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Stokes and Purdon (1) raise several concerns about the
use of Granger–Geweke causality (GGC) analysis in
neuroscience. They make two primary claims: (i) that
GGC estimates may be severely biased or of high
variance and (ii) that GGC fails to reveal the full struc-
tural/causal mechanisms of a system.

Unfortunately, these claims rest, respectively, on
an incomplete evaluation of the literature and a mis-
conception about what GGC can be said to measure.

Stokes and Purdon (1) explain how bias and vari-
ance in GGC estimation arise from the use of separate,
independent full and reduced regressions. However,
this problem has long been recognized (2, 3) and,
moreover, has already been solved by methods which
derive GGC from a single full regression. These meth-
ods effectively calculate reduced model parameters
from the full model via factorization of the spectral
density matrix. Published approaches (also imple-
mented in freely available software) include Wilson’s
frequency-domain algorithm (4), Whittle’s time-
domain algorithm (3), and a state-space method in-
volving solution of a discrete-time algebraic Riccati
equation (5). Thus, the source of bias and variance
discussed in ref. 1 has already been resolved (see also
ref. 6). We note that Stokes and Purdon (1) erroneously
state that “Barnett and Seth . . . have proposed fitting
the reduced model and using it to directly compute
the spectral components,”whereas, as mentioned, we
derive GGC from a single full regression (3).

Stokes and Purdon (1) then note that GGC reflects
a combination of “transmitter” and “channel” dynam-
ics and is independent of “receiver” dynamics. This
independence has also been previously identified; it
follows directly from the invariance of GGC under cer-
tain affine transformations (7). Stokes and Purdon (1)
argue that this runs “counter to intuitive notions of
causality intended to explain observed effects,” since,
as they put it, “neuroscientists seek to determine the
mechanisms that produce ‘effects’ within a neural sys-
tem or circuit as a function of inputs or ‘causes’ ob-
served at other locations.” However, this perspective
is more closely aligned with approaches such as dy-
namic causal modeling (DCM)—usually characterized
as effective connectivity—which attempt to find the
optimal mechanistic (circuit level) description that ex-
plains observed data. GGC, by contrast, models sta-
tistical dependencies among observed responses and
is therefore a measure of (directed) functional connec-
tivity (8). Essentially, the distinction is between making
inferences about an underlying physical causal mecha-
nism (DCM) and making inferences about directed infor-
mation flow (GGC; ref. 9). Both address valid questions.

Our view is that the real problems associated with
GGC analysis of neurophysiological data reside else-
where: with issues of stationarity, linearity, and exog-
enous influences, as noted in ref. 1, but also with the
noise, sampling rates, and temporal/spatial aggrega-
tion engendered by neural data acquisition (10).
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