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Low-dimensional objects such as molecular strands, ladders, and
sheets have intrinsic features that affect their propensity to fold
into 3D objects. Understanding this relationship remains a chal-
lenge for de novo design of functional structures. Using molecular
dynamics simulations, we investigate the refolding of the 24
possible 2D unfoldings (“nets”) of the three simplest Platonic
shapes and demonstrate that attributes of a net’s topology—
net compactness and leaves on the cutting graph—correlate
with thermodynamic folding propensity. To explain these cor-
relations we exhaustively enumerate the pathways followed
by nets during folding and identify a crossover temperature
Tx below which nets fold via nonnative contacts (bonds must
break before the net can fold completely) and above which
nets fold via native contacts (newly formed bonds are also
present in the folded structure). Folding above Tx shows a uni-
versal balance between reduction of entropy via the elimination
of internal degrees of freedom when bonds are formed and
gain in potential energy via local, cooperative edge binding.
Exploiting this universality, we devised a numerical method to
efficiently compute all high-temperature folding pathways for
any net, allowing us to predict, among the combined 86,760
nets for the remaining Platonic solids, those with highest fold-
ing propensity. Our results provide a general heuristic for the
design of 2D objects to stochastically fold into target 3D geome-
tries and suggest a mechanism by which geometry and folding
propensity are related above Tx , where native bonds dominate
folding.
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In the 16th century, the Dutch artist Albrecht Dürer inves-
tigated which 2D cuts of nonoverlapping, edge-joined poly-

gons could be folded into Platonic and Archimedean polyhedra.
Dürer cuts were later called “nets” but, for a long time, the inter-
est around them was mostly restricted to the field of mathematics
(1–3). A newer concept, self-folding origami, adds a modern
twist to the ancient art of paper folding. By providing a mech-
anism to achieve complex 3D geometries from low-dimensional
objects—without the need for manipulation of the constituent
parts—self-folding brings the concepts pioneered by Dürer to
the forefront of many research fields, from medicine (4) to
robotics (5).

Several recent works have leveraged physical forces to achieve
controllable folding of 3D objects including light (6), pH (7),
capillary forces (8), cellular traction (9), and thermal expansion
(10). Other works have investigated the relationship between
geometric attributes of the object being folded and its propen-
sity for successful folding. In the macroscopic folding of kirigami
sheets—origami-like structures containing cuts and creases—the
effect of different cut patterns on the material’s stress–strain
behavior has been elucidated (11–13) and the “inverse design
problem” of finding cuts leading to the folding of a particular
target structure has been solved (14). For submillimeter-sized
capsules, formed via nonstochastic folding of nets into polyhe-
dra, it has been suggested that nets fold with higher yield when
they are compact (8, 15, 16), but the reason for this correlation
remains unclear. In natural systems, the canonical example of
self-folding occurs for proteins, where a string of amino acids

navigate, thermodynamically, from a denatured (unfolded) state
to a natured (folded) one. Even after many decades of study,
however, a universal relationship between molecular sequence
and folded state—which could provide crucial insight into the
causes and potential treatments of many diseases—remains out
of reach (11–13).

In this work, we study the thermodynamic foldability of 2D
nets for all five Platonic solids. Despite being the simplest and
most symmetric 3D polytopes, the family of Platonic shapes
suffices to demonstrate the rapid increase in design space as
shapes become more complex: A tetrahedron has 2 possible net
representations, cubes and octahedra each have 11 nets, and
dodecahedra and icosahedra have, each, 43,380 distinct edge
unfoldings. Here we are interested in the thermodynamic self-
folding of these nets. Our goal is to understand how topology
affects yield in the stochastic folding of 3D objects. The advan-
tage is threefold. First, by using a collection of sheets folding
into the same target shape, we isolate the geometric attributes
responsible for high-yield folding. Second, the model allows
exhaustive computation of the pathways followed by the nets dur-
ing folding, elucidating how some nets achieve high yield. Third,
by studying increasingly more complex objects—from tetrahedra
to icosahedra—we can use the folding mechanisms quantified
in the simplest objects to predict, and potentially validate, their
occurrence in the more complex shapes.

Beginning with a target Platonic shape (Fig. 1), we construct
a graph whose vertices and edges correspond to those in the
polyhedron. This mapping of the shape to a graph facilitates the
exhaustive search of all distinct nets by allowing spanning tree
enumeration (3). A set of prechosen edges (the cutting tree) is
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Fig. 1. Workflow for polyhedra folding study. Starting with a target 3D
polytope (top, and moving clockwise), a graph representation is used to
enumerate different permutations of edge cuttings. The vertices (edges) in
the so-called cutting tree graph correspond to the vertices (edges) of the
polyhedron. Red edges in the cutting tree mark those being cut. From the
cutting tree, a planar, hinged connection of nonoverlapping faces (a net)
results. Each face of the net is then modeled as a union of spheres rigidly
held together, tethered along hinges via harmonic springs. In the MD model
shown, gray spheres interact via a Lennard–Jones potential. Blue spheres
interact with each other and with gray spheres via a purely repulsive WCA
potential. The simulations are initialized at high temperature and brought
to low temperature following either a fast quench or a slow annealing
protocol. Once the final temperature is reached, the final configuration
is compared with the target shape. The folding yield is then calculated as
the probability of achieving the desired 3D shape via the particular cooling
protocol.

then cut, in a process called edge unfolding, to create a single,
contiguous, and flat 2D sheet of nonoverlapping faces: a net. For
the Platonic shapes, whose nets are enumerated (17), this can be
repeated exhaustively until all distinct nets are discovered (see
Materials and Methods for more details). We note that for other
shapes, while the process of computing all nets might become
computationally prohibitive, it has been recently demonstrated
that a subset of interest for these nets can be computed algorith-
mically (18). We list all 86,784 nets for the Platonic solids in a
database (19).

Each net is modeled as a sheet of rigid polygons connected
to adjacent polygons via harmonic springs. The polygons are
composed of rigidly connected spheres and the influence of
thermal fluctuations on a single net, suspended in implicit
solvent, is modeled via Langevin molecular dynamics (more
details in Materials and Methods). We assign nonspecific, short-
ranged attractive (sticky) interactions between all edges not
joined by springs of a net so that the polyhedron formed from
folding is also the ground-state configuration. This does not
guarantee, however, the uniqueness of the ground state and,
as we will see, other 3D foldings can arise. Unless explicitly
noted otherwise, by “folded state” we refer to the original
polyhedron.

As in proteins and other biomolecules, the nonspecificity
of the interactions between edges of the nets allows for both
native and nonnative contacts. As a consequence, when the sys-
tem temperature is rapidly decreased (quenched), kinetic traps
are possible and net misfolds are observed. This possibility for
kinetic traps raises the following question: Among all nets gener-
ated by unfolding a polyhedron, which of them show the highest
propensity to refold into the original polyhedron?

More Compact, “Leafy” Nets Fold More Reliably
To identify the nets able to fold reliably into their polyhedron of
origin we performed hundreds of cooling simulations for each
net, using both a fast and a slow cooling protocol (see Mate-
rials and Methods section for more details). The two distinct
nets for the tetrahedron, hereafter referred to as the triangular
net and the linear net (Fig. 2A), showed remarkably different
folding propensities for the fast cooling protocol: Of 125 sim-
ulations, all triangular nets folded into the target tetrahedron
while only 54% of the linear nets succeeded—the other 46%
of the experiments resulted in misfolded configurations. In gen-
eral the slower cooling rate simulations yielded a higher folding
probability for each net. This is expected as the net has more
time to find the global minimum. Similar simulations for each
of the 11 nets of both the cube and the octahedron revealed
even larger differences: For the cube nets (Fig. 2B), only 3
of the nets showed greater than 50% success in folding, and
only at slow cooling rates; for the octahedron (Fig. 2C), none
of the nets achieve higher than 50% success rate for either
cooling rate.

A

B C

Fig. 2. Effect of net topology on the folding probability for the simplest
Platonic solids. Folding yield, defined by the fraction of simulations that
reached the folded state, was calculated for two cooling rates. Nets for each
polyhedron are ordered from highest to lowest yield at low cooling rate.
(A) For the two tetrahedron nets [triangular (Top) and linear (Bottom)], a
noticeable difference in folding success rate is visible for rapid cooling rates,
but similar folding propensity is found for slower cooling rates. (B and C) For
the cube nets (B) 8/11 nets fold poorly (below 50%) even for slow folding
reactions while for the octahedron (C) most nets are unable to fold into the
original shape. Generally the more compact nets fold better: Nets that have
a high number of leaves on their cutting tree and a smaller diameter usually
fold best.
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The misfolded configurations for the tetrahedron and cube
nets were incomplete 3D geometries (showing, for instance,
faces collapsed on top of each other or bonds incompatible with
the formation of the respective target shape). In contrast, octa-
hedron nets often folded into another 3D shape: a concave,
boat-like conformation with the same number of edge–edge con-
tacts as the octahedron: in other words, a degenerate ground
state. This competing structure, which is less symmetric than the
octahedron, has higher rotational entropy resulting in a lower
free energy than the octahedron (see SI Appendix, Fig. S1A
for folding probabilities for the boat conformation). A compe-
tition between similar degenerate structures was reported for
finite clusters of six attractive spherical colloids (20), where sym-
metry breaking leads to the formation of the same boat-like
conformation.

Fig. 2 shows that, despite having the same ground-state energy,
not all nets of a polyhedron are equivalent. In general, we observe
that the nets that fold most reliably are the most compact and have
the highest number of leaves on its cutting graph (green solid cir-
cles in nets in Fig. 2). A net is said to be more compact if it has a
large number of leaves (the vertices with degree one on the cutting
tree) and a small diameter (the longest shortest path between any
two faces on the face graph). Exact values for the leaves and diam-
eter are shown in SI Appendix, Table S1. Most strikingly, even
nets differing only by the location of a single face can have folding
probabilities reduced from 99% to 17%. What causes one shape
to fold nearly perfectly every time while a slightly different one
fails to do so almost as frequently? And why do net “leafiness”
and “compactness” correlate with folding yield?

High-Temperature Folding Happens via Native Contacts
To answer why small differences in net topology can have a
large impact on the net’s folding propensity, we used Markov-
state models (MSM) (21–23) to compute the pathways through
which nets fold into their folded state. Since quench rate was
observed to affect the folding propensity of the nets, we run
constant temperature simulations of each net while computing
the rate of transitions between two states (flux). A represen-
tative folding network is shown in Fig. 3A (see SI Appendix,
Fig. S2 for other example networks). Arrows represent observed
transitions between different states and each arrow has a thick-
ness proportional to the probability flux of the transition being
observed (see Materials and Methods for more details). To sim-
plify, we show only the most visited pathways (i.e., those whose
combined flux accounts for at least 50% of the total reactive
flux between unfolded and folded states). Intermediate config-
urations can achieve the folded state via the formation of native
(green) or nonnative (red) contacts. If a pathway includes native
contacts only, every newly formed bond is compatible with the
final polyhedron and error correction is not needed. When the
folded state is achieved via incompatible bonds, we observe that
these nonnative contacts can sometimes have an active role by
bringing otherwise far-away native contacts closer together, facil-
itating folding. In other cases the nonactive contacts contribute
only passively and folding occurs sequentially after the misfold
occurs until it reaches a point where the nonnative contact must
break for folding to continue. In either case, nonnative con-
tacts must eventually break before a folded configuration can be
achieved.

The total flux connecting unfolded and folded states (Fig. 3B)
first increases with temperature and then decreases to zero at
high temperature. At low T the folding flux is low because the
states are mostly trapped into a few configurations; i.e., the slow
kinetics inhibit bond breaking. As the temperature increases,
bonds can now break and the folding/unfolding process occurs
at a higher rate. At intermediate T , a maximum in reactive flux
is observed, meaning that there is a temperature at which there
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Fig. 3. Folding pathways for a representative cubic net. (A) Intermediate
folding states (nets, in the diagram), arise when new bonds between edges
are formed. States are connected with an arrow when a pathway from one
state to another is observed in the simulation. The thickness of such con-
nection is proportional to the measured probability of this transition being
observed. For better visualization, only the most visited states are shown.
Red (green) faces correspond to a state where a nonnative (native) contact
is formed. The pathways containing only native contacts follow a “sequen-
tial” folding process, where one face folds at a time. Nonnative pathways
can lead to the native folded shape via one of two mechanisms: (i) Either the
misfold helps, bringing otherwise far away faces together, or (ii) the fold-
ing proceeds sequentially after the misfold occurs until it reaches a point
where the nonnative contact must break for folding to continue. In both
cases, if the correct polyhedron is achieved in the end, the nonnative con-
tact is corrected along the pathway. The network represents 55% of the
folding flux at T = 3kT . (B) The total probability flux, defined as the sum of
the fluxes along all pathways, for the representative net in A as a func-
tion of temperature. The peak around temperature T = 3kT shows that
there is a temperature at which there is a maximum number of expected
transitions from the unfolded to the folded state per unit time. (C) The rel-
ative amount of flux that goes through pathways that use the native (green
curve) and nonnative (red curve) pathways. The folding seems to happen
mostly via native contacts formation when the system is kept at higher
temperatures.

is a maximum number of expected transitions from unfolded to
folded state per unit time τ . The representative network shown
in Fig. 3A was calculated at that peak temperature. Finally, at
high T the unfolded state is preferred and again the flux van-
ishes. These trends are also true for the other nets studied (SI
Appendix, Fig. S3). If we separate the flux into those following
native and nonnative contacts, we see (Fig. 3C) that the fold-
ing pathways at high temperature mostly follow the formation of
native contacts while the behavior inverts for low temperatures,
and mostly nonnative contacts are observed. There were only two
nets where a crossover temperature was not observed. The trian-
gular tetrahedral net does not exhibit a crossover temperature
since it has no traps. The best-folding cubic net also does not
have a crossover temperature in the range of temperatures we
study; while traps exist, the fraction of native contacts decreases
and the temperature decreases but never falls below 50% (SI
Appendix, Fig. S3). This T dependency is also observed in col-
loids, where the assembly of an icosahedron is monomeric at high
temperatures, but, at low temperature, particles first aggregate
into large clusters (not necessarily compatible with icosahe-
dral symmetry) and those later rearrange into the ground-state
structure (24).

To gain an understanding of the mechanisms underlying the
observation that native contacts are favored at high temperatures
during folding, we calculated the number of degrees of freedom
associated with each intermediate.
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Nets Follow a Universal Balance Between Entropy and
Enthalpy
The fact that more compact nets and those with many leaves gen-
erally fold with higher yield suggests that nets might fold locally,
in a manner that reduces the fewest degrees of freedom, thereby
maximizing the conformational entropy along the folding path-
ways. To test whether this trade-off between maximizing degrees
of freedom and forming native contacts occurs at high T , we
calculate the number N of internal degrees of freedom and the
number Q of native contacts as a net folds. We do so for all 24
nets of the tetrahedron, cube, and octahedron. Fig. 4 shows that,
remarkably, all nets follow a folding pathway that achieves a nar-
row balance between reduction of degrees of freedom and gain
of potential energy. In practical terms, high-temperature folding
happens locally such that, at each step of the process, the system
strives to maximize its conformational entropy. From this obser-
vation, we hypothesize the following mechanism for the folding
of general nets at high temperature. Folding should primar-
ily happen (i) via nearby (local) connections, favoring compact
nets with many leaves, and (ii) along one of the optimal trade-
off paths, favoring nets with high degeneracy in the number of
such optimal paths. Fig. 4 shows that, remarkably, all nets fol-
low a folding pathway that achieves a narrow balance between
reduction of degrees of freedom and gain of potential energy. In
practical terms, high-temperature folding happens locally such
that, at each step of the process, the system strives to maximize its
conformational entropy. Importantly, this maximization does not
necessarily occur at low temperatures as when intermediate non-
native contacts occur—and stages of the folding are found to lie
far away from the narrow balance explained above (SI Appendix,
Fig. S4).

Using this hypothesis we devised an algorithm to generate
high-temperature pathways for the 86,760 nets of the dodeca-
hedron and icosahedron, without the need for a full MSM cal-
culation. We do so by first enumerating candidate bonds that
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Fig. 4. Projected pathways computed from the MSM of all of the nets onto
two order parameters: native contacts and number of internal degrees of
freedom. We find that each net will trade its degrees of freedom in approx-
imately the same way. The data points are weighted averages of the number
of degrees of freedom over all pathways for each given value of Q/Qfolded .
The lines are drawn to guide the eye. The upper right corner of the plot is
a geometrically forbidden region arising from the fact that the net cannot
gain a bond without losing at least 1 df. The temperature plotted for each
net is given by Tm + 0.5, and Tm is reported for each net in SI Appendix,
Table S1. DOF, degree of freedom.

can be made if they are next to each other on the net or in the
intermediate and then by selecting ones that have the largest
number of degrees of freedom (see Materials and Methods for
more details). Fig. 5 shows the combined example pathways fol-
lowed by all 11 nets for the cube (Fig. 5A) and for the octahedron
(Fig. 5B), illustrating the pathways that maximize degrees of
freedom and using only local, native contacts to fold. We then
used these principles to find, among the 86,760 nets, those with
high and low folding yields (see SI Appendix, Figs. S5 and S6
for specific nets). The corresponding folding propensities are
plotted in Fig. 6. As expected, polyhedra with many leaves and
small diameter show higher propensity for correct folding and
those nets also have many high-T pathways to the ground state.
The correlation between the folding propensity and the leaves
may have analogues in other systems as well. The number of
leaves is a measure of the amount of local connections that
are required to fold from the unfolded state. In the protein-
folding literature the contact order is a measure of how far away
specific native contacts are on the amino acid sequence and it
has been shown that low contact order inversely correlates to
folding rate (25).

Overall, our observations suggest that folding propensity of
a net decreases as the number of faces increases. For instance,
while the 4-sided tetrahedron folds nearly perfectly, the 20-sided
icosahedron is unable to successfully fold. One exception to this
trend is the dodecahedron, which folds with higher probability
than the octahedron. While the reason for this exception remains
elusive, there are two factors that may play a role. The first factor
is the number of degrees of freedom retained by the faces sharing
a leaf vertex when the leaf edges form a bond. For instance, octa-
hedron nets can make a bond about the leaf vertex, but due to the
unique symmetry the loop, retain 1 df (i.e., the resulting interme-
diate is not rigid), so the intermediate may still enter a trapped
state. In the case of the icosahedron, after folding about leaf ver-
tices, the loop retains 2 df. In the case of the other three shapes
(i.e., tetrahedron, cube, dodecahedron), folding about leaf ver-
tices renders the loop rigid. This implies that further constraining
the net by increasing the rigidity throughout the folding pro-
cess is important to sufficiently funnel the net’s energy landscape
and may boost the folding probability for many nets. The second
factor is the complexity that arises in trapped states. There are
“tetrahedral motifs” on many octahedral nets, and these motifs
can fold into full or partial tetrahedra, as seen in the boat con-
formation mentioned above (see SI Appendix, Fig. S1A for more
examples). For icosahedral nets, there are both tetrahedral and
octahedral motifs, and the diversity of the trapped states is fur-
ther increased for these nets. This is in sharp contrast to the nets
of the other three shapes, for which trapped states typically occur
when one face folds onto another face.

Discussion and Conclusion
The observed preference for native contact pathways at high
temperature is not unique to polyhedron nets. Several small pro-
teins have been observed in simulation to fold via native-only
contacts when close to their melting temperature (26). At low
T (or high hydrophobicity) the pathways shift to a hydrophobic
collapse, in which nonnative contacts form followed by further
rearrangements leading to the native state (27). Similarly, col-
loids assemble via monomeric pathways at high temperature,
forming bonds that are compatible with the overall structure in
an equivalent process to native contact formation (24). Finally,
systems of colloidal sticky spheres prefer to form the same con-
cave, boat-like conformation that we observe for octahedron
nets (20).

Our simple model therefore draws connections between the
macroscopic irreversible folding of polyhedra (8), assembly of
patchy (24) and colloidal (20) particles, and the folding of amino
acids (26–28). The identified trade-off between entropy and
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Fig. 5. Combined dominant pathways for the 11 nets of the cube (A) and
the 11 nets of the octahedron (B) calculated at high temperature. In both
cases the dominant pathways are sequential (one face folding at a time) and
include only native contacts. As in Fig. 3, arrows indicate transitions between
two states, the arrow thickness being proportional to the probability of
observing such a transition.

enthalpy that dictates high-temperature folding provides guid-
ing principles for the assembly of 3D complex geometries from
potentially simpler-to-fabricate 2D nets. We demonstrated the
judicious pathway engineering via the selection of nets with cer-
tain characteristics. We found that nets at high temperature fold
through pathways that maximize the internal degrees of freedom,
regardless of their propensity to fold, and the more compact
nets fold with higher propensity. The compactness measures cor-
related with the number of pathways connecting the unfolded
and folded states, offering some understanding on why these
measures work well. In addition to giving insights into the ther-
modynamics of folding in naturally occurring systems, our results
could also provide a route for the fabrication of anisotropic
Brownian shells, paving the way for the self-assembly of com-
plex crystals from nanoshells and colloidal shells (29–32) capable
of encapsulating cargo. We expect these results to impact future
experiments on folding of graphene sheets (13), graphene oxide
layers (12), or DNA–origami polyhedral nets (33).

Materials and Methods
Enumeration of Polyhedral Nets. We create nets from polyhedra via a pro-
cess known as edge unfolding. In edge unfolding, one cuts along a set of
prechosen edges, called the cutting tree, of a polyhedron (e.g., a cube) to
create a single, contiguous flat 2D sheet of connected (square) faces: a net.
We enumerate all of the nets of each polyhedron by generating random
weights for the edges of the skeleton-1 graph of the polyhedron on the
interval [0, 1]. The minimal spanning tree was found using Kruskal’s algo-
rithm (34). We then converted the spanning tree to a net and added it to
the database if it did not already exist. We ran this loop for many iterations
until we found all of the nets for each shape.

Langevin Dynamics and Molecular Dynamics Simulation. Langevin dynamics
are used to model the folding dynamics for each net using HOOMD-Blue
(35–38). Each face of the net is approximated by a union of spheres acting
as a rigid body, with an edge length of 10 spheres. The spheres are arranged
in a hexagonal lattice for triangular faces, a square lattice for square faces,

and a hexagonal approximate for the pentagonal faces. For each simula-
tion the drag coefficient, γ, was set to the inverse of the number of spheres
used to create a facet. The spheres in the center of the face interact via a
Weeks–Chandler–Andersen (WCA) potential shown in blue in Fig. 1, while
the spheres on the free edges of the net interact via a Lennard–Jones poten-
tial; both potentials used ε and σ values of 1.0. The rigid facets are tethered
together using harmonic springs along the edges, using a spring constant of
800 and equilibrium distance of 1.0.

Quantifying Yield. To quantify the folding yield we ran 125 simulations start-
ing from a high temperature and quenched the temperature to near zero
(T = 0.1). We then defined the yield as the fraction of simulations that com-
pletely folded into the target polyhedron. To distinguish between nets that
had very low probability, we defined the folding propensity as the average
fraction of native contacts averaged over all of the quenching simulations
we ran. If all nets folded perfectly in all runs, the folding propensity is
one but is possibly nonzero even if all nets did not fold at all. We linearly
quenched 125 systems from 0.1 ≤ T ≤ Tm + 2.5, where Tm is the folding
temperature defined as the maximum melting temperature (temperature at
which the net is unfolded 50% of the time) among all nets for a given target
shape. We used two different cooling rates to investigate their influence in
the folding yield: 2.5 ×10−6T/t and 2.5 ×10−8T/t. The Tm for each shape
is listed in SI Appendix, Table S1.

MSMs and Folding Pathway Calculations. MSMs (21) have been used to study
protein folding (22, 23) and virus capsid assembly (39) and can provide a
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Fig. 6. Correlation between different geometric and topological quantities
calculated for the net and the folding propensity, defined as the average
fraction of native contacts formed across all 125 quenching simulations.
Leaves are the vertices with degree one on the cutting tree, the diame-
ter is the longest shortest path along the face graph, and the number of
high-temperature pathways was calculated by enumerating the number
of pathways that maximize the internal degrees of freedom at each step.
Each row corresponds to the cube (red), octahedron (green), dodecahedron
(orange), and icosahedron (purple), respectively; data for the tetrahedron
were omitted because there are only two nets. Pearson coefficients and P
values are reported in each panel. We found that the number of leaves pro-
vided the strongest linear correlation for both the cube and the octahedron
(Pearson coefficients are 0.81 and 0.86, respectively) and so the number of
leaves was used to try to predict the nets that would fold with both high and
low propensity. In the bottom two rows (dodecahedron and icosahedron),
the nets predicted to fold well are plotted with a solid circle and the nets
predicted to fold poorly are plotted with a solid “x.” We find that while the
number of leaves is a good predictor for the dodecahedron, the icosahedron
still folds with relatively low propensity.
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detailed view into the dynamics and thermodynamics of the folding land-
scape. In contrast to other methods to compute assembly pathways, which
require monotonic order parameters (40) or hierarchical computation of
the partition function (41), MSMs require each simulation snapshot to be
classified as a discrete state, and the number of transitions between each
state is recorded in a matrix. The dihedral angles completely specify the
configuration of a net and are therefore a good set of collective variables.
We break the “up”/“down” folding degeneracy by keeping track of the
dihedral angle on the interval [0, 2π]. As the simulation is running we also
compute the energy between each pair of free edges (edges not part of
a hinge) on the net. If the potential energy between two edges is less
than Ebond =−5ε, then the edges are considered to be bonded, and a list
of bonded edges is recorded along with the list of dihedral angles. All
intermediates are then clustered using DBSCAN (42) with a variation of the
Manhattan metric, d(i, j) = min

α∈Aut(Gnet)
max |aα(i),k − aj,k|, which is a way to

compare the dihedral angles of different states taking into account the sym-
metry of the net. Using the bonding information, we turn the molecular
dynamics (MD) model into a graph, Gint. By looking at the graph automor-
phisms we can determine whether the symmetry could lead to a relabeling
of the vertices of the net. If so, clusters returned by the DBSCAN algorithm
were merged.

To build the MSM we ran 125 independent simulations at constant
volume and temperature for 12.5× 106 steps and then branched the tra-
jectories using new random seeds. This process was repeated until we
obtained a total of 1,875 (14× 125) trajectories (or, equivalently, 2.3× 1010

time steps) for each net and each temperature. Bonded edges and dihedral
angles for each hinge were computed every 10 time steps and combined to
define a state in the MSM described above. The lag time, τ , was found by
the standard protocol of identifying the time at which the eigenvalues of
the transition probability matrix become constant (SI Appendix, Fig. S7). We
used transition path theory (23, 43, 44) to determine the reactive flux, fij , of
all intermediates. The reactive flux is defined as fij = q+

j πiPijq
−
i , where q+

j

is the forward committor probability (the probability that the net will fold
from state j), πi is the probability of being in state i, Pij is the probability of
transitioning to state j given the system is in state i, and q−i is the backward
committor probability (the probability that the net is folding, as opposed
to unfolding). Finally, the net flux is defined as f+ij = max{fij − fji , 0}. The
dominant paths were computed via the “bottleneck” algorithm, using the
net fluxes (23, 43). The total reactive flux is defined as the sum of the reac-
tive flux out of the unfolded state, F =

∑
i fui , where u is the unfolded state.

The folding rate is then kfold = F/τπr , where πr is the probability that the
pathway is moving forward.

Folding Parameters. The number of native contacts, Q, was calculated by
counting the number of edges that were bonded to the correct correspond-
ing edge according to the criteria described above. The nonnative contacts
were calculated similarly. The diameter is the graph diameter of the face
graph of the net. In general the number of degrees of freedom can be dif-
ficult to calculate because it can be difficult to deduce which constraints are
redundant in the net. In general one can use the pebble game (45); how-
ever, if the linkage is not generic or has point group symmetries, the pebble
game can underestimate the number of degrees of freedom (46, 47). First,
we applied the pebble game to each intermediate, and then for closed-
loop motifs we applied a closed-loop formula to determine the number of
degrees of freedom (48); finally, intermediates with high degrees of symme-
try were checked by hand, since the pebble game is known to underestimate
these cases (46, 47).

Enumerating High-Temperature Pathways. An exhaustive search was per-
formed to enumerate high-T pathways. Two principles were assumed to
be important for the folding pathways at high temperature: local bonds
and maximizing number of degrees of freedom. We initialize the algo-
rithm by adding the unfolded state to the queue and creating an empty
graph that will contain the pathway information. For each intermedi-
ate on the queue, a set of candidate bonds was calculated by finding
edges on the intermediate that still needed to be bonded that also had
a topological distance of one (local). This intermediate was then added
to a queue for further processing, and a link between the current state
and the candidate state is made in the graph. Finally, the pathways are
taken from the graph and sorted lexicographically by the sequence of
degrees of freedom of each intermediate along the pathway. The path-
ways that have the largest number of degrees of freedom are then
returned.
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