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Abstract

A design is proposed for randomized comparative trials with ordinal outcomes and prognostic 

subgroups. The design accounts for patient heterogeneity by allowing possibly different 

comparative conclusions within subgroups. The comparative testing criterion is based on utilities 

for the levels of the ordinal outcome and a Bayesian probability model. Designs based on two 

alternative models that include treatment-subgroup interactions are considered, the proportional 

odds model and a non-proportional odds model with a hierarchical prior that shrinks toward the 

proportional odds model. A third design that assumes homogeneity and ignores possible 

treatment-subgroup interactions also is considered. The three approaches are applied to construct 

group sequential designs for a trial of nutritional prehabilitation versus standard of care for 

esophageal cancer patients undergoing chemoradiation and surgery, including both untreated 

patients and salvage patients whose disease has recurred following previous therapy. A simulation 

study is presented that compares the three designs, including evaluation of within-subgroup type I 

and II error probabilities under a variety of scenarios including different combinations of 

treatment-subgroup interactions.
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1 Background

This paper describes a design for a small single-center randomized controlled clinical trial to 

evaluate the effectiveness of nutritional prehabilitation (Nuprehab) for esophageal cancer 

patients who undergo esophageal resection preceded and followed by chemoradiation 

therapy. Common postoperative morbidities for patients who undergo esophageal resection 

include anastomotic leak and stricture, chylothorax, delayed emptying or dumping 

syndrome, pulmonary complications such as pneumonia, and cardiac complications such as 

atrial fibrillation (Parekh and Iannettoni, 2007; Chen, 2014). The Nuprehab is given prior to 

surgery as well as seven days after surgery, with the aim to achieve oral immunomodulation 

with an L-arginine based enteral formula. The motivation for the trial is the hypothesis that 

providing patients with Nuprehab may reduce the incidence of postoperative morbidity and 

mortality via nutritional supplementation (see, e.g., Braga et al., 2002; Waitzberg et al., 

2006).

Patients will be randomized to receive either Nuprehab or control, which is the standard of 

care. All patients will be monitored for morbidity and mortality for thirty days following 

their surgery. The trial’s primary outcome is Clavien-Dindo postoperative morbidity (POM) 

score (Clavien et al., 1992; Dindo et al., 2004; Clavien et al., 2009), which is ordinal with 

six levels: 0=normal recovery, 1=minor complication, 2=complication requiring 

pharmaceutical intervention, 3=complication requiring surgical, endoscopic or radiological 

intervention, 4=life-threatening complication requiring intensive care, and 5=death. The 

worst POM score during 30 days post surgery will be recorded. The trial will enroll 

approximately 60% primary and 40% salvage patients. Primary patients are treatment naive, 

whereas salvage patients have been treated previously with chemoradiation therapy, but not 

surgery, and their disease has recurred. Salvage patients are expected to have fewer 

preoperative nutritional deficiencies, but more preoperative comorbidities and worse 

prognosis. Consequently, it is plausible that the efficacy of Nuprehab may differ 

substantially for primary and salvage patients.

In this paper, we describe a design that accounts for the possibility that Nuprehab may be 

clinically beneficial for one of the subgroups but not the other. This is in sharp contrast with 

a more traditional “one-size-fits-all” approach that ignores prognostic information and 

makes one recommendation for all patients about whether Nuprehab is clinically beneficial. 

We evaluate the design based on its probabilities of recommending Nuprehab to each 

subgroup in four key scenarios: (i) the “complete null” scenario where Nuprehab does not 

improve POM scores for patients in either subgroup; (ii) the “partial null” scenario where 

Nuprehab does not improve POM scores for primary patients, but achieves a targeted benefit 

for salvage patients; (iii) the “partial null” scenario where Nuprehab achieves a targeted 

benefit for primary patients, but does not improve POM scores for salvage patients; and (iv) 

the “complete alternative” scenario where Nuprehab achieves targeted benefits in POM 

score reduction for both primary and salvage patients. The proposed design addresses the 

concern that, in the partial null scenarios (ii) and (iii), a one-size-fits-all design will have an 

unacceptably high (low) probability for recommending Nuprehab to the non-benefiting 

(benefiting) subgroup.
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The proposed design is frequentist in that it is specified to provide specific probabilities of 

recommending Nuprehab to a non-benefiting subgroup (i.e. type I error) and to a benefiting 

subgroup for a particular targeted benefit (i.e. power). However, the decision to recommend 

Nuprehab for a particular subgroup is based on a posterior probability from a Bayesian 

model. Designs have been proposed that are similar to our design in that they facilitate 

subgroup specific recommendations, and stopping subsequent enrollment for particular 

subgroups, see, e.g., Brannath et al. (2009); Wang et al. (2009); Rosenblum et al. (2016). 

These designs do not involve an ordinal outcome, however.

We consider two alternative Bayesian probability models that facilitate subgroup specific 

recommendations. The first is the proportional odds (PO) cumulative logistic regression 

model of McCullagh (1980) with a treatment-subgroup interaction parameter. The second is 

a non-proportional odds (NPO) model with a hierarchical prior that shrinks toward the PO 

model. Although NPO models have been proposed, see, e.g., Peterson and Harrell (1990); 

Bender and Grouven (1998); Ishwaran (2000); Agresti (2010), as far as we are aware our 

formulation of the NPO model is novel, and moreover this is the first proposal to use an 

NPO model as the basis for comparing treatments in a randomized clinical trial. Guo and 

Yuan (2017) use the dispersed cumulative probit model of McCullagh (1980), which is a 

type of NPO model, for personalized dose finding in a phase I/II study of molecularly 

targeted agents. As we describe below, compared with the PO model, treatment comparison 

based on the proposed NPO model is more robust but more complex. To obtain a practical 

design that deals with this complexity, we propose a comparative testing criterion based on 

elicited numerical utilities of the six POM scores. Our approach may be considered a 

generalization of the utility-based design proposed by Murray et al. (2016), which does not 

accommodate prognostic subgroups and uses a Dirichlet-multinomial model.

The remainder of the paper is organized as follows. In Section 2, we discuss treatment 

comparison with ordinal outcomes in general and our utility-based comparative criterion in 

particular. In Section 3, we describe the PO and NPO models. In Section 4, we discuss 

practical design considerations, including specifying targeted alternatives, analysis and 

monitoring plan, controlling the probability of committing a type I error, and sample size. In 

Section 5, we present the results of a simulation study comparing the proposed design based 

on either the PO or NPO model, and also a more traditional design based on a PO model 

without a treatment-subgroup interaction parameter. We conclude with a brief discussion in 

Section 6.

2 Treatment Comparison

Each design compares the efficacy of Nuprehab relative to standard of care using the six-

level ordinal POM score. Comparing treatments based on an ordinal outcome is complicated 

by the fact that, even when the probability of each outcome level is known, it is not always 

clear whether one treatment is superior to the other. A simple example is a three-level 

outcome (Good, Intermediate, Poor) where treatment A gives probabilities (0.30, 0.50, 0.20) 

and treatment B gives probabilities (0.40, 0.30, 0.30). Since B has larger probabilities of 

both Good and Poor compared to A, it is not clear whether one treatment is superior to the 
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other. Comparing the two treatments requires additional information, such as a 

quantification of the relative desirabilities of the three possible events.

Accounting for prognostic subgroups further complicates matters. To see this, denote Y = 

POM score, P = primary, S = salvage, N = Nuprehab, C = control, and

πy(Sgp, Trt) = Prob(Y = y |Sgp, Trt) and πy
+(Sgp, Trt) = Prob(Y ≤ y |Sgp, Trt),

for y = 0, …, 5, Sgp ∈ {P, S} and Trt ∈ {N, C}. Indexing Sgp by x and Trt by a or a′, if

πy
+(x, a) ≥ πy

+(x, a′), for y = 0, 1, …, 4, and πy
+(x, a) > πy

+(x, a′), for some y = 0, 1, …, 4,

then clearly treatment a is superior to a′ for patients in subgroup x. By contrast, if

πy
+(x, a) < πy

+(x, a′), for some y = 0, 1, …, 4, and  πy
+(x, a) > πy

+(x, a′), for some y = 0, 1, …, 4,

then it is not clear whether a is superior to a′ for patients in subgroup x. Stated formally, for 

a particular patient subgroup, if the POM score distributions corresponding to each treatment 

arm are stochastically ordered with strict inequality πy
+(x, a) > πy

+(x, a′) for at least one level 

y, then it is clear which treatment is superior for that subgroup. By contrast, if the POM 

score distributions corresponding to each treatment arm are not stochastically ordered, then 

it is not clear whether one treatment is superior to the other for that subgroup.

To provide a criterion for determining whether one treatment is superior, we elicit numerical 

utilities U(Y = y) for all levels of Y, and compare treatments using mean utilities,

U(π(Sgp, Trt)) = ∑
y = 0

5
U(Y = y) × πy(Sgp, Trt) .

These depend on the subgroup-treatment specific outcome probabilities π(Sgp, Trt) and a 

utility function U(Y = y) that quantifies the desirability of each outcome level. Following, 

Houede et al. (2010), Thall and Nguyen (2012) and Murray et al. (2016), we elicited {U(Y = 

y), y = 0, …, 5} from the trial’s Principal Investigator, WH, so that the numerical utilities 

reflect his familiarity with postoperative complications following esophageal resection. To 

do this, we first set U(Y = 0) = 100 and U(Y = 5) = 0, and then asked WH to specify 

numerical values for the intermediate levels, y = 1, …, 4, that reflect their desirability 

relative to the best and worst levels. The numerical values that WH chose are:

U(Y = 0) = 100, U(Y = 1) = 80, U(Y = 2) = 65,

U(Y = 3) = 25, U(Y = 4) = 10, U(Y = 5) = 0.
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These reflect that POM scores ≤ 2 are substantially more desirable than POM scores ≥ 3. 

Because a larger mean utility corresponds to better patient outcomes on average, if Ū(π(x, 
a)) > Ū(π(x, a′)), then treatment a is superior to a′ for patients in subgroup x. Therefore, 

regardless of whether π(x, a) and π(x, a′) are stochastically ordered, the mean utilities 

provide an unambiguous criterion for comparing treatments.

One important property of the mean utilities is a consequence of the following theorem.

Theorem 1

If π(x, a) stochastically dominates π(x, a′), then Ū(π(x, a)) > Ū(π(x, a′)) for all admissible 

U(Y) such that U(Y = 0) > U(Y = 1) > ⋯ > U(Y = 4) > U(Y = 5).

Theorem 1 follows from first-order stochastic dominance (Quirk and Saposnik, 1962); 

nonetheless, we provide a proof in the supplementary materials. Consequently, when the 

POM score distributions are stochastically ordered—and thus, it is clear which treatment is 

superior without appealing to the mean utilities—the proposed utility-based comparison is 

not sensitive to the elicited numerical values in that a different set of admissible values will 

result in the same conclusion. By contrast, when the POM score distributions are not 

stochastically ordered, eliciting numerical values is necessary to determine whether one 

treatment is superior. The proposed utility-based comparison necessarily is sensitive to the 

elicited values in that a different set of admissible values may result in a different 

conclusion.

Since the POM score probabilities are unknown, we learn about these using a Bayesian 

model with unknown parameter θ and model-based mean utilities Ū(π(Sgp, Trt; θ)). Given 

interim or final data D, our comparative testing criterion is as follows. If

Prob{U(π(x, a; θ)) > U(π(x, a′; θ)) |D} > pcut,

then we declare treatment a is superior to a′ for patients in subgroup x. We specify pcut to 

control subgroup specific type I error probabilities. We describe how to do this in Section 4.

3 Probability Models

During the process of designing the trial, we considered two Bayesian cumulative logistic 

regression models that both include treatment-subgroup interaction parameters. The first is a 

PO model, which is a popular regression model for ordinal response variables, see, e.g., 

McCullagh (1980); Walters et al. (2001); Abreu et al. (2008). The restrictive parametric 

assumption underlying the PO model often is unrealistic, however. The second is a NPO 

model that relaxes this assumption at the cost of greater model complexity.

3.1 Proportional Odds Model

Denote logit(q) = log{q/(1 − q)}. The PO model that we considered assumes
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logit{πy
+(X, A; αy, β)} = αy + β1X + β2A + β3X A, for y = 0, …, 4, (1)

where α0 ≤ ⋯ ≤ α4, X = −0.5 for primary, X = 0.5 for salvage, A = −0.5 for control and A = 

0.5 for Nuprehab. This model is parsimonious in that it accounts for all treatment and 

subgroup effects using three parameters, β = (β1, β2, β3).

Let ny(X, A) denote the number of patients with a POM score equal to y in subgroup X and 

treatment arm A. We assume observations are mutually independent, so that the likelihood 

function for the unknown model parameters (α, β) is

L(α, β | D) = ∏
y ∈ 0, …, 5

∏
X ∈ − .5, .5

∏
A ∈ − .5, .5

πy(X, A; α, β)
ny(X, A)

, (2)

where

π0(X, A; α, β) = π0
+(X, A; α0, β),

πy(X, A; α, β) = πy
+(X, A; αy, β) − πy − 1

+ (X, A; αy − 1, β), for y = 1, …, 4,

π5(X, A; α, β) = 1 − π4
+(X, A; α4, β),

and πy
+(X, A; αy, β) y = 0, …, 4, is defined in (1).

We specify the prior distribution for (α, β) such that p0(α, β) = p0(α) × p0(β), where

p0(α) = p0(α0) × ∏
s = 1

4
p0(αy |αy − 1) and p0(β) = p0(β1) × p0(β2) × p0(β3) .

The exact prior distributional forms that we assume are

α0 t5(α0
∗, 2.5), αy |ay − 1, t5(αy

∗, 2.5)[αy − 1, ∞], for y = 1, 2, 3, 4, (3)

β1 t5(β1
∗, 2.5), β2 t5(0, 2.5), β3 t5(0, 2.5),
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where we write p0(θ)[L, U] to denote that p0(θ) has support on the interval [L, U]. The 

above prior restricts α0 ≤ ⋯ ≤ α4 so that 0 ≤ π1
+(X, A; α1, β) ≤ ⋯ ≤ π4

+(X, A; α4, β) ≤ 1 for all X 

∈ {−.5, .5} and A ∈ {−.5, .5}, which is necessary to ensure that the probability model is 

admissible. Following the recommendations of Ghosh et al. (2017), we specify t-

distributions with a scale of 2.5 and five degrees of freedom. This specification places about 

90% of the prior probability mass on the range of values within 5 of the prior mean, while 

the heavy tails do not preclude more extreme values should the data demand this. Because 

an effect size of 5 corresponds to a shift from 0.01 to 0.99 on the probability domain 

between subgroups or treatment arms, the proposed prior specification allows the observed 

data to dominate posterior inference.

We specify non-zero prior means, {αy
∗}

y = 0
4

 and β1
∗, to reflect the prior information that WH 

provided about the POM score probabilities of each subgroup in the control arm, which we 

report in Table 1. Using πy
∗(x) to denote the prior probabilities that WH provided for the 

subgroup corresponding to X = x, and πy
+, ∗(x) = ∑𝓁 = 1

y π𝓁
∗(x), we set

αy
∗ = log

πy
+, ∗(P)

1 − πy
+, ∗(P)

+ log
πy

+, ∗(S)

1 − πy
+, ∗(S)

2, for y = 0, …, 4, and

β1
∗ = ∑

y = 0

4
log

πy
+, ∗(P)

1 − πy
+, ∗(P)

− log
πy

+, ∗(S)

1 − πy
+, ∗(S)

5 .

Because we set the prior means for β2 and β3 equal to zero, a priori Ū(π(P, N)) = Ū(π(P, C)) 

and Ū(π(S, N)) = Ū(π(S, C)). Therefore, a posteriori a non-zero mean utility difference 

between treatment arms in either subgroup will reflect the observed data, and not the prior.

The PO model assumes that the regression coefficients, and thus the log-odds ratios, do not 

differ with the level of the response variable. This is a strong parametric assumption that 

often is unrealistic in practice, including the present context. The PO model likely is popular 

since it facilitates treatment comparison in that a utility function need not be elicited from 

the clinician(s). To see this, note that for y = 0, …, 4 and X = x,

πy
+(x, N; αy, β) =

πy
+(x, C; αy, β)exp{β2 + β3x}

1 − πy
+(x, C; αy, β) + πy

+(x, C; αy, β)exp{β2 + β3x}
,

πy
+(x, N; αy, β) is monotonically increasing in (β1+β3 x) such that πy

+(x, N; αy, β) = πy
+(x, C; α, β)

when (β1 + β3 x) = 0. Therefore, for any U(Y = 0) < ⋯ < U(Y = 5),

if (β1 + β3x) > 0, then U(π(x, N; β, α)) > U(π(x, C; β, α)),

and conversely,
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if (β1 + β3x) < 0, then U(π(x, N; β, α)) < U(π(x, C; β, α)) .

Consequently, when posterior inference is based on the PO model defined in (1), the utility 

function is superfluous. However, when the actual response distributions do not satisfy the 

PO assumption, e.g., they are not stochastically ordered, the PO model may be misleading.

3.2 Non-Proportional Odds Model

To relax the assumption required by the PO model, that the log-odds ratios do not differ with 

the response level, we propose a hierarchical cumulative logistic regression model that 

assumes

logit{πy
+(X, A; αy, γy)} = αy + γ1, yX + γ2, yA + γ3, yX A, for y = 0, …, 4, (4)

where X and A are defined similarly as for the PO model. In contrast with the PO model, the 

NPO model in (4) allows different log-odds ratios at each response level y. We assume that 

observations are mutually independent such that the likelihood function for the unknown 

parameters (α, γ) has the same general form (2) as for the PO model.

We specify a hierarchical prior for (α, γ) as follows,

α0 t5(α0
∗, 2.5), αy |αy − 1, γy − 1, γy t5(αy

∗, 2.5)[αy − 1 + 0.5 |γ1, y − 1 − γ1, y | + 0.5 |γ2, y − 1 − γ2, y | + 0.25

|γ3, y − 1 − γ3, y | , ∞], for y = 1, 2, 3, 4,

γ1, y | β1, σ1 N(β1, σ1
2), β1 t5(β1

∗, 2.5), σ1 N(0, 1)[0, ∞], (5)

γ2, y | β2, σ2 N(β2, σ2
2), β2 t5(0, 2.5), σ2 N(0, 1)[0, ∞],

γ3, y | β3, σ3 N(β3, σ3
2), β3 t5(0, 2.5), σ3 N(0, 1)[0, ∞] .

The prior constraints on αy y = 1
4

 ensure that 0 ≤ π1
+(X, A; α1, γ1) ≤ ⋯ ≤ π4

+(X, A; α4, γ4) ≤ 1

for all X ∈ {−0.5, 0.5} and A ∈ {−0.5, 0.5}. These inequalities hold when

αy ≥ αy − 1 + 0.5 |γ1, y − 1 − γ1, y | + 0.5 |γ2, y − 1 − γ2, y | + 0.25 |γ3, y − 1 − γ3, y | , y = 1, 2, 3, 4,
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which is reflected in our specification of the prior. The hierarchical structure that we propose 

in (5) shrinks toward the PO model defined in (1). As σ1
2 0, σ2

2 0 and σ3
2 0, then γ1,y 

→ β1, γ2,y → β2 and γ3,y → β3, for y = 0, …, 4, and thus the log-odds ratios become 

invariant to the outcome level. Essentially, the NPO model in (4) adds a layer of additional 

structure to the PO model in (1) that allows each effect to deviate from the PO assumption. 

By using half-normal distributions with a unit standard deviation for σ1, σ2 and σ3, a priori 
the proposed NPO model prefers small deviations from the PO model. This type of 

hierarchical NPO model was alluded to as an alternative for PO models in the discussion of 

McKinley et al. (2015), but they neither implemented nor fully specified such a model. 

Because the proposed NPO model allows the log-odds ratios to differ with the response 

level, the model-based estimates of the response distributions need not be stochastically 

ordered. Consequently, when posterior inference is based on the NPO model, our proposed 

utility-based comparative testing criterion facilitates treatment comparison.

3.3 Posterior Estimation

We carry out posterior estimation for the PO and NPO models using JAGS via the R package 

R2jags (Plummer, 2003). Posterior convergence tends to be immediate and autocorrelation 

tends to be low, likely due, in part, to our balanced specification of the design matrix. We 

use the posterior samples from JAGS to calculate the four posterior probabilities required for 

the utility-based comparative testing criterion given in Section 2. Because the mean utilities 

are tractable functions of the unknown model parameters for both the PO and NPO models, 

obtaining posterior samples of the mean utilities is straightforward. We provide freely-

available, user-friendly R software for implementation, see Supplementary Materials.

4 Design Considerations

Although we use a Bayesian probability model for statistical inference, we design the trial to 

ensure certain desirable frequentist operating characteristics (OCs), e.g., 0.80 power under 

the targeted alternative with 0.05 probability of making a type I error. We are concerned with 

the subgroup specific power and type I error probability. That is, when Nuprehab reduces the 

number and severity of postoperative complications for a particular subgroup by the targeted 

amount, we want our design to have 0.80 probability of correctly declaring N superior to C 
for patients in that subgroup. By contrast, when Nuprehab does not reduce the number and 

severity of postoperative complications for a particular subgroup, we want our design only to 

have 0.05 probability of incorrectly declaring N superior or inferior to C for patients in that 

subgroup.

We met with WH to determine a practical targeted difference between the treatment arms for 

primary and salvage patients. During our discussion, WH expressed his desire for the trial to 

be powered to detect a 75% reduction in POM scores ≥ 3 in each subgroup. We then derived 

a targeted mean utility difference corresponding to this 75% reduction in POM scores ≥ 3 in 

each subgroup as follows. For the anticipated POM score probabilities in the control arm for 

each subgroup, a 75% reduction corresponds to shifts in the probability of POM scores ≥ 3 

from 0.20 to 0.05 for primary patients, and from 0.35 to 0.09 for salvage patients. Under the 

proportional odds assumption, a 75% reduction in POM scores ≥ 3 corresponds to the 
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cumulative POM score probabilities and mean utilities in Table 2. We designed the trial to 

target mean utility differences of 17.3 = 92.8 − 75.5 in primary patients and 27.6 = 87.6 

− 60.0 in salvage patients.

Whitehead (1993) derived a sample size formula for a traditional fixed-sample design with 

ordinal outcomes based on a PO model, which is

n = 12[Φ−1(1 − α/2) + Φ−1(1 − β)]2/ δ2 1 − ∑y = 0
5 (πy

∗)3 ,

where Φ(x) is the standard normal distribution evaluated at x, α and β are the desired type I 

and II error probabilities, δ is the targeted log-odds ratio, and πy
∗ = Pr(Y = y) under the 

targeted alternative. Although we use our utility-based comparative testing criterion 

proposed in Section 2, we demonstrated earlier that for the PO model this criterion is 

equivalent to a particular contrast of the regression coefficients that is also the basis for 

Whitehead’s sample size formula. Viewing each subgroup as a separate trial, under their 

respective targeted alternatives, we need to enroll 56 primary and 38 salvage patients for α = 

0.05 and β = 0.20. Assuming 60% of the enrollees will be primary patients, we need to 

enroll 94 patients to achieve these subgroup sample sizes. Because the PO model borrows 

strength across subgroups for estimating the intercept parameters, αy y = 0
4

, we expect the 

above sample size calculation to be conservative. When the PO assumption holds we expect 

our NPO model to have less power than our PO model, though only slightly less as we 

specify an informative half-standard normal distribution as the prior for σ1, σ2 and σ3 in (5).

In the trial, patients are assigned to the two treatment arms using stratified block 

randomization with blocks of size four. Thus, for each block of four patients within each 

subgroup, two patients will receive Nuprehab and two will receive control. This will ensure 

that the treatment arms will have similar numbers of patients from each subgroup throughout 

the trial. Given the modest sample size requirements, one interim analysis will be done half-

way through the trial. At this point, using our utility-based comparative testing criterion, the 

design will decide whether to continue enrolling patients from each subgroup. If one 

treatment is declared superior to the other for a certain subgroup at the interim analysis, then 

no additional patients from that subgroup will be enrolled. Otherwise, enrollment of patients 

from that subgroup will continue until the final analysis.

To control the probability of committing a type I error, we use a maximum duration alpha-

spending approach such that f(t) = α × (t/Tmax)3, where Tmax denotes the maximum trial 

duration, see Jennison and Turnbull (1999, Section 7.2.3). To do this, we set pcut = Φ(z) 

where z corresponds to the relevant threshold for the test statistic in a frequentist group 

sequential analysis, which we calculate using the R package gsDesign. With one interim 

analysis at the mid-point of the trial, this gives probability thresholds at the interim and final 

analyses of 0.997 and 0.976, respectively. Due to the asymptotic normality of the posterior 

distribution in general, see, e.g., Gelman et al. (2014, Section 4), these thresholds control the 

type I error asymptotically. However, we use computer simulation to verify that our design 

controls type I error for the planned sample size. To be conservative, we aim to enroll up to 
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100 patients. Given the anticipated accrual rate of 2 patients per month, the interim and final 

analyses are expected to be performed at 26 and 51 months, respectively.

5 Simulation Study

In this section, we describe a simulation study that we carried out to evaluate and compare 

the frequentist OCs of the proposed design, under each of the PO and NPO models defined 

in Section 3. For further comparison, we considered a one-size-fits-all design based on a PO 

model that assumes

logit{πy
+(X, A; αy, β)} = αy + β1X + β2A, for y = 0, …, 4.

We specify the same prior distributions for α, β1 and β2 as for the PO model defined in (3). 

For this design, using the same two-stage group sequential structure that controls the 

probability of committing a type I error at 0.05, if Prob(β2 > 0 | D) > pcut, then we declare N 
superior to C for patients in both subgroups. Conversely, if Prob(β2 < 0 | D) > pcut, then we 

declare N inferior to C for patients in both subgroups. We compare the designs based on 

their probabilities of declaring N superior (or inferior) to C across a range of scenarios. To 

assess the decision criteria, we used 10,000 posterior samples following 500 warm-up 

samples. For all three models, posterior sampling took about 4 seconds for an interim 

analysis with 50 observations, and about 7 seconds for a final analysis with up to 100 

observations.

Table 3 reports the true POM score distributions for each scenario. We used the same POM 

score distribution to generate observations for the control arm in each subgroup for every 

scenario, i.e. P0 for primary patients and S0 for salvage patients. Each patient had a 60% 

chance of belonging to the primary subgroup throughout. Scenario 1 is the complete null 

case where N provides no benefit to patients in either subgroup. Scenarios 2 and 3 are 

treatment-subgroup interaction cases where N provides the targeted benefit to patients in one 

subgroup, and no benefit to patients in the other subgroup. Scenario 4 is the complete 

alternative case where N provides the targeted benefit to patients in both subgroups. The PO 

assumption holds for Scenarios 1–4. Scenarios 5 and 6 are treatment-subgroup interaction 

cases, and Scenario 7 is a complete alternative case, but the PO assumption does not hold. In 

particular, the log-odds ratio comparing treatment arms corresponding to POM scores ≤ 0 

and ≤ 1 are smaller than those corresponding to POM scores ≤ 2, ≤ 3 and ≤ 4, but the 

targeted 75% reduction in POM scores ≥ 3 is still achieved in each subgroup. This reflects a 

benefit that greatly reduces severe postoperative complications, but affects the rate of minor 

postoperative complications to a lesser degree.

Table 4 reports the proportion of trials in which N was declared superior (inferior) to C, and 

the average sample size. In Scenario 1, i.e. the complete null case, all three designs control 

the within subgroup probability of making a type I error near 0.05. In Scenario 4, i.e. the 

complete alternative case, the two stratified designs have greater than 0.80 power of 

declaring N superior to C in each subgroup. Excepting Scenario 4, the three competing 

designs are unlikely to stop early, which is reflected by the average sample sizes near 100. 
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Compared to the stratified design based on the PO model, when the PO assumption holds, 

e.g., Scenarios 2, 3 and 4, the stratified design based on the more flexible NPO model has 

similar power for declaring N superior to C in the benefiting subgroup(s), and when the PO 

assumption does not hold, e.g., Scenarios 5, 6 and 7, the NPO model has larger power of 

declaring N superior to C in the benefiting subgroup(s). The power for each design is lower 

when the PO assumption does not hold, which is not surprising as the mean utility 

differences are smaller in these cases. Compared to the traditional design, when both 

subgroups benefit, e.g., Scenarios 4 and 7, the stratified designs have less power for 

declaring N superior to C in both subgroups, but when only one subgroup benefits, e.g., 

Scenarios 2, 3, 5 and 6, the stratified designs have greater power of declaring N superior to C 
in the benefiting subgroup, and are far less likely to incorrectly declare N superior to C in 

the non-benefiting subgroup.

6 Discussion

In this paper, we have proposed a design for comparing treatments in two prognostic 

subgroups based on ordinal outcomes. The design was motivated by a trial comparing the 

effectiveness of nutritional prehabilitation (NuPrehab) against the standard of care for 

improving postoperative outcomes in primary and salvage patients who undergo esophageal 

resection. We considered two Bayesian cumulative logistic regression models for statistical 

inference, a proportional odds (PO) model and a hierarchical non-proportional odds (NPO) 

model that shrinks toward the PO model. Based on the results of our simulation study, we 

determined that the design based on the NPO model has preferable frequentist operating 

characteristics. In particular, when the PO assumption is satisfied the NPO model has similar 

probability of recommending NuPrehab in the benefiting subgroup(s), whereas when the PO 

assumption is not satisfied the NPO model can have substantially higher probability of 

recommending NuPrehab in the benefiting subgroup(s).

We also compared our stratified medicine design with a more traditional design that does not 

facilitate subgroup specific recommendations. If both subgroups benefit from NuPrehab, 

then the traditional design is more likely to recommend its use in each subgroup. However, 

when only one of the two subgroups benefits from NuPrehab, the traditional design is less 

likely to recommend its use in the benefiting subgroup and more likely to recommend its use 

in the non-benefiting subgroup. Because substantial treatment effect heterogeneity between 

primary and salvage patients is plausible in the motivating trial, we find the stratified 

medicine design based on the NPO model appealing. In another context, if this design is not 

appealing, then including a model selection between a model with and a model without an 

interaction term may provide an avenue for achieving a design with more appealing 

operating characteristics. Another alternative is to consider a prior for the interaction 

parameter(s) that facilitates borrowing substantial strength for the treatment effect across 

subgroups, perhaps in a data-dependent manner. These are avenues for future research.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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