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Abstract

Chronic fatigue syndrome (CFS) is a disorder associated with fatigue, pain, and structural/

functional abnormalities seen during magnetic resonance brain imaging (MRI). Therefore, we 

evaluated the performance of structural MRI (sMRI) abnormalities in the classification of CFS 

patients versus healthy controls and compared it to machine learning (ML) classification based 

upon self-report (SR). Participants included 18 CFS patients and 15 healthy controls (HC). All 

subjects underwent T1-weighted sMRI and provided visual analogue-scale ratings of fatigue, pain 

intensity, anxiety, depression, anger, and sleep quality. sMRI data were segmented using 

FreeSurfer and 61 regions based on functional and structural abnormalities previously reported in 

patients with CFS. Classification was performed in RapidMiner using a linear support vector 

machine and bootstrap optimism correction. We compared ML classifiers based on (1) 61 a priori 

sMRI regional estimates and (2) SR ratings. The sMRI model achieved 79.58% classification 

accuracy. The SR (accuracy = 95.95%) outperformed both sMRI models. Estimates from multiple 

brain areas related to cognition, emotion, and memory contributed strongly to group classification. 

This is the first ML-based group classification of CFS. Our findings suggest that sMRI 

abnormalities are useful for discriminating CFS patients from HC, but SR ratings remain most 

effective in classification tasks.
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Introduction

Chronic fatigue syndrome (CFS) is a condition mainly characterized by disabling fatigue of 

unknown origin for at least 6 months (Gunn et al. 1993). In addition, CFS patients 

commonly report neurologic, psychiatric, and physical symptoms (Fukuda et al. 1994). 

Although the etiology of CFS is not fully understood, central nervous system (CNS) 
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dysfunction (Chen et al. 2008) as well as sensitization of peripheral fatigue pathways (Staud 

et al. 2015) have been suggested. Magnetic resonance imaging (MRI) studies have described 

significant differences between patients with CFS and healthy controls (HC) across 

measures of structural and functional neuroimaging, as well as neurochemical factors (Chen 

et al. 2008).

Several studies have reported abnormal grey matter volumes in patients with CFS. Whereas 

one study observed global grey matter reduction in CFS (de Lange et al. 2005), others 

described select reductions within prefrontal (Okada et al. 2004; de Lange et al. 2008) and 

occipital cortices (Puri et al. 2012) as well as within angular and parahippocampal gyri (Puri 

et al. 2012). Whether structural brain features can be used to classify individuals with CFS 

from HC, however, has not yet been tested.

Supervised machine learning (ML) classifiers are specific application of ML technology that 

uses individual feature values to predict the discrete and pre-assigned class to which a given 

example belongs. The performance of a given model can be assessed by characterizing its 

success in correctly predicting group membership, also allowing for the comparison of 

performance between feature sets (Pereira et al. 2009). Model performance evaluation 

methods can yield estimates such as sensitivity (i.e., true positive rate) and specificity (i.e., 

true negative rate), and allows for the assessment of positive predictive value (PPV, i.e., 

probability that positive result occurs in a patient who has the condition) and negative 

predictive value (NPV, i.e., probability that a negative result occurs in an individual who 

does not have the condition). This method has been used in the classification of individuals 

with chronic pain (Ung et al. 2014; Labus et al. 2015) and depressed mood (Nouretdinov et 

al. 2011) with success. Self-report (SR) is the gold standard for classification of most 

chronic pain and psychiatric conditions, but only few studies have compared neuroimaging 

and self-report data for patient classification (Robinson et al. 2015).

The present study had several aims. First, we examined the performance of structural 

neuroimaging data in classifying individuals with and without CFS (i.e., sMRI model). Our 

interest was in determining whether structural regions with previously observed functional 

abnormality were predictive of patient status. Second, we examined the performance of a 

model solely composed of self-reported symptoms (i.e., SR model). Finally, we measured 

how well each model (i.e., sMRI and SR) would perform in a range of application settings 

using ecologically valid base rates (i.e., prevalence) by applying Bayes’ theorem (Lopez 

Puga et al. 2015). This method may produce more representative estimates of classification 

metrics, given that calculations of PPV and NPV depend on the condition’s prevalence in the 

context of specific settings, where the classifier may be applied. For example, a classifier 

may be used as a diagnostic tool in the clinic, where prevalence is high, or as a screening 

tool in the general population, where prevalence is much lower (Grimes and Schulz 2005; 

Robinson et al. 2016).
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Methods and materials

Participants

Participants comprised of 15 HC and 18 CFS patients. Two additional HC participants were 

initially recruited for this study; however, data quality issues resulted in their exclusion from 

analyses. CFS participants were required to fulfill Center for Disease Control criteria for 

chronic fatigue (Fukuda et al. 1994), which include unexplained, persistent, or relapsing 

chronic fatigue that is of new or definite onset over a period of at least 6 months. The fatigue 

could not be the result of ongoing exertion and had to result in substantial reduction in the 

previous levels of occupational, educational, social, or personal activities. In addition, CFS 

participants were required to have at least four of the following additional symptoms in the 6 

months prior to assessment, including impaired memory/concentration, sore throat, tender 

cervical or axillary lymph nodes, muscle pain, multi-joint pain, new headaches, unrefreshing 

sleep, and post-exertional malaise (Fukuda et al. 1994). CFS diagnosis was confirmed by a 

board-certified rheumatologist (RS). Subjects were excluded if they had a history of heart 

disease, chronic obstructive pulmonary disease, malignancy, psychiatric illnesses, or other 

disorders that could confound the diagnosis. CFS participants were recruited via outpatient 

medical clinics at the University of Florida, where they had completed the Center for 

Epidemiological Studies-Depression Scale (CES-D) to exclude depression (Radloff 1977), 

or through advertisements. Controls were excluded if they had a history of chronic fatigue, 

chronic pain, or psychiatric illness. All individuals were asked to sleep for at least 6 h and 

refrain from caffeine consumption prior to the study session. Consumption of alcohol, 

psychoactive substances, or any medication except vitamins was prohibited 24 h before the 

study. Individuals were also excluded if they were current smokers, yielded a positive 

pregnancy test result (women of child-bearing potential only) or contained any 

ferromagnetic metal within the body.

Because the focus of this study was primarily conceptual and mechanistic rather than 

diagnostic, Standards for Reporting of Diagnostic Accuracy Studies (STARD) guidelines 

(Cohen et al. 2016) have not been applied in the current report.

Clinical and affective ratings

Prior to MRI scanning, clinical fatigue, pain intensity, sleep quality, anxiety, anger, and 

depression were assessed using mechanical visual analog scales (VAS). VAS measures were 

selected as a comparison for MRI-based measures because of their reliability, validity, 

efficiency, and low cost (Price and Harkins 1987). Each scale was anchored on the left with 

“No (fatigue, pain, anxiety, anger, depression) at all” and on the right with “The most 

(fatigue, pain, anxiety, anger, depression) imaginable.” Sleep quality was also assessed using 

a VAS with “Best sleep/No problem sleeping” on left, and “Worst sleep/no sleep” on right. It 

is important to note that these SR measures were not used to diagnose CFS patients. As 

mentioned above, patients were diagnosed according to the criteria defined by Fukuda et al. 

(1994). As such, the SR feature set reflects subjective symptomatology. The SR feature set 

does, however, serve as a proxy for the process of clinical diagnosis, and as such is an 

appropriate comparison to assess the clinical utility of neuroimaging-based classifiers.
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Data acquisition and processing

Data were acquired on a Philips Achieva 3T MRI scanner with a 32-channel head coil. All 

participants completed one high-resolution, 3D anatomical, T1-weighted magnetization-

prepared rapid gradient-echo (MPRAGE) sequence. The parameters were as follows: 176 

sagittal slices (1 mm thickness), TR = 7.2 ms, TE = 3.2 ms, FA = 8°, FOV = 240 mm, and 

voxel size = 1 mm3. Total acquisition time was 4 min and 34 s.

All MRI data were processed individually through the automated subcortical segmentation 

and cortical parcellation tool in FreeSurfer, version 5.3 (Martinos Center for Biomedical 

Imaging, Charlestown, MA, USA) (Fischl et al. 2002; Fischl 2012). To increase the 

probability that each discrete region is correctly labelled, FreeSurfer considers aspects of the 

collected data and general aspects of MRI such as signal intensity of different regions, 

producing accurate and reliably segmentation (Jovicich et al. 2009). The software produces 

indices of area, thickness, and volume for cortical structures, and volume for subcortical 

structures, resulting in 274 unique neuroanatomical features. White matter, gray matter, and 

pial matter boundaries were reviewed in each subject for gross artifacts and errors in 

segmentation by the authors (LS and JB).

Feature selection

Of the initial 274 anatomical features, a subset of 61 features was chosen for classification in 

the a priori feature model (sMRI). The areas selected were those in which abnormalities in 

brain structure and function were previously observed in CFS patients compared to HC 

(Okada et al. 2004; Puri et al. 2012; Boissoneault et al. 2016; Gay et al. 2016). Table 1 

provides a complete list of regions. The SR model included all ratings discussed above 

except fatigue, which was excluded due to concerns regarding circularity of analyses given 

the closeness of this construct to the most salient aspects of CFS.

Modeling approach

Classification analyses were performed within Rapid-Miner Studio version 7.6.001 

(RapidMiner, Inc., Boston, MA, USA). Data were normalized via z-transformation. Z-

transformation produces standardized values across all features by calculating the mean 

value per feature, subtracting individual scores, and dividing by the standard deviation. This 

procedure eliminates scale differences between features that may otherwise confound 

classifier performance (Alpaydin 2014). The performance of two feature sets in classifying 

CFS patients and HC was compared: (1) structural MRI composed of the 61 regions based 

upon functional differences (sMRI) and (2) six clinical and affective, self-reported VAS 

ratings (SR). Features were not further mathematically transformed in any way prior to 

model estimation. A linear support vector machine (SVM), as implemented by Chang’s 

Library of Support Vector Machines (LIBSVM) (Fan et al. 2005) within the RapidMiner 

environment, was used in classification. SVMs classify labelled data by estimating the 

hyperplane that maximizes the width of the margin separating the hyperplane and data. 

Margin width maximization reduces the expected risk of model error (i.e., decreases model 

complexity). In cases where data are not perfectly separated by a hyperplane, a soft margin 

may be used which allows for some cases to be on the wrong side of the margin (i.e., 

increased model complexity). This complexity is captured in a penalty proportional to how 
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far cases are on the wrong side of the margin. The regularization parameter, C, balances the 

trade-off between model complexity and error frequency. This parameter was tuned by 

standard grid-search optimization according to Hsu et al. (2008). SVMs have previously 

been successfully applied to the classification of chronic low back and pelvic pain 

(Bagarinao et al. 2014; Ung et al. 2014). To aid in feature weight interpretation, weights 

were squared and ranked (Guyon et al. 2002). Broadly, greater values correspond to features 

that were more influential in the classification of each case.

Performance assessment

For all models, accuracy [the sum of true positives (TP) and true negatives (TN) divided by 

the sum of TN, TP, false positives (FP) and false negatives (FN); (TN + TP)/(TN + TP + FN 

+ FP)], sensitivity [TP/(TP + FN)], and specificity [TN/(TN + FP)] were calculated. For a 

brief review of these performance measures in the context of brain biomarkers for chronic 

pain, see (Robinson et al. 2016). To adjust for model optimism, bootstrapping was used to 

reduce bias in performance estimates (Cenzer et al. 2013). Similar to model assessment in 

cross-validation and with holdout samples, this approach is a viable alternative to guard 

against overfitting and may produce more conservative estimates of model performance 

(Friedman et al. 2009; Smith et al. 2014; Walsh et al. 2017). This approach is particularly 

germane for small sample sizes, such as those regularly used in human neuroimaging 

investigations. To estimate and correct for model optimism the following steps are used: (1) 

a classification model is trained on the full set of available data; (2) a set of bootstrap data 

sets are collected based upon the original data (200 replications were used in the current 

study); (3) models are estimated for each bootstrap sample replication; (4) the previously 

estimated bootstrap replication-derived model is then applied to the original data set; (5) 

differences in model performance between the models estimated in Steps 3 and 4 are 

calculated and averaged (the resulting average metric reflects the optimism of the original 

model derived in Step 1); and (6) optimism-corrected performance estimates are calculated 

by subtracting the optimism metric found in Step 5 from the performance metrics achieved 

by the original model estimated in Step 1. All performance metrics are reported with this 

correction taken into account.

Prevalence-sensitive performance evaluation

PPV [TP/(TP + FP)] and NPV [TN/(TN + FN)] were additionally calculated for each of the 

three models. PPV and NPV reflect the probability of true positive and true negative tests, 

respectively, and unlike sensitivity and specific, depend on the prevalence of the condition(s) 

in question in the setting where the classifier is applied. To evaluate classifier performance 

as a function of differential CFS prevalence across a variety of potential application 

contexts, PPV and NPV were calculated with incrementally varying prevalence in equal 

increments from 10 to 90%, including 1 and 99%. Doing so allows for intuitive evaluation of 

model performance in different settings (e.g., screening of the general population or acting 

as a diagnostic marker in the clinic) in which the prevalence of CFS may vary greatly 

(Robinson et al. 2016).
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Results

Participant characteristics

Participant demographics are displayed in Table 2. HC and CFS patients did not differ 

significantly in age (t31= 0.28, p = .78). HC reported more years of education than CFS 

patients (t31= 2.36, p = .03). All subjects were female with the exception of two males in the 

CFS group. In the CFS group, 83.3% identified as white, 11.1% as hispanic, and 5.6% as 

black. In the HC group, 80% of participants identified as white, 13.3% as hispanic, and 6.7% 

black.

Model classification performance

Performance metrics for the primary models tested (sMRI and SR) are displayed in Table 5; 

all estimates displayed are optimism corrected. The model produced for the a priori sMRI 

feature set achieved an accuracy of 79.58% (sensitivity = 82.00%, specificity = 76.70%; see 

Table 3 for feature weights). The SR feature set achieved considerable greater values on all 

performance metrics (95.59% accuracy, sensitivity = 95.44%, and specificity = 95.77%). 

Mean VAS ratings for each group on all six measures are displayed in Table 4.

To further clarify model performance, we also assessed the performance of a whole brain 

sMRI feature set with the same modelling approach (total number of features = 235, sMRI-

W). This model achieved nearly identical performance to our original, a priori-based sMRI 

model (accuracy= 79.44%, sensitivity = 82.00%, specificity =76.70%, for feature weights 

refer to supplemental material Table S1).

Feature importance

Feature weights are squared to aid in assessing importance in classification and are 

displayed in Table 3 for both models.

sMRI Model—There was a greater representation of the left hemisphere regions among 

those most highly ranked. These included the left caudal anterior cingulate cortex (area and 

volume; cACC), post central gyrus thickness, rostral middle frontal cortex (area and 

volume), caudate, lingual gyrus (volume and area), and insular cortex. The right superior 

temporal lobe thickness, cACC volume, and superior parietal thickness were also 

particularly salient in the classification of patients.

Self-Report Model—For the SR Model, the most salient feature weights were sleep 

quality and pain intensity (Weights for all features are displayed in Table 3). Their 

contribution to participant classification exceeded that of depression, anger, and anxiety 

ratings by nearly an order of magnitude.

Prevalence-sensitive performance evaluation

PPV and NPV values for each model can be seen in Table 5. PPV and NPV were calculated 

for each feature set with prevalence varying from 1 to 99% (Table 6). In general, as 

prevalence increases, PPV increases and NPV decreases. When comparing feature sets, the 

sSR feature set performed the best, followed by sMRI across all prevalence rates.
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Discussion

To our knowledge, this study represents the first investigation of the utility of sMRI features 

for the classification of CFS patients versus HC (Fig. 1). We used a bootstrap-based 

optimism correction, which allowed us to create a model that both uses all available data and 

maintains minimal bias is performance estimation. Our data suggest that sMRI features 

alone are able to classify CFS patients with ~ 80% accuracy, which is comparable to that 

obtained for other chronic musculoskeletal pain conditions, including FM (Robinson et al. 

2015), irritable bowel syndrome (Labus et al. 2015), chronic low back pain (Baliki et al. 

2011; Ung et al. 2014), and knee osteoarthritis (Baliki et al. 2011). Results were nearly 

identical when classifier performance was assessed on a reduced sample excluding the two 

male CFS patients and another randomly determined CFS patient, resulting in equivalent 

sample size and sex composition between groups. As expected, the modified models 

displayed a comparative decrease in sensitivity and increase in specificity in relation with 

the original estimates (see the Appendix for additional details). This suggests that the 

slightly unbalanced sample size and inclusion of men in the CFS group did not meaningfully 

bias classifier performance. Results also suggest that performance is largely unchanged with 

the inclusion of a whole brain feature set versus our theoretically derived feature set. 

However, future replication of our model performance in other samples is needed.

When interpreting SVM feature weights, it is important to emphasize that these cannot be 

interpreted in the same way as voxel weights in standard, GLM-based mass-univariate 

analyses. SVM feature weights do not support inferences regarding underlying biological 

processes that separate groups (Haufe et al. 2014). Rather, these weights exist in the context 

of the entire multivariate pattern, in which the direction and magnitude of the weight 

indicate influence on classifier decision (Mansson et al. 2015). Furthermore, although 

weights assigned to individual features reflect the relative importance of those features in 

calculating the dot product used to predict class membership (i.e., which side of the 

hyperplane each case falls on), they do not necessarily reflect the biological states that may 

distinguish CFS patients from healthy controls. They also do not imply that features with 

relatively lower weights do not meaningfully contribute to classification decisions. Features 

were selected from the previous work that displayed structural and functional connectivity 

abnormalities in CFS patients (Okada et al. 2004; Boissoneault et al. 2016, 2018; Gay et al. 

2016; Wortinger et al. 2016). Performance metrics for the sMRI model suggest initial 

convergence among those regions that display abnormalities and those that aid in structure-

based classification of CFS patients. As noted above, although all features contributed to the 

observed performance estimates, certain features exerted much greater influence on 

classification than others.

While the previous studies have identified global and focal brain abnormalities in brain 

perfusion, function, and structure in CFS patients (Okada et al. 2004; Boissoneault et al. 

2016, 2018; Gay et al. 2016; Wortinger et al. 2016), it appears that a subset of these regions 

is most salient in the classification of CFS patients from healthy controls. Among these, we 

found that regions that most contribute to classification include aspects of midline cortical 

and subcortical, parietal, temporal, and occipital structures. Taken together, these regions 

subsume multiple functions including cognitive, emotional, reward, sensory, visual, and 
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regulatory processes. This constellation is consistent with the range of CFS 

symptomatology. Functional perturbations relative to HC in these regions during wakeful 

rest (Boissoneault et al. 2016; Gay et al. 2016) and task performance (Miller et al. 2014) 

have been previously reported in CFS.

For example, a third of the 15 highest ranked features were estimates from the cACC and 

rostral middle frontal gyrus. These regions are involved in both cognitive and affective 

processes, and may be particularly important for the integration of these elements of 

experience. The rostral medial aspect of the PFC may be particularly involved in inhibitory 

functions of both cognitive and affective processes, while the cACC, particularly salient to 

CFS, is involved in cognitive aspects of movement, including intention (Hoffstaedter et al. 

2014). In CFS patients, our group previously identified resting-state perturbations in 

functional connectivity among the precuneus and basal ganglia structures (Boissoneault et 

al. 2018), which may be related to abnormalities in attention switching or reward-related 

gating during attentional switching. The potential importance of these processes is 

confirmed in relatively high SVM weights assigned to these structures in the present 

analysis. Other studies have also demonstrated structural, functional, and neurometabolic 

perturbations in occipital lobe structures in CFS patients (Puri et al. 2002, 2012; 

Boissoneault et al. 2016). Our findings suggest that these structures may further aid in 

discriminating from among patients and controls. It is also notable that among the highest 

ranked features, there was a greater representation of the left hemisphere than right 

hemisphere estimates. Future studies should examine lateralization of structural 

abnormalities in chronic fatigue syndrome to aid in identifying potential hemisphere-specific 

discriminatory mechanisms.

As previously noted, we also tested a classification model using SR measures of affect and 

pain. Clinical utility of this classifier is limited, because CFS diagnosis was confirmed as 

part of the study screening process. Thus, the SR model used in this investigation was 

intended primarily as a comparator for the sMRI model, so that its potential utility in clinical 

settings could be gauged. Classification of CFS patients with this model was approximately 

96% across performance indices. This is consistent with a previous report in which SR 

measures achieved ~ 85–95% classification accuracy distinguishing patients with 

fibromyalgia syndrome from HC (Robinson et al. 2015). Consistent with the diagnostic 

criteria for CFS, which emphasize musculoskeletal pain and sleep disruption as secondary 

symptoms of CFS (Fukuda et al. 1994), SR measures of pain intensity and sleep quality 

were each strong contributors to the SR-only model. The SR model also performed 

considerably better than the sMRI model. This suggests that while sMRI features aid in 

classification, there is additional information vital to classification that is not adequately 

captured in the sMRI feature set. Combinations of both functional and structural features 

may improve performance and give key mechanistic insights.

Finally, the utility and accuracy of any ML classifier also depend on the prevalence of the 

condition of interest in a particular setting (i.e., the base rate, or overall likelihood of 

encountering an individual with the condition), and will directly affect the PPV and NPV. 

For instance, the base rate of patients with a specific condition is likely much higher in a 

specialty clinic than among the general population (Robinson et al. 2016). In high 
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prevalence settings, a biomarker will have an excellent PPV, but poor NPV even if 

specificity is very high. For this reason, PPV and NPV were calculated for each model on a 

spectrum of CFS prevalence ranging from 1 to 99%. For reference, estimates of the 

prevalence of CFS in the general population range from 0.07 to 2.8% (Afari and Buchwald 

2003; Vincent et al. 2012). Our results indicate that none of the models performed well at 

extremely high or low base rates due to expected drops in NPV and PPV, respectively. 

However, PPV and NPV for the SR model were above 80% for the range of base rates from 

20 to 80%. It is obvious from these data that extremely accurate models will be needed to 

function as useful classifiers in settings where CFS is either very common (e.g., the clinic) 

or rare (e.g., the general population).

Study limitations and future directions

Because of this study’s cross-sectional nature, we were unable to determine whether 

perturbations in the structural features contributing to the sMRI model are cause or 

consequence of CFS. Longitudinal studies are required to clarify whether individuals who 

exhibit similar abnormalities are predisposed to developing CFS or whether these 

abnormalities are a consequence of CFS pathology. Our results provide additional support 

for the role of structural classification of CFS in regions with previously demonstrated 

functional alterations (Boissoneault et al. 2016, 2018; Gay et al. 2016). These regions may 

serve as targets for future neurometabolic studies to identify any underlying abnormalities. 

Similar to many classification studies of other chronic pain conditions [e.g., (Ung et al. 

2014; Robinson et al. 2015)], the small sample size of our current investigation may 

represent a limitation due to the risk of model overfit. However, optimism correction adds 

confidence to these results and decreases the likelihood of overfitting. Nevertheless, 

replication and extension of our study with a larger sample are needed. With the present 

samples, it is impossible to determine whether the features found to be important to 

classification are unique to CFS. Studies attempting to classify between patient groups will 

be necessary to increase model validity. In addition, given that a subset of CFS patients was 

misclassified by our sMRI models, it is possible that clinically meaningful subgroups exist 

within this population. Reliable identification of unbiased subgroups, however, is not 

feasible with the current sample size. Future studies will have to identify and validate 

subgroups within the CFS population based upon degree of morphological abnormality or 

with the inclusion of brain regions not assessed in the current investigation.

Conclusions

The results of our study demonstrate that structural brain features derived from frontal 

cortical and subcortical, parietal, basal ganglia, and occipital regions can be used to classify 

patients with CFS using ML algorithms. In addition, our findings may generate new insights 

into the pathogenesis of CFS. Our sMRI classification model identified CFS patients with 

high accuracy. Model built on self-report features was found to outperform those built on 

structural estimates.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Analysis pipeline used to classify CFS patients and HC. Two models using different features 

were compared: (1) FreeSurfer segmented regional estimates based upon previously detected 

functional abnormalities and (2) clinical and affective VAS ratings. Across feature sets, 

classification was performed with SVM and performance evaluated following bootstrap 

optimism correction. PPV and NPV were then calculated based upon incrementally 

increasing estimates of CFS prevalence to aid in assessing clinical utility of the results. 

sMRI structural MRI feature set, VAS visual analogue scale, SR self-report VAS rating 

feature set, SVM support vector machine, PPV positive predictive values, NPV negative 

predictive value, CFS chronic fatigue syndrome, HC healthy control
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Table 1

Regions used for classification analyses

Hemisphere Region

Left Caudatea

Left Palliduma

Right Hippocampusa

Right Palliduma

Left Caudal anterior cingulate cortex

Left Caudal middle frontal cortex

Left Insula

Left Lingual gyrus

Left Parahippocampal

Left Postcentral gyrus

Left Posterior cingulate cortex

Left Precuneus

Left Rostral anterior cingulate cortex

Left Rostral middle frontal cortex

Left Superior frontal cortex

Right Caudal anterior cingulate cortex

Right Cuneus

Right Inferior parietal lobe

Right Lateral occipital lobe

Right Precuneus

Right Rostral anterior cingulate cortex

Right Superior parietal lobe

Right Superior temporal lobe

For all regions, unless marked with superscript a, estimates of area, thickness, and volume were included. Those marked with an asterisk represent 
subcortical regions for which only estimates of volume were used. A total of 61 neuroanatomical features were included in analyses
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Table 2

Demographic characteristics by group

CFS HC

Age (mean ± SD) 48.33 (12.67) 47.13 (11.67)

Education (mean ± SD) 14.25 (2.43) 16.00 (1.66)

Sex (F/M) 16/2 15/0

CFS chronic fatigue syndrome, HC healthy controls
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Table 3

SVM feature weights

Feature set

Feature Weight Rank

SR

 Sleep quality 0.179 1

 Pain intensity 0.159 2

 Depression −0.020 3

 Anger −0.016 4

 Anxiety −0.009 5

sMRI

 Left caudal anterior cingulate area 0.86 1

 Left postcentral thickness 0.85 2

 Left caudal anterior cingulate volume 0.71 3

 Right superior temporal thickness 0.68 4

 Left insula thickness 0.61 5

 Left rostral middle frontal area 0.57 6

 Left rostral middle frontal volume 0.57 7

 Left lingual volume 0.56 8

 Left caudate 0.53 9

 Left lingual area 0.52 10

 Right caudal anterior cingulate volume 0.43 11

 Left precuneus thickness 0.42 12

 Right superior parietal thickness 0.42 13

 Right pallidum 0.41 14

 Right lateral occipital area 0.41 15

 Right superior parietal volume 0.40 16

 Right caudal anterior cingulate thickness 0.40 17

 Left caudal middle frontal area 0.39 18

 Left pallidum −0.38 19

 Left postcentral volume 0.37 20

 Left caudal middle frontal volume 0.37 21

 Right lateral occipital volume 0.35 22

 Right superior temporal volume 0.34 23

 Left superior frontal area 0.34 24

 Right superior parietal area 0.33 25

 Left posterior cingulate area 0.31 26

 Left rostral anterior cingulate area 0.29 27

 Left precuneus volume 0.29 28

 Left insula volume 0.28 29

 Right caudal anterior cingulate area 0.27 30

 Right superior temporal area 0.27 31
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Feature set

Feature Weight Rank

 Left postcentral area 0.26 32

 Left posterior cingulate volume 0.26 33

 Left insula area 0.26 34

 Left superior frontal volume 0.24 35

 Left rostral anterior cingulate volume 0.24 36

 Right rostral anterior cingulate volume 0.24 37

 Right precuneus area 0.23 38

 Right inferior parietal area 0.23 39

 Left rostral anterior cingulate thickness 0.23 40

 Right precuneus volume 0.21 41

 Left precuneus area 0.20 42

 Left parahippocampal volume −0.20 43

 Right inferior parietal volume 0.18 44

 Right cuneus area −0.17 45

 Left caudal middle frontal thickness 0.16 46

 Left caudal anterior cingulate thickness 0.15 47

 Right lateral occipital thickness 0.12 48

 Left rostral middle frontal thickness 0.12 49

 Left parahippocampal area 0.11 50

 Left posterior cingulate thickness −0.11 51

 Right rostral anterior cingulate thickness 0.09 52

 Left lingual thickness 0.08 53

 Right cuneus volume −0.08 54

 Left parahippocampal thickness −0.08 55

 Right cuneus thickness −0.07 56

 Right inferior parietal thickness 0.07 57

 Right rostral anterior cingulate area 0.06 58

 Left superior frontal thickness 0.04 59

 Right hippocampus 0.03 60

 Right precuneus thickness 0.00 61

sMRI structural MRI feature set, SR self-report feature set
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