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Abstract
Nonalcoholic fatty liver disease (NAFLD) has become 
the dominant form of chronic liver disease in children 
and adolescents with the increasing prevalence of 
obesity worldwide. NAFLD represents a wide spectrum 
of conditions, ranging from fatty liver - which generally 
follows a benign, non-progressive clinical course - to 
non-alcoholic steatohepatitis, a subset of NAFLD that 
may progress to cirrhosis and end-stage liver disease 
or liver carcinoma. The underlying pathophysiological 
mechanism of “pediatric” NAFLD remains unclear, 
although it is strongly associated with obesity and 
insulin resistance. In this review we provide a general 
overview on the current understanding of NAFLD in 
children and adolescents, which underpins practice, 
enabling early diagnosis and appropriate therapeutic 
intervention for this life-threatening liver disease.
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Core tip: Much work on nonalcoholic fatty liver disease 
(NAFLD) has been done, but an accurate understanding 
of its mechanism remains unclear. Our objective was to 
examine the current literature to better understand the 
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pathogenesis of NAFLD, thus showing how it evolved 
from the “two-hit theory” to a “multiple hit model”. 

Fang YL, Chen H, Wang CL, Liang L. Pathogenesis of non-
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INTRODUCTION
Non-alcoholic fatty liver disease (NAFLD), the hepatic 
manifestation of the metabolic syndrome, is the most 
frequent form of chronic liver disease worldwide. 
Corresponding to abnormal fat accumulation in 
hepatocytes, it encompasses a spectrum of chronic 
liver diseases in the absence of excessive alcohol 
consumption, which may occur with or without 
hepatocyte inflammation or fibrosis[1]. Isolated steatosis, 
defined by abnormal accumulation of fat in more than 
5% of hepatocytes, is a relatively benign condition. 

In contrast, besides steatosis, non-alcoholic 
steatohepatitis (NASH) coexists with inflammation, 
hepatic cell injury, and deposition of collagen fibers[2]. 
NASH is a dynamic condition that can regress to 
isolated steatosis or cause progressive fibrosis leading 
to cirrhosis. The prevalence of NAFLD ranges from 
10% to 30% depending on the study population 
and diagnostic methods used and is thought to be 
increasing worldwide[3,4]. Recently, a meta-analysis 
showed that the global prevalence of NAFLD is 25.24% 
(95%CI: 22.10%-28.65%) with the highest prevalence 
in the Middle East and South America and the lowest 
in Africa for the year 2016[5]. The “gold standard” test 
is liver biopsy, but this is neither feasible nor ethical for 
epidemiological studies aiming to screen NAFLD in the 
healthy population, and is also problematic in the clinical 
diagnosis. As so far, there was only one pediatric study 
which reported prevalence based on liver histology, 
and it reported that the prevalence of NAFLD in obese 
children (aged 2-19 years) was 38% and increased with 
age[6].

Serum biomarkers such as alanine aminotransferase 
(ALT) and aspartate aminotransferase, as well as liver 
imaging (liver ultrasound and magnetic resonance 
imaging), are currently the most widely used tools 
for screening. Published guidelines vary about the 
frequency of ALT screening and use of imaging[7-9]. 
Ongoing developments of new technologies are 
improving the diagnosis; however, the specificity and 
sensitivity for the diagnosis of NAFLD have not yet 
reached an acceptable level. 

As mentioned above, NASH is progressive, so early 
diagnosis and treatments are critical. However, many 
aspects of the pathogenesis of NAFLD remain unclear; 

for example, the mechanism of the progression from 
steatosis to steatohepatitis. It is also unknown why 
NAFLD occurs only in a subgroup of obese subjects. 

In the past decade, our team has researched 
the causes, pathogenesis, clinical diagnosis, and 
treatment of NAFLD[10-14]. In this review, we focus on 
the pathogenesis of NAFLD and explore new ways for 
improving both the diagnosis and treatment of NASH. 
The articles cited were identified based on a search of 
PubMed done in February 2018 using the criteria “NAFLD 
and pathogenesis and children and adolescent” with 
studies in humans and animals.

PATHOGENESIS OF NAFLD
Evolution from the “two hit theory” to the “multiple hit 
model”
During recent decades, the worldwide prevalence 
of obesity has increased in the pediatric population 
and the prevalence of NAFLD has more than doubled 
during the last 20 years in the United States[14]. The 
development of NAFLD is strongly influenced by age, 
sex, and ethnicity, and appears twice as often in boys 
than in girls[15-18]. NASH can progress to end-stage liver 
diseases such as hepatic cirrhosis or hepatocellular 
carcinoma. Conjeevaram PF et al[19] analyzed the 
database and discovered that as the prevalence 
of NAFLD increased, the prevalence of NASH also 
increased, however, compared to adult the prevalence 
of liver fibrosis in children remained low, which indicated 
a possibly less aggressive NAFLD phenotype in children. 
Although the prevalence of NAFLD is increasing, most 
affected patients present with isolated steatosis with 
only a minority of cases progressing to liver cirrhosis in 
children, and it is not clear whether pediatric and adult 
NAFLD are two different pathologic entities or just age-
dependent manifestations of the same disease, which 
implies that the pathogenesis of NAFLD may be related 
to the interplay among genetic, environmental, and 
individual factors. Early theories of the pathogenesis 
of NAFLD and NASH were described in terms of the 
“two hit hypothesis”[20]. At the onset of disease, the 
“first hit” is represented by an increase in liver fat, 
characterized by hepatic triglyceride accumulation 
and insulin resistance, and corresponding to hepatic 
steatosis once the accumulation of hepatic fat is more 
than 5%. Children, especially pre-pubertal boys, have 
a pattern of type 2 NAFLD characterized by a zone 1 
distribution of steatosis, inflammation and fibrosis[21]. 
Liver fat accumulation is associated with a hypercaloric 
diet, sedentary lifestyle, and is perhaps genetically 
predisposed. Our team successfully established an in 
vivo NAFLD animal model induced by a high-fat diet, 
and reported that lifestyle interventions have an effect 
on NAFLD in obese children[22,23]. Subsequently, the 
“second hit” emerges, which includes inflammatory 
cytokines, adipokines, mitochondrial dysfunction, and 
oxidative stress. As the fatty liver is more susceptible 
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to this “second hit”, necroinflammation and fibrosis 
can develop and ultimately lead to cirrhosis[24,25]. 
However, with the development of new technology and 
further research, this view appears too simplistic for 
recapitulating the complexity of human NAFLD. 

Now, the widely accepted theory is the “multiple-
hit model”, involving more widespread metabolic 
dysfunction because of the interaction of genetic and 
environmental factors as well as changes in crosstalk 
between different organs and tissues, including adipose 
tissue, the pancreas, gut, and liver[24-27]. However, 
liver fat accumulation, caused by obesity and insulin 
resistance, still seem to represent the “first hits”. 

MULTIPLE FACTORS
Fat accumulation and insulin resistance
Fat accumulates in the liver of patients with NAFLD 
mainly in the form of triglycerides, which derive 
from the esterification of glycerol and free fatty acids 
(FFAs)[28]. Triglyceride accumulation is not hepatotoxic, 
in contrast with the excess of FFAs that undergo acetyl 
coenzyme A (acyl-CoA) synthase activity and form fatty 
acyl-CoAs which may trigger esterification or β-oxidation 
pathways[29]. Mitochondrial dysfunction, which consists 
of oxidative stress and production of reactive oxygen 
species and endoplasmic reticulum stress-associated 
mechanisms, also results from NAFLD[30,31].

Physiologically, insulin controls hepatic glucose 
production by regulating lipolysis of adipocytes, leading 
to decreased fatty acid flux in the liver[32]. Consequently, 
the availability of hepatic acetyl coenzyme A (acyl-CoA) 
concentrations and the activity of pyruvate carboxylase 
are reduced, resulting in the decreased conversion of 
pyruvate to glucose (Figure 1). 

Insulin resistance (IR) refers to a defective metabolic 
response to the effect of the hormone in the target 
cell (e.g., muscle cell, hepatocyte, and adipocyte) 
or at the whole organism level. Systemic IR means 
that the ability of insulin to lower the serum glucose 
concentration to the appropriate level is hampered due 
to disrupted translocation of the GLUT4 receptor at 
the surface membrane of the muscle cell. As a result, 
glucose uptake (which depends on insulin) decreases. 
Hepatic IR consists of disturbed insulin mediated 
suppression of hepatic glucose production, but in the 
presence of preserved stimulation of lipogenesis[33]. 
In the adipose system, insulin resistance means that 
insulin is unable to suppress lipolysis. In humans, when 
the availability of lipids exceeds the lipid accumulation 
capacity, systemic IR and hepatic IR are likely to 
progress[34]. 

Inflammatory pathways
Increased FFA levels can cause lipotoxicity and insulin 
resistance, and together with other factors (such 
as gut-derived endotoxins), activate the release of 
proinflammatory cytokines systemically and also locally 
in the liver. There are two main classical pathways 

involved in the process of NAFLD inflammation: JNK-
AP-1 and IKK-NF-κBD[35]. JNK-AP-1 is a mitogen-
activated protein kinase associated with apoptosis and 
NASH; IKK-NF-κB is a transcription factor regulating 
inflammatory activation. Previous studies have shown 
that persistent activation of NF-κB was found in NAFLD 
animal models as well as in humans with NASH[36,37]. 
Animal models demonstrated that hepatic exposure to 
high levels of proinflammatory cytokines could lead to 
histological changes mimicking NASH[38]. 

The liver consists of parenchymal cells and 
nonparenchymal cells (NPCs); NPCs include sinusoidal 
endothelial cells. Kupffer cells (KCs) and hepatic stellate 
cells are less numerous than hepatocytes, but play a 
key role in the immune regulation of the liver, especially 
through substances released from KCs, which act as 
antigen presenting cells. 

The hypothesis is that when the flow of FFAs or 
other pathogenic factors (such as endotoxins) from 
the gut into liver are excessive, KCs phagocytose the 
factors and present them through pattern recognition 
receptors (PRRs)[39]. PRRs include toll-like receptors 
(TLRS) such TLR4, TLR9, and nucleotide oligomerization 
domain-like receptors (NLRs)[40]. Inflammasomes, 
through NLR, activate the cascade events which finally 
generate mature IL-1, IL-8[41], and IL-1, contributing to 
regulate the activation of the transcription factor NF-
κB[42]. KCs per se will differentiate into either the M1 
or M2 phenotype, depending on the environmental 
inducer; the former releasing cytokines like TNF-α, IL-1, 
and IL-12 and the latter, more heterogeneous, being 
able to stimulate the secretion of IL-4, IL-10, and TGF-β 
according to different triggers[43]. IL-6 and TNF-α are the 
cytokines responsible for NASH progression. Patients 
with NASH have higher serum TNF-α levels, which 
play an important role in hepatic fibrosis through KC 
activation[38].

Therefore, TLR suppression is thought to block the 
immune response, thereby alleviating liver inflammation. 
However, to date, despite some animal experiments 
aiming to reveal the links between TLRs and NAFLD 
pathogenesis, no investigations on TLR agonists have yet 
been conducted in humans[44,45]. 

In summary, hepatocyte damage is an indicator of 
NASH progression. Different pathogens stimulate cell 
receptors thus activating the signaling pathway which 
contributes to cytokine production. Therefore, NASH 
might be detected at an earlier stage in the future by 
identifying an appropriate cytokine panel. Future studies 
should also focus on TLR modulation, which may 
provide a new target for NAFLD therapy.

Gut-liver axis
In recent years, many studies have been carried out 
on gut-liver axis (GLA) dysfunction (including intestinal 
dysbiosis, bacterial overgrowth, and alteration of 
mucosa permeability) intending to find the possible 
therapeutic target of NAFLD[46,47]. GLA is characterized 
by bidirectional traffic. Nutrients and factors derived 
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preventing harmful substances from the gut such as 
bacteria, ethanol, and endotoxins from entering portal 
blood[46,53]. Experiments on mice and humans have 
confirmed these data[54,55]. A recent study found that 
E. coli emerges as the predominant bacteria involved 
in small intestine bacterial overgrowth and that NAFLD 
may be related to the efficient translocation abilities of 
these patients[56].

Hepatocyte triacylglycerol (TG) deposition is mainly 
due to three factors: lipolysis of adipose tissue, de novo 
lipogenesis, and TG dietary input, with contributions of 
59%, 26%, and 15%, respectively. The excessive load 
of free fatty acid in the liver is the crucial cause of liver 
steatosis[57]. 

Dietary factors: Fructose and sugar
Carbohydrates can be converted to TG, and fructose 
is more closely associated with NAFLD compared to 
glucose. Fructose consumption, largely in the form of 
high fructose corn syrup (HFCS), a mixture of fructose 
and glucose monosaccharides, has increased over 
the past several decades[58]. Recent data suggest that 
diets high in sugar (sucrose and/or HFCS) not only 
increase the risk of NAFLD, but also of NASH. Indeed, 
fructose intake from added sugars in processed foods 
correlates with the epidemic rise in obesity, metabolic 
syndrome, and NAFLD. Fructose induced-hepatic fat 
accumulation involves the stress pathway that results 
in gluconeogenesis, an increase in fat synthesis, and a 
decrease in fat oxidation[59-61]. Fructose may modulate 
the lipogenic enzymes by increasing the expression of 
sterol regulatory element binding protein-1c (SREBP-
1c) and carbohydrate-responsive element-binding 
protein (ChREBP)[62]. Animal experiments[63] showed 

from the gut lumen reach the liver through the portal 
circulation; bile acids, produced by hepatocytes, are 
released in the small intestine through the biliary 
tract[48]. Two of these components (intestinal barrier 
and gut microbiota) seem to play a key role in liver 
damage and its progression[49]. It is well known that 
trillions of microbes make up the gut microbiota. In 
normal conditions, only a small amount of bacteria 
products enter the liver through the portal circulation. 
However, bacteria dysbiosis or gut barrier alterations 
will increase the bacteria flow into the liver, thus 
stimulating inflammation via TLR and other pattern 
recognition receptor activation in KCs[50]. According 
to the bidirectional traffic of GLA, bile acid also 
impacts the gut environment, both directly by causing 
membrane damage and indirectly via the activation by 
bile acid metabolitas of special receptors such as the 
farnesoid X receptor. Gut microbiota (GM) is specific 
to each individual, but humans share a core functional 
microbiome[51]. 

Altered GM associated with NAFLD may occur 
through several mechanisms as follows: (1) GM digests 
and ferments the excessive energy into short-chain 
fatty acids (SCFAs); (2) GM bacteria can produce 
ethanol that may affect the liver in a similar way to 
chronic alcoholism; (3) bacteria/endotoxins translocate 
into the portal circulation and damage the liver via 
TLR signaling; and (4) disturbed lipid metabolism is 
mediated by increased bile acid synthesis and decreased 
choline metabolism[52]. 

In addition, GM also plays a vital role in maintaining 
gut barrier integrity and intestinal permeability. GM 
dysbiosis can damage the intestinal epithelium and 
destroy tight junction proteins, which is important in 
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Figure 1  Schematic mechanistic diagram of the “multiple hit model”. NAFLD: Nonalcoholic fatty liver disease.
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that mice exposed to fructose with significant intestinal 
bacteria growth and increased intestinal permeability, 
as mentioned above, may trigger inflammation by 
increasing serum TNF-α. 

Chronic fructose consumption induces leptin resis-
tance prior to body weight, which accelerates high-fat 
induced obesity. Moreover, removal of fructose from this 
diet reverses leptin resistance and leptin augmentation, 
favoring a causal relationship[64,65]. 

Therefore, GLA is involved in the pathogenesis of 
NALFD, and GM dysbiosis promotes steatosis evolution 
to NASH. Special bacterial strains translocate more 
efficiently into the liver portal system. Further multicenter 
studies are required to test the bacterial genes of the 
normal population versus obese populations with IR (with 
and without NAFLD) with the aim of screening high-risk 
populations. In addition, improving intestinal dysbiosis 
and determining whether this improvement reduces the 
risk of NAFLD needs further investigation. These studies 
may pave the way for improving NAFLD diagnosis and 
treatment. 

Genetic factors 
Genetic factors are also important in the development of 
NAFLD. A certain genetic background has been shown 
to predispose an individual to fatty liver[66,67]. Those 
genes are involved in inflammation, lipid metabolism, 
and oxidation, and are associated with progressive liver 
disease, IR, type 2 diabetes mellitus, and a higher risk 
for hepatocellular carcinoma.

PNPLA3: PNPLA3 is the most documented NAFLD-
related gene. A genome-wide association study (GWAS) 
showed that the hepatic fat content of PNPLA3 I148M 
allele carriers was more than 2-fold higher than in non-
carriers, and a new variant PNPLA3 S453I allele was 
identified which was associated with a significantly lower 
liver fat content particularly in African Americans[68]. 
Several studies have shown that PNPLA3 I148M 
increases the risk of NAFLD without a strong effect on 
metabolic syndrome (MS) components, but abdominal 
fat (which is closely correlated to MS components) 
can drive the effect of this polymorphism on liver 
damage[69,70]. In obese children, weight loss can weaken 
the effect of this polymorphism[71]. 

McGeoch et al[72] suggested that patients with 
PNPLA3 p.I148M showed the greatest response to the 
fructose-restricted diet, whereas those lacking this 
variant exhibit minimal or no change from baseline. 
Wang et al[73] revealed that physical activity and 
sedentary behavior can modulate the effect of the 
PNPLA3 variant on childhood NAFLD. These evidences 
provide new clues to the function of the PNPLA3 gene 
and are also useful for risk assessment and personalized 
treatment of NAFLD in the future.

Glucokinase regulator protein: Glucokinase 
regulator protein (GCKR) is an inhibitor of glucokinase 

(GCK). GCK regulates glucose storage and disposal 
in the liver where its activity is regulated by GCKR. 
The GCKR genotype has been shown to modulate 
lipogenesis and fibrosis progression in NAFLD[74]. The 
combined effects of PNPLA3 rs738409 and GCKR 
rs1260326 polymorphisms account for up to one-third 
of variability in liver fat content in obese children[75,76].

Apolipoprotein C-III: Apolipoprotein C-III (APOC3) 
can inhibit the lipoprotein lipase and reduce the 
clearance of TG. In NAFLD, APOC3 variants may lead 
to higher plasma concentrations of apolipoprotein C3 
ending up in lower clearance. The consequence of the 
reduced TG clearance is an increase in residual particles 
of chylomicrons, that will lead to higher levels of 
circulating chylomicron remnants, which are especially 
cleared by the liver through a receptor-mediated 
process[77,78]. However, a recent study of APOC3 
transgenic mice suggested that APOC3 dysregulation 
is not a predisposing factor for linking over-nutrition to 
NAFLD in obesity[79].

TM6SF2: Transmembrane 6 superfamily 2 (TM6SF2) 
has been recognized to regulate plasma lipids. On 
the basis of sequence similarity to Emopamil-binding 
protein (an enzyme with sterol isomerase activity), 
TM6SF2 has been hypothesized to play a role in 
sterol biosynthesis[80,81]. Smagris et al[82] reported that 
TM6SF2 is involved in the transfer of neutral lipids from 
cytoplasmic to luminal lipid droplets or very low density 
lipoprotein (VLDL) particles. Recently, variants of 
TM6SF2 have been found to influence metabolic traits 
through alteration of protein stability[83-86].

PPARGC1A: Peroxisome proliferator activated 
receptor γ coactivator 1α (PGC-1α), expressing the 
PPARGC1A gene, is involved in the key steps of NAFLD 
development, such as insulin resistance, mitochondrial 
biogenesis, and oxidative phosphorylation[87,88]. In 
hepatocytes, PGC-1a orchestrates broad energy 
programs, including gluconeogenesis and mitochondrial 
fatty acid β-oxidation[89]. Moreover, PPARGC1A has 
been shown to regulate several key genes in hepatic 
gluconeogenesis (CREB, PPARα, FOXO1, TRB-3)[90-93]. 
PPARGC1A knockout mice reportedly developed hepatic 
steatosis due to a combination of reduced mitochondrial 
respiratory capacity and increased the expression of 
lipogenic genes[94].

Human microsomal triglyceride transfer protein: 
The human microsomal triglyceride transfer protein 
(MTTP) is involved in lipid transfer function and is critical 
for the assembly and secretion of VLDL to remove 
lipids from the liver. Thus, genetic polymorphisms 
in the MTTP gene may contribute to altered lipid 
metabolism by disrupting the assembly and secretion 
of lipoproteins, leading to reduced fat export from the 
involved hepatocytes and to NAFLD. Several genetic 
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polymorphisms in the MTTP gene have been identified; 
some are related to the pathogenesis of NAFLD while 
others interact with age, insulin resistance, and BMI and 
increase the risk for NAFLD[95-99].

Other genes: Recently, Buch et al[100] and Umano et al[101] 
identified the rs626283 variants in the MBOAT7 gene 
as risk loci for alcohol-related cirrhosis in adults and 
obese youth[100,101]. In the Japanese population, the 
SAMM50 gene (rs738491, rs3761472, and rs2143571), 
PARVB gene (rs6006473, rs5764455 and rs6006611), 
and GATAD2A gene (rs4808199) were found to be 
significantly associated with NAFLD[102,103]. 

Meanwhile, Chinese children with NAFLD presented 
a higher prevalence of UCP3 gene rs11235972 GG[104]. 
Adams et al[105] reported that SNPs in two hepatic 
genes were associated with NAFLD in adolescents: The 
group-specific component and the lymphocyte cytosolic 
protein-1.

CONCLUSION
The pathogenesis of NAFLD and its progression is a 
complex process, in which some questions remain 
unanswered. The initial “two-hit” theory can no longer 
completely explain the pathogenesis of NAFLD, which 
involves multiple factors. In recent decades, many 
experiments have suggested that the gut microbiome 
plays a key role in NAFLD pathogenesis via the GLA. 
More recently, with the development of technology 
(especially GWAS), increasing studies have focused on 
genetic predispositions and found various gene variants 
that may alter lipid and sugar metabolism in the liver 
as well as in other tissues such as adipose tissue. Given 
the multifactorial nature of the related diseases, it may 
not be possible to obtain a single indicator that could 
precisely differentiate NAFLD and NASH. However, 
data in the future could be more promising in terms 
of population screening, with the goal to identify 
individuals at risk for NAFLD. 

Hopefully, the “multiple hit model” (once further 
refined) will pave the way for tailoring therapeutics to 
genetic predispositions to NAFLD and NASH.
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