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The van der Waals heterostructures, which explore the synergetic
properties of 2D materials when assembled into 3D stacks, have
already brought to life a number of exciting phenomena and elec-
tronic devices. Still, the interaction between the layers in such as-
sembly, possible surface reconstruction, and intrinsic and extrinsic
defects are very difficult to characterize by any method, because of
the single-atomic nature of the crystals involved. Here we present a
convergent beam electron holographic technique which allows im-
aging of the stacking order in such heterostructures. Based on the
interference of electron waves scattered on different crystals in the
stack, this approach allows one to reconstruct the relative rotation,
stretching, and out-of-plane corrugation of the layers with atomic
precision. Being holographic in nature, our approach allows extrac-
tion of quantitative information about the 3D structure of the typ-
ical defects from a single image covering thousands of square
nanometers. Furthermore, qualitative information about the defects
in the stack can be extracted from the convergent diffraction pat-
terns even without reconstruction, simply by comparing the pat-
terns in different diffraction spots. We expect that convergent
beam electron holography will be widely used to study the proper-
ties of van der Waals heterostructures.
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Stacking 2D materials into van der Waals heterostructures
offers an unprecedented control over the attributes of the

resulting devices (1, 2). Initially, the individual layers in the stack
were considered to be independent, which offers a reasonable
zero-order approximation of the properties of such hetero-
structures. However, as we gain better and better control over
the stacking arrangement between the individual components
and the cleanliness of the interfaces, the interaction between the
individual crystals becomes more and more important, and can
even dominate the performance of the structures.
Still, it is very difficult to extract the detailed information about

the stacking. Cross-sectional transmission electron microscopy
(TEM) imaging (3) allows atomic-scale information on the
structure and chemistry of the buried interface between the indi-
vidual crystals to be obtained. Unfortunately, this technique re-
quires sophisticated sample preparation, is time-consuming, and
only yields data on a thin slice of the sample, which is not neces-
sarily representative of the large-area device. Preferential scatter-
ing detection in the scanning TEM has been recently demonstrated
to allow determination of atomic stacking for well-aligned graphene/
boron nitride heterostructures, but it requires a custom aperture
configuration and is based on atomic resolution imaging compared
with relaxed density functional theory (DFT) modeling, so is in-
herently limited to a small field of view (4). Thus, the whole field of
van der Waals heterostructures would benefit enormously from a
technique which allows one to extract 3D structure for the buried
interfaces inside such stacks on a larger scale.
Convergent beam electron diffraction (CBED) (5) has been pre-

viously applied to 3D crystals, where it provides a valuable method
for studying crystallographic structure (6–9), and measurement of

strain (10, 11) and specimen thickness (12, 13) for a nanoscale
volume. The choice of the electron beam convergence angle (14,
15), defocusing distance, lens aberrations, and specimen thickness
allows precise control of the volume of material analyzed in a single
measurement. However, accurate interpretation of a general
CBED pattern is not straightforward, requiring careful comparison
with simulated structures, which often limits application of the
technique. CBED on thin van der Waals heterostructures (1, 2)
would deliver a dramatically larger amount of information, which is
intuitively easy to interpret and immediately results in both quali-
tative and quantitative data about the stack. Furthermore, CBED
of van der Waals heterostructures can be considered as a hologram,
so conventional holographic reconstruction techniques can be ap-
plied, thus delivering information about the 3D arrangement be-
tween the crystals in the stack (including the local strain, lattice
orientations, local vertical separation between the layers, etc.)
which is not accessible by conventional TEM imaging (16, 17).
A CBED pattern from a single layer of graphene or hexagonal

boron nitride (hBN) consists of finite-sized spots arranged into a
sixfold symmetrical pattern. The centers of the spots have the
same positions as the diffraction peaks, given by sin ϑ= λ=a, where
λ is the wavelength, ϑ is the diffraction angle, and a is the period of
the crystallographic planes. The size of a CBED spot on the de-
tector depends on the convergent angle and the diameter of the
limiting aperture, and it remains the same independent of the z
position of the sample (or defocusing distanceΔf). The sample
area imaged within a CBED spot corresponds to the illuminated
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area, whose diameter can be approximated as 2Δf tanα, where α
is the convergence semiangle of the electron beam (Fig. 1A).
Probing the samples with a convergent (underfocus, Δf < 0) or
divergent (overfocus, Δf > 0) incident wavefront is achieved by
changing the z position of the sample.
In case of CBED on a bilayer structure (for instance, graphene/

hBN stack—the type of devices we concentrate on in this paper),
the electron beams diffracted on each layer interfere at the positions

where the CBED patterns of individual layers overlap (Fig. 1B),
thus creating a specific interference pattern (Fig. 2). Such in-
terference patterns contain information about the local inter-
atomic spacing (local strain), the vertical distance between the
crystal layers, the relative orientation between the layers, etc.

Results
Simulated CBED of Perfect Crystals. Fig. 2 demonstrates modeling of
CBED for several typical bilayer heterostructures consisting of
perfect crystals (the simulation procedure is described in SI Ap-
pendix). The interference pattern in a CBED spot can be inter-
preted as being created by a superposition of two waves originating
from two corresponding virtual sources, as sketched in Fig. 1A. If
the two stacked crystals have the same lattice constant and the same
orientation (as, for instance, in the case of AA or AB stacked bi-
layer graphene), then the virtual spots are found almost at the same
position, and no interference pattern is observed in CBED spots. A
relative rotation between the layers (Fig. 2 A–D), or a slight mis-
match of the lattice constants (Fig. 2 E–H), leads to the virtual
sources, and, correspondingly, the CBED spots, appearing at
slightly different positions, Fig. 1B. As a result, interference be-
tween the CBED spots occurs, and a fringed interference pattern is
observed where the spots overlap. If the two graphene crystals in
the double layer are rotated with respect to each other by a small
angle β, the CBED patterns from the two crystals will be rotated
relative to each other by the same angle. Diffracted electron waves,
which originate from the separate layers but arrive at the same
point in the CBED detector plane, gain different phases, and the
difference is now proportional to the rotation between the layers.
As a result, radially distributed interference fringes will be observed,
with the period of fringes within a particular CBED spot dependent
on the angle of the rotation between the layers (Fig. 2 A–D).
In the case of two crystals with aligned crystallographic directions

but with slightly different interatomic spacing (as, for instance, the
case for graphene and hBN), the CBED spots will be shifted in the
radial direction (Fig. 1B). The hBN has a 1.8% larger basal plane
lattice spacing than graphene, and this will result in the appearance
of interference patterns with tangentially distributed fringes (Fig. 2
E–H). The period and the tilt of the fringes are unambiguously
defined by the lattices’ periods, the probing electron beam wave-
length, the z position of the sample, the relative rotation between
the layers, and the distance between the layers (as shown in SI
Appendix). Interestingly, CBED patterns of such bilayer sam-
ples are extremely sensitive to the atomic arrangements in the
layers. If the local stacking under the center of the electron
beam is AA (Fig. 2E), the pattern of interference fringes has
maxima at the center of the CBED spots (Fig. 2F). If the local
atomic stacking is AB (Fig. 2G), the pattern of interference
fringes in the CBED spots is shifted, and, as a result, the intensity

Fig. 1. Experimental arrangement for CBED. (A) Schematics of CBED on a bi-
layer system. Here Δf is the sample z position counted from the focus of the
electron beam (in this particular case, underfocus Δf < 0 CBED conditions are
shown), Z is the distance from the virtual sources plane to the detector, and S(1)

and S(2) are the virtual sources for the first-order CBED spots of bottom (layer 1)
and top (layer 2) crystals, respectively, in the heterostructure stack; ϑ is the an-
gular coordinate on the detector. (B) Distribution of CBED spots on a detector in
the case of two aligned crystals with slightly different lattice constants.

Fig. 2. Simulated CBED patterns for various 2D bi-
layer heterostructures. (A) Illustration of a bilayer
graphene illuminated by a convergent electron
beam with one graphene layer rotated by an angle
β. (B–D) Simulated CBED patterns of a double-layer
graphene for different β. (E) Sketch of the top view
of a graphene–hBN stack with AA atomic stacking in
the center of the beam, and (F) the simulated CBED
pattern. (G) Sketch of the top view of graphene–hBN
with AB stacking in the center of the beam, and (H)
the simulated CBED pattern. For these simulations,
the distance between the layers is 3.35 Å, Δf = −3 μm,
and the imaged area is about 50 nm in diameter. (All
scale bars, 2 nm−1.)

7474 | www.pnas.org/cgi/doi/10.1073/pnas.1722523115 Latychevskaia et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1722523115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1722523115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1722523115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1722523115/-/DCSupplemental
www.pnas.org/cgi/doi/10.1073/pnas.1722523115


distribution in the opposite CBED spots [such as those with
Miller indices (1−100) and (−1100)] are not mirror-symmetric
(Fig. 2H).
Also, the distance between the layers affects the interference

pattern. The phase difference between the electron waves dif-
fracted from the two identical and aligned crystals separated by a
distance Δz is given by

Δφz =Δz
2π
λ
ð1− cosϑÞ, [1]

where λ is the electron wavelength (4.2 pm for 80-keV electrons).
Since sin ϑ= λ=a, the phase shift within the CBED spot can be
approximated as

Δφz ≈
πλΔz
a2

, [2]

where a is the lattice period which defines the order of the
particular CBED spot. It is clear that, for a bilayer graphene
(a= 2.13 Å for the first-order CBED spots), with a typical inter-
layer distance of about 3.35 Å, the phase difference is negligible
(about 0.1 rad) and remains almost constant over the entire
CBED spot, and thus no interference fringes should be observed
within the CBED spots [as, indeed, has been reported previously
(18)]. Further discussion on the period of the interference
fringes and examples of the reconstruction of the exact interlayer
distances from CBED patterns are provided in SI Appendix.
We should stress that, even in the case of a monolayer, the intensity

distribution within each CBED spot is not an image of the sample but
a far-field distribution of the intensity of the wave scattered by the
sample, which, in fact, is an inline hologram of the sample area.

Simulated CBED for Crystals with Out-of-Plane Atomic Displacements.
To quantitatively study the relation between the atomic defects
and the CBED pattern, we simulated out-of-plane and in-plane
displacements of atoms in the graphene lattice and the corre-
sponding phase distributions in the detector (far-field) plane,
shown in Fig. 3. When atoms are displaced out of the crystal
plane by a distance Δz, the scattered wave gains additional phase
shift given by Eq. 1. Because Δφz is an even function of ϑ, the
added phase shift causes equal intensity change (increase or
decrease of the intensity) in opposite CBED spots (see SI Ap-
pendix for the derivation of the formulae for the phase shift). A
simulated CBED pattern of an out-of-plane defect (bubble, Fig.
3A) with a maximum height in the center of 2 nm is presented in
Fig. 3B, with the phase distribution in the far field shown in Fig.
3C. Eq. 2 allows estimation of the height of the bubble from the
measured phase with 90% precision. The discrepancy is because of
the diffraction effects (which are strong for 4-nm-wide bubble) due
to perfect coherence of the electron beam assumed in the simu-
lations. This Fresnel diffraction effect can be compensated and the
true shape of the bubble restored by performing deconvolution
with the free-space propagator as explained in detail in SI Ap-
pendix. Such diffraction effects are much less pronounced in the
experimental images where electron waves are only partially co-
herent (SI Appendix, CBED Pattern of an Edge), and where the use
of Eq. 2 gives an excellent level of accuracy.
A CBED pattern of a monolayer contains only the amplitude

information of the wave, losing the phase part of the signal.
Consequently, a direct recalculation of the CBED pattern into
the atomic distribution is impossible. However, the CBED pat-
tern intensity distribution unambiguously relates to the atomic
3D displacements, and the atomic displacements, in principle,
can be recovered by simulating a matching CBED pattern of a
lattice with modeled displacements. The situation is considerably
improved in the case of CBED of a bilayer system. Here, the
second layer adds a second wavefront that acts as a reference wave.
This situation can be considered as a form of off-axis holography,
where the wavefront, scattered on one of the crystals, is treated as

the object wave, and the wavefront scattered on the other layer is
treated as the reference wave. The resulting interference pattern
forms an off-axis hologram, which can be reconstructed to give the
amplitude and phase distributions of the wavefront at the position
of each CBED spot. The reconstruction approach which we use
here is based on an established procedure for reconstruction of
off-axis holograms (19–21), and involves two Fourier transforms
(22) (more details are provided in SI Appendix). From the set of
phase distributions recovered for individual CBED spots, the
atomic displacements in the layers can be immediately recovered.
Fig. 3D shows a sketch of a bilayer graphene/hBN hetero-

structure with out-of-plane displacement of atoms in the gra-
phene layer. The corresponding simulated CBED pattern is
shown in Fig. 3E. An out-of-plane atomic displacement results in
an additional phase shift, which is the same for all CBED spots
of the same order. Thus, to extract the out-of-plane atomic
displacements, the symmetric component of the CBED signal is
extracted by averaging the phase distribution from all CBED
spots of the same order, producing Δφz. Δz is calculated from
Δφz by applying Eq. 2 (Fig. 3F).

Simulated CBED of Crystals with In-Plane Atomic Displacement. When
atoms are displaced within the crystal plane by a distance Δx, the
additional phase shift is given by

Δφx =−KxΔx, [3]

where ðKx,KyÞ are the coordinates in the far-field (detector)
plane. Fig. 3G shows a sketch of a graphene layer with an in-
plane displacement Δx=−10 pm for the atoms in the positive
semiplane (x> 0). The corresponding simulated CBED pattern is
shown in Fig. 3H. Because the phase shift Δφx is an odd function
of Kx, an in-plane displacement gives rise to opposite intensity
variation in opposite CBED spots, as shown in Fig. 3H. As fol-
lows from Eq. 3, for Δx= 10 pm, the maximal phase shift in the
first-order CBED spots amounts to ±0.3 rad, which is confirmed
by the phase distribution shown in Fig. 3I. In Fig. 3I, vertical
interference fringes observed in the center of each CBED spots
are due to diffraction on a knife edge. Because infinite coher-
ence is assumed in the simulation, Fresnel fringes appear in the
region of about 2.4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
λΔf=2

p
. Again, if we perform deconvolution

with the free-space propagator (SI Appendix), this Fresnel dif-
fraction effect can be completely compensated. Such diffraction
effects should be much less pronounced in experimental images
where electron waves are only partially coherent.
According to Eq. 3, an in-plane displacement does not cause

intensity variations (irregularities of fringes) in CBED spots that
are orthogonal to the direction of the displacement [note that
there is no change in the intensity distributions in (1−210) and
(−12−10) spots, Fig. 3 H and I]. To quantitatively reconstruct the
in-plane atomic shifts in the x direction, the difference between
the phase distributions in the opposite CBED spots along the Kx
direction should be calculated and divided by 2, thus extracting
only the antisymmetric component of the signal. Δx is then cal-
culated from Δφx by applying Eq. 3.
Fig. 3J shows a sketch of a graphene/hBN heterostructure with

atomic in-plane displacement of some of the graphene atoms
(the whole right semiplane is shifted by 10 pm). The corre-
sponding simulated CBED pattern is shown in Fig. 3K. The
phase distributions were reconstructed for each CBED spot, and
Δx was obtained from the reconstructed phase distributions as
described above. Fig. 3L shows the reconstructed Δx which
matches the predefined values: 0 for x< 0 and −10 pm for x> 0.
An example of a reconstruction when both Δx and Δz occur si-
multaneously, with more details about the reconstruction pro-
cedure, is provided in SI Appendix.
As one can see, it is easy to distinguish between the out-of-plane

and in-plane atomic displacements, even without performing a
reconstruction, by simply comparing the intensity contrast in the
opposite CBED spots of monolayers or the regularity of interference
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fringes for bilayer samples. An out-of-plane defect will always
result in a symmetric phase distribution between the mirror-
symmetric CBED spots, and an in-plane defect will result in an
antisymmetric one.

Experimental Results. Fig. 4 shows CBED patterns for three of our
samples: aligned graphene on hBN (Fig. 4A), graphene rotated
with respect to hBN by a small angle (Fig. 4B), and a multilay-
ered sample (Fig. 4C). As predicted by the simulations (Fig. 2),
the interference patterns are tangential and radial in Fig. 4 A and
B, respectively. The particular arrangement of the interference
patterns (for instance, the number of interference fringes) de-
pends on Δf as well as the misorientation angle between the two
crystals, among other parameters. The misorientation angle
calculated for this particular sample is 2.5° ± 0.1° (SI Appendix).
More examples of experimental CBED patterns for graphene–
hBN heterostructures are provided in SI Appendix.

Fig. 4C shows a CBED pattern of a three-layer system (hBN
sandwiched between two layers of graphene) acquired at Δf ≈ 0.
Because Δf is so small, the period of the interference fringes is
very large, and no interference fringes are observed within the
overlapping CBED spots. From the position of the spots, we
measure that the relative rotation between hBN and one of the
graphene layers is 2.5°, and the relative rotation between the two
graphene layers is 17°. Two of the three layers exhibit unperturbed
crystalline structure as evident from the homogeneous intensity
within their CBED spots. The intensity variations of opposite
contrast in opposite CBED spots of the hBN layer indicate the
presence of an in-plane strain (as indicated by the red arrows in
Fig. 4C). The contrast variation on the circumference of each
CBED discs in Figs. 4 and 5 are attributed to charging of the dust
particles at the condenser aperture.
To demonstrate the holographic nature of our CBED patterns,

we imaged a ripple defect in stacking between the two layers. Such

Fig. 3. Simulated CBED patterns for graphene and
graphene–hBN bilayer heterostructures where gra-
phene lattice is deformed. (A) Side view illustration
of a graphene layer with atoms displaced out of
plane, not drawn to scale. (B) Corresponding simu-
lated CBED pattern where the atoms are displaced
out of plane in the form of a bubble. The atomic z
positions are shifted by Δz = −ABexp[−(x2 + y2)/
(2σ2Β)], AB = 2 nm, and σΒ = 2 nm. (C) The difference
of the phases of the wavefronts scattered by gra-
phene with and without the out-of-plane atomic
displacement due to the bubble. The blue curve
shows the profile through the center of the distri-
bution that is at Ky = 0. (D) Sketch of the side view of
a graphene–hBN bilayer with AA stacking area but
with atoms in graphene displaced out of plane due
to the presence of a bubble. (E) Corresponding
simulated CBED pattern for D. The graphene atoms
displacement is the same as in B. (F) Reconstructed
distribution of the atomic out-of-plane displacement
due to the bubble in the graphene layer. (Scale bar,
5 nm.) (G) Sketch of the top view of the graphene
layer with atoms displaced laterally (within the
crystal plane). (H) Simulated CBED pattern where the
atoms positioned at x > 0 are displaced byΔx =−10 pm.
(I) The difference between the phases of the wavefronts
scattered from graphene with and without in-plane
atomic displacement. The blue curve shows the profile
through the center of the distribution that is at Ky = 0.
(J) Sketch of the side view of a graphene–hBN bilayer,
AA stacking area, with atoms in graphene displaced
within graphene plane as inH andG. (K) Corresponding
simulated CBED pattern for graphene–hBN hetero-
structures described in J. (L) Reconstructed distribution
of the atomic in-plane Δx displacement in the gra-
phene layer. (Scale bar, 5 nm.) For these simulations,
the distance between the layers is 3.35 Å, Δf =
−2 μm, and the imaged area is about 28 nm in di-
ameter. (Scale bars in B, E, H, and K, 2 nm−1.)
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defects are often associated with basal plane dislocations and have
also been referred to as ripplocations (23). Fig. 5A presents a
CBED pattern from an area with a stacking fault between slightly
misoriented graphene and hBN, which is evident by the presence
of a distinctive ridge in the interference patterns in the first- and
higher-order CBED spots (see also Fig. 5B). We note that no
features are visible in the zero-order spot, suggesting that the
defect induces only marginal additional absorption. However, this
defect introduces a significant additional phase shift between the
electron waves scattered from the top and bottom crystals, which
is readily picked up in the CBED interference patterns. If it were
not for this interference, quantitative imaging of such a defect
would be next to impossible. CBED spots which originate from
graphene are found at a slightly larger diffraction angle, allowing

differentiation of the spots corresponding to graphene from those
for hBN. The overlap between CBED spots from the two crystals
is less in the higher diffraction orders, but the intensity contrast
due to corrugation is more pronounced in the higher-order CBED
spots. Thus, by visual inspection of the high-order CBED spots,
the type of corrugation and the layer with the corrugation can be
readily identified. For example, in the CBED pattern shown in
Fig. 5A, the ripple marked by the cyan arrows in Fig. 5A (also in
magnified image in Fig. 5B) manifests itself identically in all of the
higher-order CBED spots, which suggests that this is an out-of
plane ripple. Also, it is clearly seen in the third-order CBED
spots, where the spots from hBN and graphene are sufficiently
separated (as indicated by the yellow arrows in Fig. 5A) so that the
projection of the ripple exists only in one of the spots (hBN),
unambiguously identifying the corrugated layer.
To extract quantitative information about the defect, we per-

formed holographic reconstruction of the CBED pattern image
presented in Fig. 5A as described above. The phase unwrapping
was applied by using a procedure introduced by Schofield and
Zhu (24). Fig. 5C shows the recovered out-of-plane Δz atomic
displacements obtained from symmetric component of the
CBED picture by averaging the reconstructed phase distributions
from all six first-order CBED spots and applying Eq. 1. Fig. 5D
shows the recovered in-plane Δx atomic displacements obtained
by extracting the antisymmetric component of the phase distri-
bution from two opposite first-order CBED spots and by ap-
plying Eq. 3. Fig. 5E compares the out-of-plane and in-plane
atomic shifts along the ripple. In our case, the retrieved height of
the out-of-plane ripple in hBN layer is about 2 nm. This is reason-
able, since out-of-plane ripples are often observed for graphene/
hBN stacks due to self-cleansing effects (25).

Discussion
We have demonstrated that single CBED patterns of van der
Waals heterostructures allow for direct visualization of the 3D
atomic distribution in each individual layer. Even without recon-
struction, qualitative information about the type (stretching or

Fig. 5. Extracting the shape of the out-of-plane ripple from a CBED pattern. (A) Experimental CBED pattern acquired at Δf = −3 μm, with defects in the
interference patterns marked by the arrows. The blue and purple lines indicate the relative rotation between graphene and hBN layers, which amounts to 3°.
The cyan arrows indicate an out-of-plane ripple observed in the first-order CBED spots. The yellow arrows indicate the separation of CBED spots originating
from graphene and hBN layers, where it becomes clear that the ripple is in the hBN layer. The intensity of the central spot is reduced by a factor of 0.1. (Scale
bar, 2 nm−1.) (B) Magnified selected spot (circled yellow in A) where irregularities of the fringe pattern can be seen. (Scale bar, 1 nm−1.) (C) The reconstructed
distribution of the ripple height Δz. (D) The reconstructed distribution of the lateral shift Δx. (E) Profiles for the magnitude of Δz and Δx profiles perpen-
dicular to the ripple in C and D. (Scale bars in C and D, 10 nm in real space.)

Fig. 4. Experimental CBED patterns of graphene–hBN samples. (A) CBED
pattern where the direction of fringes indicates that there is almost no
relative rotation between the layers, Δf = −5 μm, α = 6.93 mrad, which gives
the diameter of the imaged area of about 70 nm. (B) CBED pattern of an-
other sample where the direction of fringes indicates a relative rotation
between the layers, β = 2.5°, Δf = −3 μm, and α = 8.023 mrad, which gives
the diameter of the imaged area of about 48 nm. (C) CBED pattern of
graphene/hBN/graphene heterostructure sample, Δf ≈ 0, α = 8.023 mrad; the
diameter of the imaged area is about 1 nm (more information on the dis-
tribution of the probing wavefront is provided in SI Appendix). The intensity
of the central spot is reduced by a factor of 0.002 in A, 0.1 in B, and 0.005 in
C. (Scale bars, 2 nm−1.)
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out-of-plane rippling) and the extent of lattice deformation can be
directly obtained by simple comparison of intensity distributions in
the opposite CBED spots. For bilayer materials, a holographic
approach can be applied to quantitatively reconstruct the values of
3D atomic displacements.
The resolution provided with our technique depends on the size

of the imaged area, that is, on Δf and the corresponding magni-
fication. To evaluate the sensitivity of our method to atomic shifts,
we estimate that a phase shift of 0.1 rad is sufficient to cause
detectable variations in intensity distribution. Such a phase shift
can be caused by out-of-plane atomic shifts of Δz≈ 0.35 nm or by
an in-plane atomic shift ofΔx≈ 3.4 pm (in accordance with Eqs. 2
and 3). Thus, the sensitivity to in-plane atomic displacements is
about 100 times higher than the sensitivity to out-of-plane dis-
placements. The sensitivity to spatial position is of the order of
1 nm when the locations of atomic displacements are obtained by
comparing intensity distributions from the opposite CBED spots
and is a few nanometers when the holographic reconstruction is
applied (as discussed in SI Appendix).
Quantitative information in the z direction (parallel to the

electron beam) is notoriously difficult to obtain from a projection
imaging technique such as TEM. Thus, the ability to obtain
quantitative information about the relative location of the atomic
sheets in the z direction is one of the strengths of our approach.
Furthermore, our approach does not require any special sample
preparation; it can be applied to any samples being observed in
TEM in traditional modes. Classical electron tomography methods
used to gain 3D positional data struggle, except when the target is
a perfectly crystalline nanoobject that can be imaged along several
zone axes (26). Van Dyck et al. (27) have demonstrated that
atomic-resolution 3D coordinates could be achieved from only a
single projection using a combination of exit wave reconstruction
from a focal series of images and a “Big Bang” analysis of the
quantitative phase shift for individual atomic columns. Their ap-
proach requires a sequence of atomically resolved high-resolution
images (to recover the complex-valued exit wave which is a com-
plicated analysis by itself) and only obtains a single z location for
each atom column position. By contrast, our approach gains high-
resolution z-positional data on the relative position of the two
separate layers from a single CBED pattern. Although, currently,
the lateral resolution we obtain is poorer than that demonstrated
by Van Dyck et al., our approach requires orders of magnitude

lower electron exposures, so it has a potential to be applied to
heterostructures containing beam-sensitive 2D materials and even
overlapping protein membranes (28). In addition, our approach
can be further advanced by obtaining many CBED patterns to
reconstruct a large area (diffractive imaging). Also, depending on
Δf , the area studied by our approach can be tuned from gaining
sensitive relative atomic displacements for just a few square
nanometers to regions ∼1 μm wide, as is typical of the active area
of lithographically patterned 2D heterostructure devices.
Our results demonstrate that CBED on van der Waals het-

erostructures can be applied to yield a plethora of information
about the stacks. This technique has not previously been applied
to van der Waals heterostructures, but we have shown that it is
highly versatile and can be performed on any conventional TEM
instrumentation. We expect that this approach will find a pro-
gressive use in the expanding field of 2D materials. Furthermore,
it could be extended to the analysis of dopant atoms, local oxi-
dation, or trapped species within the heterostructures, as all of
these will affect the interference patterns obtained.

Materials and Methods
The samples were obtained by mechanical stacking of mechanically exfoli-
ated graphene and hBN layers on an Si/SiO2 substrate. By using “pick and lift”
technique (29), the whole stack was then transferred on a quantifoil carbon
support film for observation in the TEM. CBED was realized in a probe side
aberration-corrected scanning TEM at an accelerating voltage of 80 keV and
a convergence semiangle, α, of ∼6 mrad to 8 mrad. During experiment, the
focal lengths of the objective and condenser lenses were kept constant; thus
there was no change in the convergence angle. The sample z position was
changed by moving the sample along the optical axis. Bilayer structure
significantly improves the stability of 2D crystals upon exposure to high-
energy electrons, and the electron dose required for CBED imaging is low,
so no evidence of knock-on damage was observed during prolonged data
acquisition (30, 31).
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