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  Article  

 Neprilysin (NEP) is a ubiquitously expressed mem-
brane-bound and circulating endopeptidase with broad 
substrate specifi city. It plays a role in nervous, cardio-
vascular, and immune systems by inactivating regula-
tory peptides via cleavage on the N-terminal side of 
hydrophobic residues.  1   In addition, studies suggest 
NEP may contribute to impaired glucose homeostasis 
such as that observed in type 2 diabetes (T2D), where 
insulin resistance, pancreatic islet  β -cell dysfunction, 
and decreased  β -cell mass characterize the diabetic 
state.  2   Thus, NEP has gained interest as a target for 
therapeutic interventions in the treatment of T2D. In 
humans, NEP expression and activity are upregulated 
in T2D and associated conditions, including nutrient 
excess.  3 , 4   We and others have shown that plasma 
NEP levels are similarly increased in high fat - fed obese 

mice, and are positively correlated with insulin resis-
tance and reduced  β -cell function.  3 , 5   Furthermore, 
NEP defi ciency and/or inhibition is associated with 
improved glucose tolerance, enhanced insulin sensi-
tivity, and protection against impaired  β -cell function.  5        –  9 

Given that NEP degrades and inactivates the insulino-
tropic hormone glucagon-like peptide-1 (GLP-1),  10    –  12 
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Summary    
 Neprilysin (NEP) is an endopeptidase known to modulate nervous, cardiovascular, and immune systems via inactivation 
of regulatory peptides. In addition, it may also contribute to impaired glucose homeostasis as observed in type 2 diabetes 
(T2D). Specifically, we and others have shown that NEP is upregulated under conditions associated with T2D, whereas 
NEP deficiency and/or inhibition improves glucose homeostasis via enhanced glucose tolerance, insulin sensitivity, and 
pancreatic  β -cell function. Whether increased  β -cell mass also occurs with lack of NEP activity is unknown. We sought to 
determine whether NEP deficiency confers beneficial effects on  β - and  α -cell mass in a mouse model of impaired glucose 
homeostasis. Wild-type and NEP  – / –   mice were fed low- or high-fat diet for 16 weeks, after which pancreatic  β - and 
 α -cell mass were assessed by immunostaining for insulin and glucagon, respectively. Following low-fat feeding, NEP  – / –   mice 
exhibited lower  β - and  α -cell mass compared with wild-type controls. A high-fat diet had no effect on these parameters 
in wild-type mice, but in NEP  – / –   mice, it resulted in the expansion of  β -cell mass. Our findings support a role for NEP 
in modulating  β -cell mass, making it an attractive T2D drug target that acts via multiple mechanisms to affect glucose 
homeostasis.    (J Histochem Cytochem 66:523 – 530, 2018)  
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some of the beneficial effects of NEP ablation on 
glucose homeostasis may be explained by elevated 
active GLP-1 levels. Indeed, pharmacological inhibi-
tion of NEP in humans,13 as well as genetic ablation of 
NEP in high fat-fed mice,5 results in higher circulating 
levels of GLP-1.

While increased NEP activity is associated with 
insulin resistance and pancreatic β-cell dysfunction, its 
impact on β-cell mass is unknown. In obesity without 
frank diabetes, β-cell mass expansion occurs to meet 
increased demand for insulin to maintain normal glu-
cose homeostasis.14,15 However, once progressive 
decline of glycemic control occurs as in T2D, β-cell 
mass declines, in part due to β-cell apoptosis.14,16–19 
As NEP deficiency and/or inhibition has been shown 
to improve glucose homeostasis via several mecha-
nisms, it may also act to enhance β-cell mass. In this 
study, we investigated whether NEP deficiency 
increased pancreatic islet cell mass in the setting of 
increased dietary fat. Wild-type and NEP–/– mice were 
fed low- or high-fat diet for 16 weeks, after which immu-
nohistochemistry was performed on pancreas sec-
tions to assess insulin and glucagon positivity 
representing β- and α-cell mass, respectively.

Material and Methods

Animals and Diets

Ten-week-old C57BL/6.NEP–/– (denoted NEP–/–; origi-
nally from Dr. Lu, Harvard Medical School, USA) and 
control C57BL/6.NEP+/+ (denoted NEP+/+) male mice 
from our colony at VA Puget Sound Health Care 
System (VAPSHCS) were fed diets containing either 
10% or 60% kcal fat (Research Diets, Inc; New 
Brunswick, NJ) for 16 weeks. Glucose tolerance and 
β-cell function in these study mice have been previ-
ously described.5 Studies were approved by the 
VAPSHCS Institutional Animal Care and Use 
Committee.

Body Weight, Glucose, and Insulin Measures

Baseline body weight was measured in all mice prior 
to initiation of low- or high-fat feeding and then after 
16 weeks. Lateral saphenous vein blood was col-
lected from fed mice at baseline and after 16 weeks 
of feeding for plasma glucose measures, and from 
overnight fasted mice after 16 weeks of feeding for 
fasted plasma glucose and insulin measures. Plasma 
glucose was determined using the glucose oxidase 
method. Plasma insulin was determined using the 
Mouse Ultrasensitive Insulin ELISA from Alpco 
(Salem, NH).

Preparation of Pancreata for Histology

Pancreata were excised, weighed, fixed in 10% neu-
tral-buffered formalin overnight, paraffin-embedded, 
and sectioned at 4-μm thickness. Three sections of 
each pancreas, sampled from different regions, were 
deparaffinized and incubated with anti-insulin anti-
body (1:50, A0564; Dako, Carpinteria, CA) to visualize 
β cells and anti-glucagon antibody (1:2000, G2654, 
clone K79bB10; Sigma-Aldrich, St. Louis, MO) to 
visualize α cells. Sections were subsequently incu-
bated with Cy3 and Alexa Fluor 488–conjugated anti-
IgG antibodies (anti-guinea pig and anti-mouse, 
respectively), and counterstained with Hoechst 33258 
(2 μg/ml) to visualize nuclei. Consecutive pancreas 
sections were stained with hematoxylin and eosin for 
computation of section area.

Histological Assessments

The data collector was blinded to the genotype and 
diet status of each specimen. Morphometric analyses 
were performed using NIS Elements AR 4.30.02 soft-
ware on Nikon E800 and TiE microscope systems 
(Nikon USA, Melville, NY). Histological assessments 
were made for all islets visible on each of the three 
immunolabeled pancreas sections, averaging 61 
islets per mouse. To obtain islet area, islets were iden-
tified morphologically and the edges were manually 
circumscribed using a multichannel image. Insulin-, 
glucagon-, and Hoechst-positive areas were deter-
mined for each islet using pixel thresholding. 
Pancreatic section areas were obtained by large area 
imaging at 10× magnification. From these data, the 
following measures were calculated: β-cell and α-cell 
areas are expressed relative to islet area (Σ insulin or 
glucagon area/Σ islet area × 100), and β-cell and 
α-cell mass were computed (β-cell area / pancreas 
area × pancreas weight and α-cell area / pancreas 
area × pancreas weight, respectively). The average 
number of cells per islet and average cell size were 
computed from Hoechst data as we have done 
previously.15

Statistical Analyses

Data are presented as mean ± standard error of the 
mean (SEM) for the number of mice indicated. 
Statistical significance was determined using ANOVA 
with post hoc analysis or the Mann–Whitney U test 
for data that were not normally distributed. Linear 
regression analysis was performed using Spearman’s 
correlation. A p<0.05 was considered statistically 
significant.
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Results

Body Weight, Glucose, and Insulin Levels

Body weight and fed glucose levels were measured 
at baseline (week 0) and at the end (week 16) of the 
study. There were no significant differences in body 
weight or fed glucose levels between groups at week 
0 (Table 1). At week 16, high fat-fed mice had 
increased body weight, regardless of genotype 
(Table 1). Furthermore, fed glucose levels were ele-
vated in high fat-fed NEP+/+ mice. In contrast, fed glu-
cose levels did not differ between NEP–/– mice fed 
low- or high-fat diet for 16 weeks, consistent with a 
protective effect of NEP deficiency on glycemia in a 
high-fat setting.

After 16 weeks of low- or high-fat feeding, fasting 
glucose levels were not significantly different between 
groups. However, fasting insulin levels were elevated 
in high fat-fed NEP+/+ and NEP–/– mice, versus low fat-
fed mice, yet levels were lower in high fat-fed NEP–/– 
versus NEP+/+ mice (Table 1).

Pancreas Weight and Islet Characteristics

Pancreata were weighed at the end of the study, and 
islet area, number of cells per islet, and islet cell size 
were quantified. Under low-fat conditions, NEP+/+ 
and NEP–/– mice had similar pancreas weight (Fig. 
1A). However, low fat-fed NEP–/– mice exhibited a 
trend toward decreased islet area (p=0.06), contrib-
uted to by a decrease in islet cell size (Fig. 1B and 
C). High-fat feeding resulted in increased pancreas 
weight in both genotypes (Fig. 1A). However, high 
fat-fed NEP+/+ mice did not exhibit increased islet 
area, cell size, or number of cells per islet compared 
with low fat-fed NEP+/+ mice (Fig. 1B–D). In contrast, 
high fat-fed NEP–/– mice exhibited greater islet area 
compared with low fat-fed NEP–/– mice due to an 

increase in cell number per islet and islet cell size 
(Fig. 1B–D).

β- and α-Cell Mass

Under low-fat conditions, NEP–/– mice exhibited lower 
β-cell (Fig. 2A) and α-cell (Fig. 2B) mass, compared 
with NEP+/+ mice. In NEP+/+ mice, high-fat feeding did 
not alter β-cell (Fig. 2A) or α-cell mass (Fig. 2B). 
However, in NEP–/– mice, high-fat feeding was asso-
ciated with elevated β-cell (Fig. 2A) but not α-cell 
(Fig. 2B) mass, when compared with low fat-fed NEP–/– 
mice. Representative images of insulin and glucagon 
staining are shown in Fig. 2C.

To determine whether there was a relationship 
between body weight gain and increased β-cell mass 
in high fat-fed NEP–/– mice, which would be suggestive 
of β-cell mass expansion to meet increased demand 
for insulin,14,15,17,19 we performed linear regression 
analysis and found a positive correlation between 
the two measures (r = 0.68, p≤0.05; Fig. 3). In 
high fat-fed NEP+/+ mice, there was no significant 
association between body weight gain and β-cell 
mass (r = 0.66, p=0.18; Fig. 3).

Discussion

We show that in response to increased dietary fat, 
NEP–/– mice exhibit expansion of islet β-cell mass, 
whereas NEP+/+ mice do not. To our knowledge, this is 
the first report of NEP playing a role in modulating 
β-cell mass, and our findings are consistent with previ-
ous studies demonstrating beneficial effects of reduced 
NEP activity on factors regulating glucose homeosta-
sis in conditions associated with T2D.5–9

The high fat-fed C57BL/6J mouse model is char-
acterized by β-cell compensation to insulin resistance, 
which gradually becomes insufficient to overcome 

Table 1. Body Weight, Fasting and Fed Plasma Glucose, and Fasting Plasma Insulin Levels.

Week 0 Week 16

Genotype/Diet
Body 

Weight (g)
Fed Plasma 

Glucose (mg/dl)
Body  

Weight (g)
Fed Plasma 

Glucose (mg/dl)
Fasting Plasma 

Glucose (mg/dl)
Fasting Plasma 
Insulin (pM)

NEP+/+ LF 23.1 ± 0.5 103.4 ± 5.6 33.8 ± 2.1 126.3 ± 6.4 98.7 ± 7.5 53.6 ± 18.7
NEP+/+ HF 23.8 ± 0.6 97.9 ± 4.4 45.4 ± 2.8a 226.3 ± 24.3a 129.0 ± 14.8 438.9 ± 70.0a

NEP–/– LF 22.9 ± 0.3 90.8 ± 4.5 28.6 ± 1.0 130.1 ± 8.7 105.1 ± 7.7 46.0 ± 5.9
NEP–/– HF 23.1 ± 0.3 91.2 ± 4.0 45.5 ± 1.9a 172.8 ± 16.2 134.0 ± 12.5 203.0 ± 55.0ab

Body weight and fed glucose levels were measured at the beginning and end of the study. Fasting glucose and insulin levels were measured after 16 
weeks of LF or HF feeding. Data are displayed as mean ± SEM. n=6-10. Abbreviations: LF, low fat; HF, high fat; NEP, neprilysin.
ap<0.01 versus LF of the same genotype.
bp<0.01 versus HF NEP+/+.



526 Parilla et al. 

elevated plasma glucose levels.20,21 This compensa-
tion arises, in part, due to the expansion of β-cell 
mass.14,15 In contrast to some15,22,23 but not all24,25 

previous studies, we found no significant difference 
in β-cell mass between high fat- and low fat-fed 
NEP+/+ mice, and no change in islet cell size or num-
ber. Potential reasons for discrepant findings among 
studies may include differences in the background 
(sub)strain of mice, as well as variability in the fat 
content of diets and period of exposure to diets. 
Despite not detecting an increase in β-cell mass 
with high-fat feeding, NEP+/+ mice displayed marked 
fasting hyperinsulinemia, suggesting the predomi-
nant route of β-cell compensation upon consump-
tion of increased dietary fat was via enhanced 
secretory function of existing β cells. Interestingly, 
high fat-fed NEP+/+ mice had increased pancreas 
weight compared with low fat-fed mice, possibly 
contributed to by fat infiltration within the pancreas 
or an increase in exocrine pancreatic mass. In keep-
ing with these ideas, studies have shown that 
increased pancreas weight in C57BL/6J mice fed a 
high-fat diet was associated with increased ectopic 
fat accumulation26 and upregulation of exocrine epi-
thelial cell proliferation.27

In NEP–/– mice, high-fat feeding was associated 
with increased β-cell mass, as well as greater islet 
cell size and number. The latter suggest both hyper-
trophy and hyperplasia may be mechanisms for the 
expansion of β-cell mass under conditions of NEP 
deficiency and elevated dietary fat. Furthermore, we 
found that body weight gain was positively correlated 
with β-cell mass in NEP–/– mice, implying that lack of 
NEP activity enables β-cell mass expansion in 
response to dietary fat–induced insulin resistance. 
No such relationship was observed in high fat-fed 
NEP+/+ mice. While both NEP+/+ and NEP–/– mice 
exhibited fasting hyperinsulinemia, insulin levels were 
lower in NEP–/– mice, likely related to enhanced insu-
lin sensitivity as we showed previously.5 However, 
unlike in NEP+/+ mice, hyperinsulinemia in NEP–/– 
mice was associated with normalization of fed glu-
cose levels. Together, these findings support the 
notion that NEP deficiency has beneficial effects on 
both β-cell mass and function, creating an environ-
ment in which islets are better able to enhance glu-
cose metabolism and compensate for the detrimental 
effects of increased dietary fat.

Signaling through the GLP-1 receptor is a well-
known mechanism that promotes the expansion of 
β-cell mass.28–33 This involves activation of pancreatic 
duodenal homeobox-1, which results in β-cell prolifera-
tion, differentiation, and survival.34,35 Recent studies 
support the idea that NEP deficiency leads to increased 
GLP-1 receptor signaling, which could plausibly con-
tribute to the expansion of β-cell mass under high-fat 
conditions. Both pharmacological inhibition of NEP in 

Figure 1. (A) Pancreas weight, (B) mean islet area, (C) mean 
islet cell size, and (D) mean number of cells per islet in NEP+/+ and 
NEP–/– mice fed low- or high-fat diet for 16 weeks. n=7-10. White 
bars, low fat; black bars, high fat. *p<0.01, **p<0.001, ***p<0.0001 
versus low fat; ††p<0.001 versus NEP+/+. Abbreviation: NEP, 
neprilysin.
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Figure 2. (A) β- and (B) α-cell mass in NEP+/+ and NEP–/– mice fed low- or high-fat diet for 16 weeks. n=6-10. White bars, low fat; black 
bars, high fat. (C) Representative images showing β-cell (insulin; green), α-cell (glucagon; red), and nuclei (blue) staining in pancreata 
from NEP+/+ and NEP–/– mice fed LF or HF diet; scale bars = 100 μm. **p<0.001 versus low fat; †p<0.01, ††p<0.001 versus NEP+/+. 
Abbreviations: NEP, neprilysin; LF, low fat; HF, high fat.
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humans and genetic ablation of NEP in high fat-fed 
mice result in higher circulating levels of GLP-1.5,13 
Also, NEP ablation is associated with AKT activation in 
non-β-cells.36 If the same were to occur in NEP-
deficient β cells, it is possible that cell survival would 
be enhanced, as AKT activation has previously been 
shown to mediate such a process via GLP-1 receptor 
signaling.28

Interestingly, under low-fat conditions, NEP–/– mice 
had lower β- and α-cell mass compared with wild-
type mice. Potential modulators of islet cell mass are 
body weight, pancreas weight, insulin sensitivity, and 
active GLP-1 levels; however, none of these can 
explain the lower β- and α-cell mass in low fat-fed 
NEP–/– mice as we show here and previously5 that 
these parameters did not differ between the two gen-
otypes under low-fat conditions. It is likely that NEP 
plays a role in the physiological maintenance of islet 
cell mass and function, but the specific mechanism 
requires further investigation.

Our study describes a novel beneficial effect of 
reducing NEP activity in conditions associated with 
T2D, but also has limitations. First, we use a genetic 
knockout model with whole-body deletion of NEP. 
Thus, widespread and long-term loss of NEP activity 
results in an inability to cleave NEP substrates includ-
ing, but not limited to, those that modulate islet cell 
mass. This complicates interpretation of our data, 
making it difficult to pinpoint molecular mechanisms 
unpinning the observed changes in β- and α-cell mass. 
Second, our study was performed in mice, so it 
remains unknown whether NEP may play a similar role 
in modulating islet cell mass in humans as it does in 
mice. A combination drug including the NEP inhibitor 

sacubitril is currently U.S. Food and Drug Administration 
(FDA)–approved for use in humans; thus, future pre-
clinical and clinical studies with this drug could help 
address both limitations.

In summary, we found that NEP deficiency is asso-
ciated with the expansion of β-cell mass in high fat-fed 
mice, thereby contributing to β-cell compensation to 
insulin resistance. However, regulation and modulation 
of β-cell mass is comprised of a complex web of sig-
naling pathways complicated by various genetic and 
environmental factors. Our data add to evidence that 
NEP plays multiple roles in modulating glucose 
homeostasis, under both physiological and patho-
physiological conditions. A better understanding of the 
mechanisms involved will be important in determining 
how NEP can be exploited as a pharmacological tar-
get in the treatment of T2D.
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