OP(n

−λ2). In addition, let Ĝ j:ℳnonp 𝒢n, 

j ∈ 𝒦2, n, a, be an additional collection of K2,n,a estimators of G0. This defines a collection of 

K2n = K2,n,v + K2,n,a candidate estimators {Ĝk:k ∈ 𝒦2n} of G0.

We define the cross-validation selector as the index

k2n = K̂2(Pn) = arg min
k ∈ 𝒦2n

EBn
Pn, Bn

1 L1(Ĝk(Pn, Bn
0 ))

that minimizes the cross-validated risk EBn
PnL2(Ĝk(Pn, Bn

0 )) over all choices k of candidate 

estimators. Our proposed super-learner of G0 is defined by

Gn = Ĝ(Pn) = EBn
Ĝkn

(Pn, Bn
0 ) . (37)
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The same Lemma 2 applies to this estimator Ĝ(Pn) of G0.

Lemma 6

Recall the definition of the model bounds M1G,n, M2G,n eq. (18), and let 

C(M1, M2, δ) ≡ 2(1 + δ)2(2M1/3 + M2
2/δ). For any fixed δ > 0,

d02(Gn, G0n) ≤ (1 + 2δ)EBn
min

k ∈ 𝒦2n
d02(Ĝk(Pn, Bn

0 ), G0n)

+ OP C(M1G, n, M2G, n, δ)
logK2n

n ,

If for each fixed δ > 0, C(M1G,n, M2G,n, δ) log K2n/n divided by 

EBn
mink d02(Ĝk(Pn, Bn

0 ), G0n) is oP(1), then

d02(Ĝ(Pn), G0n)

EBn
mink d02(Ĝk(Pn, Bn

0 ), G0n)
− 1 = oP(1) .

If for a fixed δ > 0, EBn
mink d02(Ĝk(Pn, Bn

0 ), G0n) = OP(C(M1G, n, M2G, n, δ)logK2n/n), then

d02(Ĝ(Pn), G0n) = OP
C(M1G, n, M2G, n, δ)logK1n

n .

Suppose that for each fixed M the conditions of Lemma 1 hold with negligible numerical 

approximation error rn, so that d02(Gn, M, G0n
M ) = OP(rG

2 (n)). Let λ2 be chosen so that 

rG
2 (n) = O(n

−λ2). For each fixed δ > 0, we have

d02(Ĝ(Pn), G0n) = OP(n
−λ2) + OP C(M1G, n, M2G, n, δ)

logK2n
n . (38)

C Empirical process results

Theorem 2.1 in [18] establishes the following result for a Donsker class ℱn with uniformly 

bounded envelope Fn and for which for each f ∈ ℱnP0 f 2 ≤ δ2PFn
2:

E‖Gn‖ℱn
<∼ J(δ, ℱn) 1 +

J(δ, ℱn)

δ2n1/2‖Fn‖
P0

‖Fn‖
P0

,
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where Gn(f) = n1/2(Pn − P0)f and

J(δ, ℱn) ≡ sup
Λ ∫0

δ
log1/2(1 + N(ε‖Fn‖Λ, ℱn, L2(Λ))dε

is the entropy integral from 0 to δ. This definition of the entropy integral is slightly different 

from a common definition in which the supremum over P is taken within the integral.

Suppose we want a bound on sup f ∈ ℱn, ‖ f ‖P0
< δ Gn( f ) . Of course, ‖ f ‖P0

< δ is equivalent 

with ‖ f ‖P0
< δ1‖Fn‖

P0
, where δ1 = δ/‖Fn‖

P0
. Application of the above result with this 

choice of δ = δ1 yields:

E sup
f ∈ ℱn, ‖ f ‖P0

< δ
Gn( f ) <∼ J(δ/‖Fn‖

P0
, ℱn) 1 +

J(δ/‖Fn‖
P0

, ℱn)‖Fn‖
P0

δ2n1/2 ‖Fn‖
P0

. (39)

Suppose that supΛlog1/2(1 + N(ε‖Fn‖Λ, ℱn, L2(Λ))) = O(ε−(1 − α)) for some α ∈ (0, 1). Then,

J(δ/‖Fn‖
P0

, ℱn) = O(δα‖Fn‖
P0
−α) .

Thus, we have

E sup
f ∈ ℱn, ‖ f ‖P0

< δ
Gn( f ) <∼ δα‖Fn‖

P0
1 − α + δ2α − 2n−1/2‖Fn‖

P0
2 − 2α .

Note that this is a decreasing function in ‖Fn‖
P0

. Given a bound Mn so that ‖Fn‖
P0

< Mn, a 

conservative bound is obtained by replacing ‖Fn‖
P0

 by Mn.

This proves the following lemma.

Lemma 7

Consider ℱn with ‖Fn‖
P0

< Mn and supΛlog1/2(1 + N(ε‖Fn‖Λ, ℱn, L2(Λ))) = O(ε−(1 − α)) for 

some α ∈ (0, 1). Then,

E sup
f ∈ ℱn, ‖ f ‖P0

< r0(n)
Gn( f ) <∼ {r0(n)/Mn}αMn + {r0(n)/Mn}2α − 2n−1/2 .
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If r0(n) < n−1/4, one should select r0(n) = n−1/4 in the above right hand side, giving the 

bound:

E sup
f ∈ ℱn, ‖ f ‖P0

< r0(n)
Gn( f ) <∼ {n−1/4/Mn}α

Mn + {Mn}2 − 2αn−α/2 .

Consider eq. (39) again, but suppose now that supΛN(ε‖Fn‖Λ, ℱn, L2(Λ)) = O(ε− p) for some p 

> 0. Then,

J(δ/‖Fn‖
P0

, ℱn) = p1/2∫0

δ/‖Fn‖
P0

log1/2ε−1dε .

We can conservatively bound log1/2 ε−1 by log ε−1 for ε small enough, and then note 

∫0

x
logεdε = x(1 − logx). Thus, we have the bound

J(δ/‖Fn‖
P0

, ℱn) = O(δ‖Fn‖
P0
−1(1 − log(δ/‖Fn‖

P0
)) .

By plugging this latter bound into eq. (39) we obtain

E sup
f ∈ ℱn, ‖ f ‖P0

< δ
Gn( f ) <∼ δ(1 − log(δ/‖Fn‖

P0
)) + (1 − log(δ/‖Fn‖

P0
))2n−1/2 .

Note that the right-hand side is increasing in ‖Fn‖
P0

. So if we know that ‖Fn‖
P0

≤ Mn for 

some Mn, we obtain the bound

E sup
f ∈ ℱn, ‖ f ‖P0

< δ
Gn( f ) <∼ δ(1 − log(δ/Mn)) + (1 − log(δ/Mn))2n−1/2 .

Lemma 8

Consider ℱn with ‖Fn‖
P0

< Mn and supΛN(ε‖Fn‖Λ, ℱn, L2(Λ))) = O(ε− p) for some p > 0. 

Then,

E sup
f ∈ ℱn, ‖Fn‖

P0
< r0(n)

‖Gn( f )‖ <∼ r0(n) 1 − log
r0(n)
Mn

+ 1 − log
r0(n)
Mn

2
n−1/2 . (40)
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The following lemma is proved by first applying the Lemma 7 to (Pn − P0)fn with r0(n) = 1 

to obtain an initial rate r0(n), and then applying the above lemma again with this new initial 

rate r0(n).

Lemma 9

Consider the following setting:

f n ∈ ℱn, ‖Fn‖
P0

≤ Mn,

supΛlog1/2(1 + N(ε‖Fn‖Λ, ℱn, L2(Λ))) = O(ε−(1 − α)), α ∈ (0, 1),

d0(Qn, Q0) ≤ (Pn − P0) f n ,

‖ f n‖
P0

≤ M2n{d0(Qn, Q0)}1/2

1 < Mn <∼ n1/(4(1 − α)) .

Then

d0(Qn, Q0) <∼ n−1/2n−α/4C(Mn, M2n, α),

where

C(Mn, M2n, α) = M2n
α Mn

1 − α/2 − α2/2 + n−α/4M2n
2α − 1Mn

1 − α2
.

Proof

We have d0(Qn, Q0) ≤ | (Pn − P0)fn |. We apply Lemma 7 to the right-hand side with r0(n) = 

1. This yields

E (Pn − P0) f n <∼ n−1/2Mn
1 − α + Mn

2 − 2αn−1 .

This shows d0(Qn, Q0) <∼ n−1/2Mn
(1 − α) + Mn

2 − 2αn−1. Using that x + y ≤ x + y, this implies 

d0(Qn, Q0)1/2 <∼ n−1/4Mn
(1 − α)/2 + Mn

1 − αn−1/2. By assumption, this implies

‖ f n‖
P0

<∼ n−1/4M2nMn
(1 − α)/2 + n−1/2M2nMn

1 − α .

The right-hand side is of order n−1/4M2nMn
(1 − α)/2 if Mn ≲ n1/(4(1−α)), which holds by 

assumption. Let r0(n) = n−1/4M2nMn
(1 − α)/2. We now apply Lemma 7 to (Pn − P0)fn with this 

choice of r0(n). Note r0(n) converges to zero at slower rate (or equal than) n−1/4. Thus, 

application of Lemma 7 gives the following bound:
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E (Pn − P0) f n <∼ n−1/2r0(n)αMn
1 − α + r0(n)2α − 2Mn

2 − 2αn−1

<∼ n−1/2n−α/4M2n
α Mn

1 − α/2 − α2/2 + n−1/2(1 + α)M2n
2α − 2Mn

1 − α2
.

We can factor out n−1/2n−α/4, giving the bound

<∼ n−1/2n−α/4{M2n
α Mn

1 − α/2 − α2/2 + n−α/4M2n
2α − 2Mn

1 − α2
} .

This completes the proof of the lemma. □

The following lemma is needed in the analysis of the CV-TMLE, where 

f n, ε = D∗(Qn, Bn, ε, Gn, Bn
) − D∗(Q0, G0).

Lemma 10

Let f n, εn
∈ ℱn = { f n, ε:ε} where ε varies over a bounded set in ℝp and fn,ε is a non-random 

function (i.e., not based on data O1, …, On). Let Fn be the envelope of ℱn and let Mn be 

such that ‖Fn‖ < M
D∗, n

. Assume that supΛN(ε‖Fn‖Λ, ℱn, L2(Λ)) = O(ε− p). Suppose that 

‖ f n, εn
‖

P0
= oP(r

D∗(n)) for a rate r
D∗(n) 0. Then, Gn( f n, εn

) = Gn( f n, εn
) + En, where

E0 Gn( f
∼

n, εn
) = O(r

D∗(n)(1 − log(r
D∗(n)/M

D∗, n
))),

and En equals 0 with probability tending to 1. Thus, if r
D∗(n)log(M

D∗, n
/r

D∗(n)) = o(1), then 

Gn( f n, εn
) = oP(1).

Proof

For notational convenience, let’s denote f n, εn
 with fn. We have that with probability tending 

to 1 ‖ f n‖
P0

< r
D∗(n). We have f n = f nI(‖ f n‖

P0
< r

D∗(n)) + f nI(‖ f n‖
P0

> r
D∗(n)). Denote the 

first term with f
∼

n and note that the second term equals zero with probability tending to 1. 

This shows that Gn( f n) = Gn( f
∼

n) + En where En equals zero with probability tending to 1 

while ‖ f
∼

n‖
P0

< r
D∗(n) with probability 1. Application of Lemma 8 shows that

E Gn( f
∼

n) <∼ r
D∗(n)log(M

D∗, n
/r

D∗(n)) .

This completes the proof. □
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D Implementing the HAL-estimator

For notational convenience, consider the case that 𝒬n = 𝒬. The M-specific HAL-estimator is 

defined for a given M < ∞ vector, by minimizing PnL1(Q) over all Q ∈ 𝒬 for which the 

variation norm of L1(Q) is bounded by this M. We need to calculate this estimator for a series 

of M-vectors ranging from 0 to infinity, and we will then select M with cross-validation (see 

next section). Suppose that, for a fixed n, there exists an Mn, v ∈ ℝ
k1 so that for all Q ∈ 𝒬, 

‖L1(Q)‖
v

≤ Mn, v‖Q‖v. This is typically an assumption that is trivially satisfied. Then, 

calculating this collection of M-specific HAL-estimators across a set of M-vectors can also 

be achieved by computing an MLE of Q PnL1(Q) over all Q ∈ 𝒬 with ‖Q‖v < M, for a 

series of M-vectors. Therefore we rephrase our goal as to compute a Qn, M so that

PnL1(Qn, M) = min
Q ∈ 𝒬M

PnL1(Q) + rn, (41)

where in this section we redefine 𝒬M = {Q ∈ 𝒬:‖Q‖v < M}, and rn is a controlled small 

number. We will now address a strategy for implementation of this MLE Qn, M.

D.1 Approximating a function with variation norm M by a linear combination of indicator 
basis functions with L1-norm of the coefficient vector equal to M

Any cadlag function f ∈ 𝔻 0, τ  with finite variation norm can be represented as follows:

f (x) = f (0) + ∑
s ⊂ {1, …, p}

∫(0s, xs
f (dus, 0−s) .

For each subset s of size | s |, consider a partitioning of (0s, τs] in | s |-dimensional cubes 

with width hm. Let’s denote these cubes with Rhm
( j, s), where j is the index of the j-th cube 

and j runs over O(1/hm
s ) cubes. Let ℛhm

(s) be the index set, so that we can write 

(0s, τs = ∪ j ∈ ℛhm
(s) Rhm

( j, s). By definition of an integral, we have f (x) = limhm 0 f m(x), 

where

f m(x) = f m( f )(x) = f (0) + ∑
s ⊂ {1, …, p}

∑
j ∈ ℛhm

(s)
ϕhm, j

s (x)βhm, j
s ,

βhm, j
s = f (Rhm

( j, s)) is the measure f assigns to the cube Rhm
( j, s), and 

ϕhm, j
s (x) = I(mhm

( j, s) ≤ xs) is the indicator that the midpoint mhm
( j, s) of the cube Rhm

( j, s) is 
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smaller or equal than xs. By the dominated convergence theorem, it also follows that ‖ fm(f) 
− f ‖Λ→ 0 for any L2(D)-norm. Moreover, the variation norm of f is approximated by the 

sum of the absolute values of all the coefficients βhm, j
s :

‖ f ‖v = lim
hm 0

f (0) + ∑
s ⊂ {1, …, p}

∑
j ∈ ℛhm

(s)
βhm, j

s .

Let β0 denote the intercept f(0). Thus, we conclude that given a function f ∈ ℱv, M, we can 

approximate it with a finite linear combination fm(f) of indicator basis functions ϕhm, j
s  plus 

an intercept β0 for which the L1-norm of its coefficient vector (β0, (βhm, j
s : j, s)) approximates 

the variation norm of f. The support points mhm
( j, s) could also be selected based on the data 

support {O1, …, On}. Such a strategy is presented and implemented for the HAL-estimator 

of a nonparametric regression in [22]. In the latter paper we select n support points for each 

s-specific measure, possibly resulting in as many as n * 2d-number of basis functions.

D.2 An approximation of the MLE over functions of bounded variation using L1-
penalization

For an M ∈ ℝ>0, let’s define

ℱv, M
m = ∑

s ⊂ {1, …, p}
∑

j ∈ ℛhm
(s)

ϕhm, j
s (x)βhm, j

s : ∑
s, j

|βhm, j
s | ≤ M

as the collection of all these finite linear combinations of this collection of basis functions 

under the constraint that its L1-norm is bounded by M. Consider the case that the parameter 

space 𝒬 j for Q j(P), j ∈ {1, …, k1} is nonparametric, so that the MLE over 𝒬 j, M = ℱv, M of 

Q j0 would correspond with minimizing over ℱv, M. Note that this does not imply that the 

model ℳ is nonparametric: for example, the data distribution could be parameterized in 

terms of unspecified functions Q j of dimension d1(j), j = 1, …, k1, and unspecified functions 

G j of dimension d2(j), j = 1, …, k2.

The next lemma proves that we can approximate such an MLE over ℱv, M for a loss function 

L1 j(Q j) by an MLE over ℱv, M
m  by selecting m large enough.

Lemma 11—Let M ∈ ℝ>0 be given. Consider f 0 ∈ ℱv, M ⊂ 𝔻 0, τ  so that for a loss 

function (O, f) → L(f)(O), we have P0L( f 0) = min f ∈ ℱv, M
P0L( f ). Assume that if 

f m ∈ ℱv, M converges pointwise to a f ∈ ℱv, M on [0, τ], then L(fm) converges pointwise to 

L(f) on a support of P0, including the support of the empirical distribution Pn. Let 

van der Laan Page 45

Int J Biostat. Author manuscript; available in PMC 2018 July 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



f 0, m ∈ ℱv, M
m  be such that P0L( f 0, m) = min

f ∈ ℱv, M
m P0L( f ). We have P0(L(f0,m) − L(f0)) → 

0 as hm → 0.

Consider now an f n ∈ ℱv, M so that PnL( f n) = min f ∈ ℱv, M
PnL( f ), and let f n, m ∈ ℱv, M

m  be 

such that PnL( f n, m) = min
f ∈ ℱv, M

m PnL( f ). We have Pn(L(fn,m) − L(fn)) → 0 as hm → 0.

Proof: We want to show that P0(L(f0,m) − L(f0)) → 0 as hm → 0. By the approximation 

presented in the previous section, since f 0 ∈ ℱv, M, we can find a sequence f 0, m
∗ ∈ ℱv, M

m  so 

that f 0, m
∗ f 0 as hm → 0, pointwise and in L2(P0) norm. By assumption and the dominated 

convergence theorem, this implies P0L( f 0, m
∗ ) − P0L( f 0) also converges to zero as hm → 0. 

But, since f0,m minimizes P0L(f) over all f ∈ ℱv, M
m , we have

0 ≤ P0L( f 0, m) − P0L( f 0) ≤ P0L( f 0, m
∗ ) − P0L( f 0) 0,

which proves that P0L(f0,m) − P0L(f0) → 0, as hm → 0.

We now want to show that Pn(L(fn,m) − L(fn)) → 0 as hm → 0. Since f n ∈ ℱv, M, we can 

find a sequence f n, m
∗ ∈ ℱv, M

m  so that f n, m
∗ f n as hm → 0, pointwise and in L2(Pn)-norm.

Then, by assumption and the dominated convergence theorem, PnL( f n, m
∗ ) − PnL( f n) also 

converges to zero as hm → 0. But, since fn,m minimizes PnL(f) over all f ∈ ℱv, M
m , we have

0 ≤ PnL( f n, m) − PnL( f n) ≤ PnL( f n, m
∗ ) − PnL( f n) 0,

which proves that PnL(fn,m) − PnL(fn) → 0, as hm → 0. □

D.3 An approximation of the MLE over the subspace 𝒬M by an MLE over an L1-constrained 

linear model

Above we defined a mapping from a function f ∈ ℱv, M into a linear combination 

f m( f ) ∈ ℱv, M
m  of basis functions for which the norm of the coefficient vector approximates 

the variation norm of f. The following lemma proves in general that we can compute the 

MLE over 𝒬M = 𝒬 ∩ ℱv, M with the MLE over 𝒬M
m = {Qm(Q):Q ∈ 𝒬M}, which is a collection 

of these linear combinations of the basis functions for which the L1-norm of the coefficient 

vector is bounded by M. Note that 𝒬M
m  is typically not a submodel of 𝒬M, but it is obtained 

by replacing each element Q in 𝒬M with its approximation Qm(Q).
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Lemma 12—Assume that if Qm ∈ ℱv, M converges pointwise to a Q ∈ ℱv, M on 0, τ
k1, 

then L1(Qm) converges pointwise to L1(Q) on a support of P0, including the support of the 

empirical distribution Pn. For an M ∈ ℝ
k1, let 𝒬M = 𝒬 ∩ ℱv, M

k + 1 = {Q(P):P ∈ ℳ, Q(P) ∈ ℱv, M}

be all functions in the parameter space for Q0 that have a variation norm smaller than M < 

∞. Let 𝒬M
m = {Qm(Q):Q ∈ 𝒬M}, where Qm(Q) is defined above as the finite dimensional 

linear combination of the basis functions {ϕhm, j
s : j, s} with coefficient vector {βhm, j

s (Q): j, s}.

Consider a Q0, M ∈ 𝒬M so that P0L1(Q0, M) = minQ ∈ 𝒬M
P0L1(Q), and let 

P0L1(Q0, M
m ) = min

Q ∈ 𝒬M
m P0L1(Q) be such that P0(L1(Q0, M

m ) − L1(Q0, M)) 0 as hm → 0.

Similarly, consider a Qn, M ∈ 𝒬M so that PnL1(Qn, M) = minQ ∈ 𝒬M
PnL1(Q), and let 

Qn, M
m ∈ 𝒬M

m  be such that PnL1(Qn, M
m ) = min

Q ∈ 𝒬M
m PnL1(Q). Then, 

Pn(L1(Qn, M
m − L1(Qn, M)) 0 as hm → 0.

Proof: We want to show that P0(L1(Q0, M
m ) − L(Q0, M)) 0 as hm → 0. By the approximation 

presented in the previous section, since Q0, M ∈ ℱv, M, we can find a sequence Q0, M
m, ∗ ∈ ℱv, M

m

so that Q0, M
∗ Q0, M as hm → 0, pointwise and in L2(P0) norm. By assumption and the 

dominated convergence theorem, this implies P0L1(Q0, M
m, ∗) − P0L1(Q0, M) also converges to 

zero as hm → 0. But, since Q0, M
m  minimizes P0L1(Q) over all Q ∈ 𝒬M

m , we have

0 ≤ P0L1(Q0, M
m ) − P0L1(Q0, M) ≤ P0L1(Q0, M

m, ∗) − P0L1(Q0, M) 0,

which proves that P0L1(Q0, M
m ) − P0L1(Q0, M) 0, as hm → 0.

We now want to show that Pn(L1(Qn, M
m ) − L1(Qn, M)) 0 as hm → 0. Since Qn, M ∈ ℱv, M, we 

can find a sequence Qn, M
m, ∗ ∈ ℱv, M

m  so that Qn, M
m, ∗ Qn, M as hm → 0, pointwise and in 

L2(Pn)-norm.

Then, by assumption and the dominated convergence theorem, PnL1(Qn, M
m, ∗) − PnL1(Qn, M)

also converges to zero as hm → 0. But, since Qn, M
m  minimizes PnL1(Q) over all Q ∈ 𝒬n, M

m , we 

have

0 ≤ PnL1(Qn, M
m ) − PnL1(Qn, M) ≤ PnL1(Qn, M

m, ∗) − PnL1(Qn, M) 0,
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which proves that PnL1(Qn, M
m ) − PnL1(Qn, M) 0, as hm → 0. □

E A single updating step in TMLE suffices for approximately solving the 

efficient influence curve equation

In this section we focus on the one-step TMLE, but the results can be straightforwardly 

generalized to the one-step CV-TMLE.

The following lemma proves that for a local least favorable submodel with a 1-dimensional 

ε and n−1/4+-consistent initial estimators, the one-step TMLE already solves 

PnD∗(Qn, εn
, Gn) = oP(n−1/2) under some regularity conditions.

Lemma 13

Ψ:ℳ R is a pathwise differentiable parameter at P with canonical gradient D∗(P), and 

assume Ψ(P) = Ψ(Q(P)) and D∗(P) = D∗(Q(P), G(P)) for parameters 

Q:ℳ 𝒬 = {Q(P):P ∈ ℳ} and G:ℳ 𝒢 = {G(P):P ∈ ℳ}. Let R2() be defined by Ψ(P) − 

Ψ(P0) = (P − P0)D∗(P) + R2(P, P0), and let R2(P, P0) = R20((Q, G), (Q0, G0)). Suppose Q0 = 

arg minQ P0L(Q) for some loss function L(Q) and that, for any Q ∈ 𝒬 and G ∈ 𝒢, {Qε:ε} ⊂ 𝒬

is a one dimensional parametric submodel through Q with d
dε L(Qε) ε = 0 = D∗(Q, G) be an 

initial estimator of (Q0, G0), and consider the one-step TMLE Ψ(Qn, εn) with εn = arg minε 
PnL(Qn, ε).

Let fn(ε) = PnD∗(Qn, ε, Gn) and gn(ε) = d
dεPnL(Qn, ε). Let f n′ (ε) = d

dε f n(ε) and gn′ (ε) = d
dεgn(ε). 

Let ε0 = 0. Assume

• f n(εn) = f n(0) + f n′ (0)εn + OP(εn
2) and gn(εn) = gn(0) + gn′ (0)εn + OP(εn

2);

• εn
2 = oP(n−1/2);

• { d
dεn

D∗(Qn, εn
, Gn) − d2

dεn
2 L(Qn, εn

)}/n1/4 falls in a P0-Donsker class with probability 

tending to 1;

•

P0
d

dε0
D∗(Qn, ε0

, Gn) − d
dε0

D∗(Q0, ε0
, , G0) = OP(n−1/4)

P0
d2

dε0
2 L(Qn, ε0

) − d2

dε0
2 L(Q0, ε0

) = OP(n−1/4);

(42)
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•

P0
d2

dε0
2 L(Q0, ε0

) = − P0D∗(P0){D∗(P0)}⊺ . (43)

If L(Q(P)) = − log pQ(P),η(P) for some density parameterization (Q, η) → pQ,η, 
then (43) holds;

• d
dε0

R20((Q0, ε0
, G0), (Q0, G0)) = 0.

Then, PnD∗(Qn, εn
, Gn) = oP(n−1/2).

The first bullet point condition only assumes that the chosen least favorable submodel is 

smooth in ε. The second bullet point condition will be satisfied if the initial estimators Qn, 

Gn converge to the true Q0, G0 at a rate faster than n−1/4. The third bullet condition will hold 

without n−1/4-scalar if the estimators Qn, Gn have uniformly bounded variation norm. Due to 

the scaling n−1/4, it could even allow that the variation norm grows with sample size, again 

showing that this is a very weak condition. Conditions eq. (42) are expected to hold if Qn, 

Gn converge to Q0, G0 at a rate n−1/4. Condition eq. (43) is a condition that holds for loss-

functions that can be represented as log-likelihood loss function, and is therefore again a 

natural condition for a local least favorable submodel w.r.t. loss function L. Finally, consider 

the last bullet point condition. If this remainder has a double robust form R20((Q, G), (Q0, 

G0)) = ∫(H1(Q) − H1(Q0))(H2(G) − H2(G0))dP0 for some functionals H1, H2, then this 

condition holds. If the remainder is of the form R20((Q, G), (Q0, G0)) = ∫(H(Q) − 

H(Q0))2dP0, then again this condition trivially holds. This shows that also the latter 

condition is a weak regularity condition.

Proof of Lemma

Firstly, by the fact that Qn,ε has score D∗(Qn, Gn) at ε = 0, it follows that fn(0) = gn(0). We 

also know that gn(εn) = 0, and we want to show that fn(εn) = oP(n−1/2). Let ε0 = 0. By the 

second order Tailor expansion assumption for fn, gn at ε = 0, we have

f n(εn) = f n(εn) − gn(εn)

= f n(0) − gn(0) + εn( f n′ − gn′ )(0) + O(εn
2)

= εn
d

dε0
PnD∗(Qn, ε0

, Gn) − d2

dε0
2PnL(Qn, ε0

) + O(εn
2) .

By assumption, εn
2 = oP(n−1/2), so that O(εn

2) = oP(n−1/2). Thus, it remains to show
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Pn
d

dε0
D∗(Qn, ε0

, Gn) − Pn
d2

dε0
2L(Qn, ε0

) = OP(n−1/4) .

By our Donsker class assumption, we have

(Pn − P0) d
dε0

D∗(Qn, ε0
, Gn) − d2

dε0
2L(Qn, ε0

) /n1/4 = OP(n−1/2) .

Thus, it remains to show

d
dε0

P0D∗(Qn, ε0
, Gn) − P0

d2

dε0
2L(Qn, ε0

) = OP(n−1/4)

By assumptions eq. (42), we have that the left-hand side of last expression equals

d
dε0

P0D∗(Q0, ε0
, G0) − P0

d2

dε0
2L(Q0, ε0

) + OP(n−1/4),

so that it remains to show that the first term equals zero. By −P0D∗(P) = Ψ(P) − Ψ(P0) − 

R2(P, P0), it follows that

d
dε0

P0D∗(Q0, ε0
, G0) = − d

dε0
Ψ(Q0, ε0

) + d
dε0

R2((Q0, ε0
, G0), (Q0, G0)) .

By assumption we have d
dε0

R2((Q0, ε0
, G0), (Q0, G0)) = 0. By definition of the pathwise 

derivative at P0, we have that the derivative Ψ(Q0,ε) = Ψ(P0,ε) at ε = 0 equals P0D∗(P0)

{D∗(P0)}⊺ . Thus, we have shown

d
dε0

P0D∗(Q0, ε0
, G0) = − P0D∗(P0){D∗(P0)} ⊺ .

Thus, it remains to show eq. (43), which thus holds by assumption. Suppose that L(Q(P)) = 

− log pQ(P),η(P) for some density parameterization (Q, η) → pQ,η. Then 

L(Q0, ε) = − logpQ0, ε, η0
. Since {pQ0, ε, η0

:ε} is a correctly specified parametric model, we 

have that the second derivative of −P0logpQ0, ε, η0
 at ε = 0 equals its information matrix (i.e., 

covariance matrix of its score) P0
d
dε logpQ0, ε, η0

{ d
dε logpQ0, ε, η0

}⊺ at ε = 0. However, the latter 

equals −P0D∗(P0){D∗(P0)}⊺, which proves eq. (43). This completes the proof of fn(εn) = 

oP(n−1/2).
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In the main article we have not proposed a 1-dimensional local least favorable submodel as 

in Lemma 13, even though our results are straightforwardly generalized to that case. Instead 

we proposed a k1 + 1- dimensional least favorable submodel that uses a 1-dimensional ε(j) 
for updating Qjn for each j = 1, …, k1 + 1. We will now state the desired lemma for the one-

step TMLE for such a submodel by application of the above lemma across all j.

Lemma 14

Let Ψ:ℳ ℝ be pathwise differentiable with canonical gradient D∗(P) = D∗(Q, G) and let 

Ψ(P) = Ψ(Q(P)) for Q(P) = (Q1(P), …, Qk1 + 1(P)). For a given Q, we define ΨQ, j:ℳ ℝ by 

ΨQ,j(P) = Ψ(Q−j, Qj(P)), j = 1, …, k1 + 1. Let DQ, j
∗ (P) = DQ, j

∗ (Q j(P), Q− j(P), G(P)) be the 

efficient influence curve of ΨQ,j at P, and define R2,Q,j(P, P0) = R2,Q,j((Q(P), G(P)), (Q0, 

G0)) by ΨQ, j(P) − ΨQ, j(P0) = (P − P0)DQ, j
∗ (P) + R2, Q, j(P, P0), j = 1, …, k1 + 1. Here Q−j = 

(Ql : l ≠ j, l ∈ {1, …, k1 + 1}). We have D∗(P) = ∑ j = 1
k1 + 1

DQ(P), j
∗ (P).

Let Qn ∈ 𝒬n, Gn ∈ 𝒢n be a given initial estimator. Let {Q jn, ε( j):ε( j)} ⊂ 𝒬 jn be a submodel 

through Qjn at ε(j) = 0 and satisfying 
d

dε( j) L1, j(Q jn, ε( j)) ε( j) = 0
= DQn, j

∗ (Qn, Gn), j = 1, …, k1 + 1. Let {Qn, ε:ε} ⊂ 𝒬n be defined by 

Qn,ε = (Qjn,ε(j) : j = 1, …, k1+1). Let εn = arg minε PnL1(Qn,ε), where PnL1(Qn,ε) = 

(PnL1j(Qjn,ε(j)) : j = 1, …, k1+1). Let Qn
∗ = Qn, εn

.

We wish to establish that PnD∗(Qn, εn
, Gn) = oP(n–1/2), where

PnD∗(Qn, εn
, Gn) = ∑

j = 1

k1 + 1
PnDQn, εn, j

∗ (Q jn, εn( j), Q− jn, εn
, Gn) .

For each j = 1, …, k1 + 1, assume the following conditions:

1. Suppose that by application of the previous lemma to ΨQn, j:ℳ R, submodel 

{Qjn,ε(j) : ε(j)}, loss function L1j(Qj), εn(j) = arg minε(j) PnL1j(Qjn,ε(j)), and one-

step TMLE Qjn,εn(j), we establish its conclusion 

PnDQ
n
, j

∗ (Q jn, ε
n

( j), Q– jn, Gn) = oP(n–1/2). For completeness, Lemma 15 below 

explicitly states these j specific conditions of the previous lemma, which are 

sufficient for this conclusion.

2. Let f n j = DQn, j
∗ (Q jn

∗ , Q− jn, Gn) − DQn, j
∗ (Q jn

∗ , Q− jn
∗ , Gn), and assume (Pn − P0)fnj = 

oP(n−1/2). For this to hold if suffices to assume that P0 f n j
2 p 0 and lim supn→∞ 

‖fnj‖v< M a.e.
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3. Let f n j, 1 = DQn, j
∗ (Qn

∗, Gn) − D
Qn

∗, j
∗ (Qn

∗, Gn), and assume (Pn − P0)fnj = oP(n−1/2). 

For this to hold if suffices to assume that P0 f n j
2 p 0 and lim supn→∞ ‖fnj,1‖v< 

M a.e.

4. R2, Qn, j(((Q jn
∗ , Q− jn

∗ ), Gn), (Q0, G0)) − R2, Qn, j(((Q jn
∗ , Q− jn), Gn), (Q0, G0)) = oP(n−1/2)

;

5. R
2, Q jn

∗ , j
((Qn

∗, Gn), (Q0, G0)) − R2, Qn, j((Qn
∗, Gn), (Q0, G0)) = oP(n−1/2);

6. Ψ
Qn

∗, j
(Q jn

∗ ) − Ψ
Qn

∗, j
(Q j0) − ΨQn, j(Q jn

∗ ) − ΨQn, j(Q j0) = oP(n−1/2).

Then, PnD∗(Qn, εn
, Gn) = oP(n−1/2).

Lemma 15

Let f n j(ε( j)) = PnDQn, j
∗ (Q jn, ε( j), Q− jn, Gn) and gn j(ε( j)) = d

dε( j)PnL1 j(Q jn, ε( j)). Let 

f n j′ (ε( j)) = d
dε( j) f n j(ε( j)) and gn j′ (ε( j)) = d

dε( j)gn j(ε( j)). Let : ε0(j) = 0.

Assume the following conditions:

1. f n j(εn( j)) = f n j(0) + f n j
∗ (0)εn( j) + OP(εn( j)2) and 

gn j(εn( j)) = gn j(0) + gn j′ (0)εn( j) + OP(εn
2( j));

2. εn
2( j) = oP(n−1/2);

3. { d
dεn( j) DQn, j

∗ (Q jn, εn( j), Q− jnGn) − d2

dεn( j)2
L1 j(Q jn, εn( j))}/n1/4 falls in a P0-Donsker 

class with probability tending to 1;

4.
d

dε0( j)P0 DQn, j
∗ (Q jn, ε0( j), Q− jnGn) − DQn, j

∗ (Q j0, ε0( j), Q− j0G0) = OP(n−1/4)

d2

dε0( j)2
P0{L1 j(Q jn, ε0( j)) − L1 j(Q j0, ε0( j))} = OP(n−1/4);

5.

P0
d2

dε0( j)2
L1 j(Q j0, ε0( j)) = P0DQ0, j

∗ (P0){DQ0, j
∗ (P0)}⊤ . (44)
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If L1 j(Q j(P)) = − logpQ j(P), η(P) for some density parameterization 

(Q j, η) pQ j, η, then eq. (44) holds;

6. d
dε0( j) R2, Q0, j((Q j0, ε0( j), Q− j0, G0), (Q0, G0)) = 0.

Then, PnDQn, j
∗ (Q jn, εn( j), Q− jn, Gn) = oP(n−1/2) .

Proof—This is an immediate application of Lemma 13. □

Proof of Lemma 14

Consider a 1-dimensional submodel {Pε : ε}⊂ ℳ with score S. We have

d
dεΨ(Pε) = d

dεΨ(Qε)

= d
dεΨ(Q1ε, …, Qk1 + 1ε)

∑ j = 1
k1 + 1 d

dεΨ(Q− j, Q jε) .

By pathwise differentiability of Ψ at P the left-hand side equals PD*(P)S, while, by pathwise 

differentiability of ΨQ,j at P, each j-specific term on the right-hand side equals PDQ, j
∗ (P)S. 

This proves that

PD∗(P)S = ∑
j = 1

k1 + 1
PDQ, j

∗ (P)S = P ∑
j = 1

k1 + 1
DQ, j

∗ (P) S .

Since this holds for each S ∈ T(P) and DQ, j
∗ (P) ∈ T(P) for all j, this implies 

D∗(P) = ∑ j = 1
k1 + 1

DQ, j
∗ (P). This proves the first statement of the lemma. This shows also that 

PnD∗(Qn
∗, Gn) = ∑ j = 1

k1 + 1
PnD

Qn
∗, j

∗ (Qn
∗, Gn), so it suffices to prove that 

PnD
Qn

∗, j
∗ (Qn

∗, Gn) = oP(n−1/2) for each j. In the lemma we assumed that we already established 

PnD
Qn

∗, j
∗ (Q jn

∗ , Q− jn, Gn) = oP(n−1/2), by application of Lemma 15.

Firstly, we want to prove that Pn{D
Qn

∗, j
∗ (Q jn

∗ , Q− jn, Gn) − DQn, j
∗ (Q jn

∗ , Q− jn
∗ , Gn)} = oP(n−1/2), 

which then shows that PnDQn, j
∗ (Qn

∗, Gn) = oP(n−1/2). This term can be represented as Pnfn. We 

can write Pnfn = (Pn − P0)fn + P0fn. By our first assumption, we have (Pn − P0)fn = oP(1). So 

we now have to consider
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P0{DQ
n
, j

∗ (Qn j
∗ , Q− jn, Gn) − DQn, j

∗ (Q jn
∗ , Q− jn

∗ , Gn)}

= ΨQn, j(Q jn
∗ ) − ΨQn, J(Q j0) − R2, Qn, j(((Q jn

∗ , Q− jn
∗ ), Gn), (Q0, G0))

− ΨQn, j(Q jn
∗ ) + ΨQn, j(Q j0) − R2, Qn, j(((Q jn

∗ , Q− jn), Gn), (Q0, G0))

= R2, Qn, j(((Q jn
∗ , Q− jn

∗ ), Gn), (Q0, G0)) − R2, Qn, j(((Q jn
∗ , Q− jn), Gn), (Qo, G0))) .

By assumption 2., the latter is o (n−1/2). This proves now that PnDQn, j
∗ (Qn

∗, Gn) = oP(n−1/2).

We now want to prove that Pn{DQn, j
∗ (Qn

∗, Gn) − D
Qn

∗, j
∗ (Qn

∗, Gn)} = oP(n−1/2), so that we can 

conclude PnD
Qn

∗, j
∗ (Qn

∗, Gn)} = oP(n−1/2). Let, f n = {DQn, j
∗ (Qn

∗, Gn) − D
Qn

∗, j
∗ (Qn

∗, Gn)}, so that 

this term can be represented as Pnfn. We have Pnfn = (Pn − P0)fn + P0fn. By assumption 3., 

we have (Pn – P0)fn=oP(n−1/2). We now have to consider

P0{DQn, j
∗ (Qn

∗, Gn) − D
Qn

∗, j
∗ (Qn

∗, Gn)}

= Ψ
Qn

∗, j
(Q jn

∗ ) − Ψ
Qn

∗, j
(Q j0) + R

2, Qn
∗, j

((Qn
∗, Gn), (Q0, G0))

− ΨQn, j(Q jn
∗ ) + ΨQn, J(QJ0) − R2, Qn, j((Qn

∗, Gn), (Q0, G0)) .

By assumption 4., we have R
2, Qn

∗, j
() − R2, Qn, j() = oP(n−1/2). By assumption 5, the “second 

order Ψ-difference” is oP(n−1/2) as well. □
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