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Abstract
Aldehyde dehydrogenase 2 (ALDH2) is best known for 
its critical detoxifying role in liver alcohol metabolism. 
However, ALDH2 dysfunction is also involved in a wide 
range of human pathophysiological situations and is 
associated with complications such as cardiovascular 
diseases, diabetes mellitus, neurodegenerative diseases 
and aging. A growing body of research has shown that 
ALDH2 provides important protection against oxidative 
stress and the subsequent loading of toxic aldehydes 
such as 4-hydroxy-2-nonenal and adducts that occur 
in human diseases, including ischemia reperfusion 
injury (IRI). There is increasing evidence of its role in 
IRI pathophysiology in organs such as heart, brain, 
small intestine and kidney; however, surprisingly few 
studies have been carried out in the liver, where ALDH2 
is found in abundance. This study reviews the role of 
ALDH2 in modulating the pathways involved in the 
pathophysiology of IRI associated with oxidative stress, 
autophagy and apoptosis. Special emphasis is placed 
on the role of ALDH2 in different organs, on therapeutic 
“preconditioning” strategies, and on the use of ALDH2 
agonists such as Alda-1, which may become a useful 
therapeutic tool for preventing the deleterious effects 
of IRI in organ transplantation.
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Core tip: Aldehyde dehydrogenase 2 (ALDH2) plays 
a crucial role not only in liver ethanol metabolism 
but also in diverse pathophysiological dysfunctions 
including cardiovascular diseases, stroke, diabetes, 
neuro-degenerative dysfunctions, and aging. Its 
involvement has recently been identified in ischemia 
reperfusion injury (IRI). The present study provides an 
updated review of the literature on the role of ALDH2 
in ischemia-reperfusion injury and its activation in 
different organs (heart, brain, kidney, intestine, etc ) 
focusing especially on its possible use as a potential 
therapeutic target for preventing IRI associated with 
organ transplantation.
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INTRODUCTION
Aldehyde dehydrogenase 2 (ALDH2), a tetrameric 
allosteric mitochondrial enzyme, is one of the 19 
different ALDH enzymes ubiquitously expressed in all 
human tissues. It is most abundant in the liver, where 
it plays an essential role in the ethanol detoxifying 
pathway[1]. This pathway comprises two enzymatic 
steps. In the first, ethanol is metabolized by alcohol 
dehydrogenase (ADH) to form acetaldehyde, which 
is highly diffusible and crosses biological membranes, 
then circulates in the blood and is metabolized by 
ALDH2 to acetic acid[1,2]. ALDH2 is also responsible for 
the detoxification of other toxic short-term aldehydes, 
including some aromatic and polycyclic types[1,3]. 
In addition, ALDH2 oxidizes endogenous aldehydic 
products from lipid peroxidation of mitochondrial and 
plasma membranes under oxidative stress conditions, 
such as 4-hydroxy-2-nonenal (4-HNE) and lipoperoxides 
(malondialdehyde, MDA)[4,5]. The clearance of these 
harmful 4-HNE and aldehyde adducts, performed by 
ALDH2, is crucial for cell survival[1,4-6], since it is well 
known that 4-HNE affects mitochondrial and membrane 
integrity and other functions like apoptosis[7,8]. Although 
ALDH2 was initially known for its role in ethanol 
metabolism in liver[1], it has also been implicated in 
several pathologies, such as cardiovascular diseases[1,9], 
diabetes[1,10], neurologic dysfunctions[1,11] and more 
recently, in ischemia reperfusion injury (IRI) in organs 
such as heart[11-14], brain and eyes[15-19], intestine[20,21], 

kidney[22,23] and spinal cord[24].
IRI, a process inherent in organ tumor resection and 

transplantation, affects organ quality and transplant 
outcomes. During the process, the organ deteriorates 
due to the lack of blood flow and oxygen deprivation 
(ischemic injury) and subsequently after the restoration 
of blood flow and oxygen supply (reperfusion injury). 
While some damage occurs during the ischemia phase, 
reperfusion by itself triggers a new set of detrimental 
cellular processes that provoke the energy metabolism 
breakdown exacerbating the injury and cell death. 
With the entry of oxygen to the organ, reactive oxygen 
species (ROS), lipoperoxides and toxic aldehydes are 
generated, inflammatory mediators are released and 
cell signaling pathways are activated, extending cell 
damage[25,26], exacerbating cell death processes, and 
eventually leading to organ failure.

In this review, we first present some general 
considerations on the role of ALDH2 in the complex 
pathophysiology of IRI/oxidative mechanisms, focusing 
on 4-HNE and its consequences for autophagy/apoptosis 
processes. Then we discuss the use of therapeutic 
strategies, such as “surgical preconditioning” (remote 
ischemic preconditioning and post-conditioning) and 
“pharmacological preconditioning” (isoflurane, ethanol; 
nitrite/nitrate strategies and ALDH2 agonists) for the 
prevention of IRI. In the final section, we offer an 
update on specific ALDH2 investigations carried out in 
different organs subjected to I/R such as heart, brain, 
eyes, intestine and kidney, and assess the possibility of 
using ALDH2 agonists to prevent cold IRI in the future, 
with special emphasis on liver transplantation.

ALDH2 AND 4-HNE
The mitochondria are the main source of the ROS 
generated during reperfusion. ROS interacts with 
polyunsaturated fatty acids in biological membranes, 
producing high toxic and reactive molecules such as 
4-HNE[4,5], which can trigger the opening of mitochondrial 
permeability transition pores and inhibit the electron 
transport chain, thus contributing to the extension of the 
damage.

The specific electrophilic features of 4-HNE confer on 
this molecule a high reactivity and capacity to modify 
enzymes like kinases, belonging to sensitive pathways 
of cell homeostasis such as mitochondrial bioenergetics, 
redox balance, ROS formation, autophagy, apoptosis, 
and so on.

ALDH2 overexpression delays the formation 
of 4-HNE and toxic aldehyde adducts, and thus 
preserves the mitochondrial function during IRI[27,28]. 
Nevertheless, despite the ability of ALDH2 to remove 
these aldehyde adducts, when 4-HNE is accumulated at 
high concentrations, it may act as an ALDH2 inhibitor in 
vitro, countering its beneficial effects and worsening the 
impact of I/R insult[12,29]. 4-HNE has been shown to inflict 
organelle damage in a wide variety of cell components, 
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exposing the cell to a high level of stress and finally 
leading to its death. In this regard, it is clear that 4-HNE 
may modify essential cell-signaling molecules of survival 
mechanisms, as it does in autophagy (AMPK) and 
apoptosis (Akt)[27,28,30].

Ultimately, the clearance ratio of 4-HNE-adducts 
by ALDH2 and the ALDH2-4-HNE balance is crucial in 
order to prevent the modulation of survival mechanisms 
by 4-HNE and thus minimize some of the deleterious 
effects of IRI caused by the formation of these toxic 
aldehydes (Figure 1).

ALDH2 AND AUTOPHAGY
Autophagy is believed to play a key role in cell survival, 
with distinct functions depending on the event the cell 
is facing. In fact, autophagy is a cellular housekeeping 
mechanism, which in physiological conditions removes 
long-lived, aggregated and misfolded proteins, clears 
damaged organelles and plays an important role in 
the “survival and death” strategies of cellular stress 
responses, as occurs in the I/R condition[31,32-34].

Autophagy has two paradoxically opposite be-
haviors, depending on the stage of the I/R condition: 
during ischemia, certain levels of autophagy are cytopro-
tective[35], but during reperfusion it is detrimental[32,33]. 
One of the key elements that regulate autophagy is the 
mammalian target of rapamycin (mTOR), an autophagy 
inhibitor. The inhibitory effect of mTOR over autophagy 
can be enhanced by Akt during reperfusion, or inhibited 
by AMPK (in both ischemia and reperfusion)[31]. Taking 
into account the dual behavior of autophagy and seeing 
some of its regulators, the role that ALDH2 plays in 
I/R is also dual: During ischemia, ALDH2 benefits 
AMPK activation, thus contributing to the inhibition 
of mTOR and subsequently increasing cytoprotective 
autophagy. On the other hand, during the reperfusion 

phase, cytoprotective autophagy is no longer active. 
Under reperfusion conditions, ALDH2 inhibits AMPK but 
also activates Akt, whose phosphorylation is kicked on 
to activate mTOR, thus resulting in a detrimental Akt-
dependent inhibition of autophagy[28]. The ALDH2 dual 
regulatory effect on autophagy mechanisms through 
the Akt/AMPK/mTOR pathway could be a useful tool 
for preventing IRI. Considering that both AMPK and 
Akt are targets for 4-HNE, the beneficial effects that 
ALDH2 exerts on autophagy may be due both to its 
interaction with AMPK and to its capacity to remove 
4-HNE (Figure 2).

We have seen that autophagy is a mechanism 
which, during periods of scarce resources, enables 
the cell to recycle its own products in order to survive. 
Most of this survival potential is performed through the 
preservation of the mitochondria, which are among 
the organelles most in need of protection. Therefore, 
mitophagy, the selective process to auto-phagocytize 
mitochondria, should be carefully regulated[36]. Some 
IRI-related studies report that after ALDH2 activation, 
the mitophagy regulators tensin homolog-induced 
putative kinase 1 (PINK1)/Parkin expression is 
suppressed, resulting in reduced injury. Even though 
the specific mechanism of action remains unclear (either 
via direct inhibition or via 4-HNE cleansing), ALDH2 
clearly exerts a beneficial effect on mitophagy[37].

We can conclude that ALDH2 plays a positive role 
in the modulation of cyto-protective autophagy. It is 
an especially promising agent for the regulation of the 
deleterious effects of autophagy in cold IRI processes 
associated with organ transplantation.

ALDH2: NECROPTOSIS AND APOPTOSIS
Programmed cell death results in either a lytic or a 
non-lytic morphology, which includes different cell 
signaling pathways. It can be caused by well-known 
mechanisms such as autophagy, apoptosis, necrosis 
and necroptosis[19,38,39], which are determinant for organ 
preservation/cell survival associated with ischemia 
reperfusion injury. 

Briefly, “necrosis” is one of the most frequent 
consequences of metabolic injury due to the organ 
oxygen deprivation during ischemia, leading to ATP 
depletion. It is characterized by cell swelling, membrane 
rupture and release of cell contents with the subsequent 
inflammatory response[40]. By contrast, “apoptosis” 
is a non-lytic form of silent programmed cell death in 
which the individual dying cells separate from their 
neighbors and shrink rather than swell[40]. Cell death by 
necrosis may also be programmed, as also occurs in 
apoptosis, and is then called “necroptosis”. In any case, 
distinct signaling events drive the lytic cell and non-
lytic cell death processes (necroptosis and apoptosis, 
respectively). Thus, necroptosis is similar in nature to 
necrosis but it is induced by the activation of RIPK1 
(receptor-interacting protein kinase 1) and RIPK3 
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Figure 1  Protective effects of aldehyde dehydrogenase 2 on 4-hydroxy-2-
nonenal accumulation in ischemia reperfusion injury. 4-hydroxy-2-nonenal 
(4-HNE) is a pivotal marker for cell damage associated with oxidative stress; its 
accumulation is prevented by aldehyde dehydrogenase 2 (ALDH2) activation 
and the action of its agonists. An overwhelming 4-HNE accumulation may also 
inhibit ALDH2 action. 4-HNE: 4-hydroxy-2-nonenal.
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IRI[24]. Recently, Zhong et al[45] reported that low ALDH2 
promotes liver apoptosis through the MAPK pathway 
when ALDH2 agonists are used, in which ALDH2 action 
is not only based on the 4-HNE clearance ratio, but 
also on its subsidiary involvement in controlling indirect 
4-HNE pathways.

Again, the ratio of 4-HNE formation and its cleansing 
by ALDH2 is essential. High 4-HNE levels will limit 
ALDH2 activity, avoiding subsequent 4-HNE clearance 
and producing a positive 4-HNE feedback that ultimately 
causes apoptosis and cell death[1,42] (Figure 3).

ALDH2 ACTIVATION AND IRI 
PREVENTION IN DIFFERENT ORGANS: 
SOME CONSIDERATIONS
In general, ALDH2 activation plays a protective role in 
the complex physiopathology of IRI, whose beneficial 
effects have mostly been studied in the heart, inducing 
cardio-protection as well as a protective role against the 
I/R insult[12,46]. This protection has been evidenced in 
other organs such as brain, intestine, kidney and spinal 
cord[16,20,22,24]. Surprisingly, the role of ALDH2 in hepatic 
I/R has not been studied in depth, even though the liver 
is one of the organs where ALDH2 is most abundant[1]. 
This is probably due to the fact that most studies of 
ALDH2 in liver have focused on ethanol metabolism 
disorders.

In the following lines, we describe the most 

(receptor- interacting protein kinase 1), a caspase-
independent form of programmed cell death. Studies 
by Cheng Shen et al[41] showed that ALDH2 deficiency 
promotes necroptosis through the activation of the 
RIPK1/RIPK3/MLKL pathway.

In contrast to necroptosis, there is no inflammation 
during apoptosis; the process is dependent on caspases 
3 and 9. Apoptosis is a process controlled at multiple 
checkpoints by cell signaling expression, sometimes 
with opposite actions; examples are Bax (pro-apoptotic) 
and Bcl-2 (anti-apoptotic). The ratio between the two is 
decisive for the apoptotic response, which is regulated 
by an upstream mediator, Akt, which ultimately 
determines the fate of the cell[42,43].

Due to its cytotoxic characteristics, 4-HNE is 
an important mediator of oxidative stress-induced 
apoptosis[42]. As previously mentioned, 4-HNE inhibits a 
group of a several kinases, one of which is Akt. Under 
high concentrations of 4-HNE, a dramatic apoptotic 
response is induced. This effect has been suggested 
to occur through the inhibition of Akt, which increases 
the Bax/Bcl-2 ratio and activates a caspase-3 apoptotic 
cascade[43,44]. This Akt inhibition in the presence of 4-HNE 
can be totally reversed by using an ALDH2 agonist, 
such as Alda-1[45]. Further investigations have evidenced 
that increased ALDH2 expression through Alda-1 
treatment protects I/R-induced brain cell necrosis 
and apoptosis[16,24]. Besides these benefits of ALDH2 
observed in the heart and brain, benefits have also been 
shown for limiting neuronal apoptosis in spinal cord 

Ischemia

Damage

Autophagy

mTOR

AMPK

ALDH2

Akt AMPK

4-HNE Autophagy

Damage

Reperfusion

Figure 2  Dual regulatory effect of aldehyde dehydrogenase 2 (ALDH2) on autophagy. During ischemia, AMPK is activated to promote “cytoprotective” autophagy 
due to mTOR inhibition. On the other hand, the activation of Akt during the phase of reperfusion inhibits “deleterious” autophagy, which is associated with apoptosis, 
thus reducing organ damage.
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important ongoing research into the role of ALDH2 in 
IRI in heart, brain, eyes, intestine, and kidney.

ALDH2 and heart
The most important feature of ALDH2 myocardial cardio-
protection is the clearance of toxic aldehydes (such as 
4-HNE) and its adducts[12,46]; Alda-1, an activator of 
ALDH2, raises this reactive aldehyde clearance even 
further, increasing the protection against myocardial 
IRI disorders[14,15]. Moreover, ALDH2 activation is 
associated with an improved mitochondrial function 
and a remodeling of the ventricular function[47,48]. 
ALDH2-induced cardio-protection (with the subsequent 
detoxification of toxic aldehydes) against IRI also 
occurs through a differential regulation of autophagy, 
involving both AMPK and Akt-mTOR signaling mech-
anisms, produced during ischemia and reperfusion 
respectively[28,49]. Guo et al[50] recently described a novel 
protective ALDH2 mechanism in type I diabetes, which 
defends against the induced myocardial dysfunction 
via an AMPK-dependent regulation of autophagy. 
These benefits are confirmed by the fact that ALDH2 
inhibition by O-linked-N-acetylglucosamine (O-GlcNAC) 
acylation contributes to hyperglycemic exacerbation of 
myocardial IRI, which is prevented by Alda-1[51]. Even 
more recently, it has been reported that ALDH2 induces 
cardio-protection through the regulation of mitophagy 
by suppressing tensin homolog-induced putative kinase 
1 (PINK1)/Parkin expression, thus preventing the 
accumulation of 4-HNE and other toxic species[37].

ALDH2 in brain, intestine, kidney and eyes
The role of ALDH2 in other organs, such as brain, eyes, 
intestine, and kidney, has been poorly investigated. 
In brain and intestine, ALDH2 activation contributes 
to the clearance of the 4-HNE accumulation and MDA 
generation against IRI. Alda-1, an ALDH2 agonist, 
increases the 4-HNE adduct clearance, subsequently 
promoting protection against brain IRI and preventing 
the deleterious effects of apoptosis[15,16]. In kidney, after 
bilateral ischemia, ALDH2 activation is involved in the 
protection induced by ethanol at physiological levels[23]. 
Interestingly, an increased ALDH2 expression also has 
a protective effect, reducing renal cell apoptosis by 
inhibiting the MAPK pathway, after using hypothermic 
machine perfusion[22]. 

Recent investigations have shown the existence of 
ALDH2 expression in adult rat retinal tissues, which 
may be involved in the retina redox balance. However, 
its role in the regulatory lipoperoxidation mechanisms 
associated with retinal ischemia reperfusion injury 
needs to be investigated in depth[52,53]. 

ALDH2 ACTIVATION: ISCHEMIC 
PRECONDITIONING 
Several therapeutic surgical and pharmacological 
strategies have been used to protect the organ against 
I/R insult. As an example, “ischemic preconditioning” 
(IPC) is based on the application of a previous transient 
ischemia and/or reperfusion that will prepare the organ 
prior to a sustained I/R. IPC was initially evidenced in 
the heart by Murry et al[54] but has also been found to 
be protective for other organs such as kidney, intestine 
and liver[55-57]. Another surgical strategy is “remote 
ischemic preconditioning” (RIPC)[58], which consists 
in the application of brief ischemia in one organ to 
confer protection on distant organs as well[59]. The 
involvement of ALDH2 as an important mediator in the 
benefits conferred by RIPC has also been discussed by 
Contractor et al[59].

ALDH2 ACTIVATION: 
PHARMACOLOGICAL PRECONDITIONING
The use of pharmacological agents to promote organ 
protection (pharmacological preconditioning) is limited 
when it is mandatory to avoid their potential undesirable 
secondary effects. We have assessed the protective 
role of ALDH2 when using different protective strategies 
against IRI based on the administration of volatile 
anesthetics (isoflurane), nitrites/nitrates and ALDH2 
agonists (Alda-1).

ALDH2 and isoflurane preconditioning
Recent investigations in the heart and other organs 
have demonstrated that the use of isoflurane, a volatile 
anesthetic agent, is an effective preconditioning agent 

ALDH2 4-HNE

Akt

BaxBcl-2

Caspase 3

Apoptosis

Figure 3  Effects of aldehyde dehydrogenase 2 on apoptosis in ischemia 
reperfusion injury. Protection induced by aldehyde dehydrogenase 2 (ALDH2) 
on apoptosis. The balance between ALDH2/4-HNE is responsible for the 
modulation of apoptosis through Akt and caspase 3 expression.
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that mimics the protective effects of IPC but avoids 
some of its disadvantages caused by the reduction of 
the blood flow, and presents greater ethical acceptability 
and clinical safety[60-62]. ALDH2 is involved in the cardio-
protection induced by isoflurane preconditioning, and 
this ALDH2/isoflurane-induced cardio-protection is 
substantially blocked by a PKCε inhibitor, suggesting that 
mitochondrial PKCε plays an important role in isoflurane-
induced protection mechanisms. It has been discussed 
whether the phosphorylation of ALDH2 increases 
PKCε mitochondrial translocation, and the inhibition of 
mitochondrial translocation by other protein kinases 
such as PKC delta, contribute even more to isoflurane 
protection against I/R insult[63]. 

ALDH2 and ethanol preconditioning
Ethanol, at low doses, also acts as a preconditioning 
agent[51]. Its acute cardio-protective effects are critically 
modulated by the dose used and by whether it remains 
present during the ischemic period. In these conditions 
of ethanol preconditioning, ALDH2 is activated to 
induce protection against IRI through the mitochondrial 
translocation of PKCε, which is responsible for the 
increased metabolism from HNE to HNA, thus limiting 
the accumulation of HNE protein adducts and improving 
cardiac function[64,65].

In this context, it has been suggested that the use 
of ALDH2 activators mimics ethanol cardio-protection. 
In addition, ALDH2 protection against ethanol toxicity 
is regulated by Akt and AMPK, and subsequently, 
autophagy and apoptosis through their downstream 
substrate mTOR[28].

ALDH2 and NO/nitrite preconditioning
Nitric oxide (NO) is a free-radical gas, considered as a 
relevant therapeutic tar- get during IRI. Its effects on 
I/R injury are probably related to the dose or to the 
conditions during ischemia and reperfusion, usually at 
nanomolar or low micromolar concentrations[66]. Apart 
from its role in tissue protection during ischemia, and 
due to its volatile nature, NO is a fast-response cell 
signaling molecule and a well-known vasodilator during 
hypoxic events, also regulating mitochondrial oxygen 
consumption[66]. There is growing evidence that eNOS-
derived NO is a critical component in IPC and APC signal 
transduction[67,68]. Last but not least, due to its reductive 
capacity, NO is a potent ROS scavenger, and thus, 
performs one of the most important functions during 
reperfusion[69].

As a volatile molecule, the half-life of NO is not very 
long; this is why there is a need for a pool of nitrogen 
in a more stable form, i.e., nitrites (NO2-) and nitrates 
(NO3-). Nitrites are the reduced form of nitrates, and 
under physiological conditions they can be recycled in 
blood and tissues, where NO generation from nitrites is 
linearly dependent on oxygen and pH levels[66,69].

It has been widely shown that ALDH2 has a 
reductase-dependent activity that produces the 

bioconversion of nitroglycerin to 1, 2-glyceryl denigrates, 
resulting in the release of NO[1]. Further experiments 
have shown that in vitro, ALDH2 is partially responsible 
for nitrite bioactivation, promoting vasodilation during 
hypoxic episodes (Figure 4). However, Oelze et al[70] 
showed that the peroxynitrite generated from NO 
impairs the enzymatic activity of ALDH2, and therefore 
the scavenging activity of NO may result in a suicide 
inhibition of ALDH2 in later stages. 

The role of ALDH2 cannot be conclusively confirmed, 
due to the impossibility of ruling out other non- enzymatic 
or nitrite reductase species (e.g., eNOS)[71-73]. However, it 
can be concluded that ALDH2 is closely related to NO and 
nitrogen metabolism and exerts positive effects[72,73]. 

 ALDH2 agonist preconditioning: Alda-1
With this in mind, it has been proposed that new 
therapeutic ALDH2 approaches might be based on 
promoting ALDH2 over-expression by using ALDH2 
activators and determining the role of ALDH2 in a 
variety of human pathologies such as IRI. Here we 
focus specifically on the use of Alda-1, a selective 
ALDH2 agonist, in IRI in different organs.

Small molecules called ALDAs have been used as 
activators of ALDH2. One of the most frequently used is 
Alda-1. Defined as N-(1,3-benzodioxol-5-ylmethyl)-2,6 
di-chloro-benzamide, Alda-1 increases ALDH2 activity 
in humans twofold with its wild-type and 11-fold with its 
defective variant ALDH2*2[1].

Experiments have shown that the administration of 
Alda-1 just before the ischemic insult reduces infarct 
size by 60%, most likely through ALDH2 activation[12]. 
Alda-1 also has beneficial effects on the heart and brain 
by inhibiting 4-HNE and related adducts[15]. A potential 
therapeutic value of Alda-1 during the progression of 
post-myocardial infarction cardiomyopathy has also 
been suggested[29]. Alda-1 may be useful for treating 
heart failure patients, since ALDH2 activation in heart 
failure restores mitochondrial function and improves 
ventricular function and remodeling[48]. It was recently 
reported that ALDH2 activation regulates mitophagy 
by preventing 4-HNE, ROS and superoxide dismutase 
(SOD) accumulation[37]. Along these lines, the recent 
investigations by Zhu et al[20] have shown that Alda-1 
pre-treatment reduces the intestinal injury induced by I/
R in mice. Benefits were associated with the prevention 
of 4-HNE and MDA accumulation, suggesting a potential 
clinical application in the near future[21].

FUTURE PERSPECTIVES OF ALDH2 IN 
COLD ISCHEMIA REPERFUSION INJURY/
ORGAN TRANSPLANTATION
ROS play a major role in the progression of IRI, which is 
inherent to organ transplantation. ROS are responsible for 
the generation of MDA, as well as other toxic aldehydes 
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like 4-HNE and its adducts. During graft reperfusion, 
ROS are mainly produced in the mitochondria, becoming 
the main source of lipoperoxides and toxic aldehydes. 
Therefore, the prevention and clearance of those toxic 
elements generated during an episode of ischemia-
reperfusion is decisive in organ transplantation, and the 
role of ALDH2 is crucial. 

So far, the vast majority of investigations on the role 
of ALDH2 activation in organ preservation are limited to 
the heart and kidney[22,74]. Gong et al[74] demonstrated 
that addition of Alda-1 (ALDH2 activator) to histidine-
ketoglutarate-tryptophan (HTK; a solution regularly 
used in heart surgery) improved cardio-protection 
through the subsequent ALDH2 activation and toxic 
aldehyde removal. The fact that Alda-1 ameliorates the 
quality of cardioplegic solutions such as HTK suggests 
that ALDH2 activators could be used to improve 
preservation solutions meant for other organs besides 
the heart, such as UW, HTK, Celsior and IGL-1, which 
are used for clinical transplantation in liver, where 
ALDH2 has an important presence[75]. 

These findings have a bearing on the consideration 
of the potential use of ALDH2 activators as additives 
in organ preservation solutions in order to improve 
their protective quality. They are also relevant to the 
assessment of the contribution of various commercial 
solutions to the preservation of mitochondrial ALDH2 
activity during graft cold storage, especially when 
expanded criteria donors are used. 

Recent studies have reported higher mitochondrial 
ALDH2 activity in liver grafts preserved in IGL-1 (24 h at 
4 ℃) than in livers preserved in UW or HTK solutions[76]. 
These results are consistent with the increases reported 

in renal ALDH2 activity by Zhong et al[22], who subjected 
kidney grafts to machine perfusion preservation before 
transplantation. 

These results confirm that ALDH2 plays a role in 
both static and dynamic graft preservation. It exerts a 
protective effect, during the ischemic phase by tackling 
ATP breakdown and during the reperfusion phase 
by reducing oxidative damage, which are inherent 
conditions of IRI. In this regard, further studies of ALDH2 
using machine perfusion strategies in subnormothermic 
conditions should be carried out in order to improve the 
subsequent graft outcome.

Finally, although ALDH2 plays a role in distinct organs 
with well-defined physiological functions (heart, brain, 
eyes, liver, kidney and intestine), each organ contains 
multiple different cell types which, in turn, may give 
specific responses under ALDH2 activation/administration. 
Few studies have sought to clarify the relationship 
between ALDH2 and specific cell types or its influence on 
the substantial cross-talk between the different cells in 
each organ under ALDH2 administration[77]. Therefore, 
further investigation of this issue is now warranted. 

CONCLUSION
In recent years, the ability of ALDH2 to modify the 
activity of some key enzymes and essential survival 
pathways of the cell has been demonstrated (autophagy, 
apoptosis, necroptosis, etc). Some of its effects are 
exerted directly through its catalytic center, in a one-to-
one interaction with those key enzymes that modifies the 
whole metabolic pathway. However, it may also regulate 
the metabolism indirectly, removing and cleansing toxic 
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sub-products resulting from pathologies like IRI, which 
compromise cell viability, as we have seen in the case of 
4-HNE (Figure 5).

As a result, ALDH2 will affect any metabolic pathway 
in which 4-HNE is involved, and so its importance lies 
not only in its ability to activate other enzymes, but also 
in the collateral effects of those metabolic processes 
regulated by 4-HNE. In these processes, the regulation 
levels will depend on the balance of several factors such 
as the aldehyde/ALDH2 production ratio (where ALDH2 
agonists take on a major role), the metabolization ratio 
of 4-HNE by ALDH2 and whether 4-HNE reaches the 
level of no-return where it inhibits all the ALDH2 present 
and the balance is definitely broken (Figure 5).

ALDH2 affects a wide range spectrum of mechanisms, 
among which ethanol metabolism has been the most 
studied. Yet, its role in important pathophysiological 
processes, such as IRI, remains unclear. With regard to 
IRI, the behavior of ALDH2 differs according to the phase 
(ischemia or reperfusion). Given that a variety of harmful 
elements such as 4-HNE are produced during an I/R 
episode, ALDH2 may play a critical role in the liver. This 
role should be further elucidated in future studies.

However, just as most studies have focused on the 
role of ALDH2 in ethanol metabolism rather than IRI, 
studies of ALDH2 in IRI are mainly focused on heart, 
brain or kidney and have paid hardly any attention 
to the liver. This is especially surprising in view of the 
fact that the liver is the organ with the highest ALDH2 
concentration recorded so far due its detoxifying 
role. Just before this review was completed, a study 
evidencing the protective role of ALDH2 activation by 
Alda-1 in a model of warm ischemia reperfusion in liver 
was published[78].
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