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1  | INTRODUCTION

Along with red cells, platelets feature as a predominant cell type in 
the bloodstream. Platelet numbers in a healthy individual are usu-
ally maintained at a stable level ranging from 150 to 400 × 106 per 
mL of blood.1,2 These levels of platelets vastly exceed the numbers 
required to mount a normal hemostatic response, and so they are 
consistent with the idea that the role of platelets in biology ex-
tends beyond hemostasis.3–6 Within the critical biological process 

of hemostasis, platelets play a pivotal role in identifying injured or 
disrupted endothelium lining the vasculature. Through a number of 
different but highly integrated processes, platelets transition from 
a rapidly moving, nonactivated state to a situation where they roll 
slowly, adhere, and activate at a site of injury.7 This enables recruit-
ment of additional platelets to form a thrombus. This process re-
quires the engagement of platelet receptors that mediate both the 
rolling and adhesion of platelets, as well as the intraplatelet signal-
ling leading to platelet degranulation, Ca2+ flux, release of secondary 
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Abstract
Platelets have a major role in hemostasis and an emerging role in biological processes 
including inflammation and immunity. Many of these processes require platelet adhe-
sion and localization at sites of tissue damage or infection and regulated platelet ac-
tivation, mediated by platelet adheso-signalling receptors, glycoprotein (GP) Ib-IX-V 
and GPVI. Work from a number of laboratories has demonstrated that levels of these 
receptors are closely regulated by metalloproteinases of the A Disintegrin And 
Metalloproteinase (ADAM) family, primarily ADAM17 and ADAM10. It is becoming 
increasingly evident that platelets have important roles in innate immunity, inflam-
mation, and in combating infection that extends beyond processes of hemostasis. 
This overview will examine the molecular events that regulate levels of platelet re-
ceptors and then assess ramifications for these events in settings where hemostasis, 
inflammation, and infection processes are triggered.
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Essentials
•	 Metalloproteinases regulate release/shedding of bioactive membrane proteins.
•	 Shedding is critically important for normal cell function in the vasculature.
•	 Levels of platelet receptors GPIb-IX-V and GPVI are regulated by metalloproteolytic shedding.
•	 The premier platelet sheddases belong to the A Disintegrins And Metalloproteinase (ADAMs) family.
•	 Modulating ADAM activity may alter platelet adheso-signalling receptor density and function.
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agonists such as adenosine diphosphate (ADP) and thromboxanes, 
exposure of phosphatidylserine and upregulation of fibrinogen-
binding capacity by the platelet-specific integrin αIIbβ3. This process 
has been described extensively in a number of recent reviews.8–11

The process of primary hemostasis is governed by the platelet-
specific adhesion/signalling proteins glycoprotein (GP) Ib-IX-V and 
GPVI which predominantly bind von Willebrand factor (VWF) and 
collagen, respectively.12 Both receptors can engage with other 
ligands, however, engagement of these receptors by VWF and 
collagen coordinate the platelet response to exposed subendothe-
lial matrix across a range of vascular flow rates. As GPVI and the 
GPIb-IX-V complex cooperate and coordinate the platelet adhesion-
signaling response, the relative densities of these receptors on the 
membrane are important for efficient and effective function.13,14 
This review will discuss molecular mechanisms that rapidly alter the 
densities of these primary platelet adhesion receptors and influence 
capacity of platelets to respond. The review will also consider how 
the same mechanisms modulating platelet and other vascular cell re-
ceptors may contribute to vascular inflammation.

1.1 | GPIb-IX-V

The GPIb-IX-V complex consists of GPIbα disulphide linked to GPIbβ 
and noncovalently linked to GPIX and to GPV. All four subunits of 
the complex are members of the leucine-rich repeat family of pro-
teins however the N-terminal portion of GPIbα is the major ligand-
binding region of the complex (Figure 1). Within the leucine-rich 
repeat domain of GPIbα, repeats 2-4 (amino acids 60-128) play a cru-
cial role in regulating adhesion to VWF under shear conditions.15,16 

The ectodomain of GPIbα is essential for thrombus formation17 and 
likely also for other aspects relating to the role of platelets in co-
agulation and innate immunity responses as this portion of the re-
ceptor complex is able to bind a number of key molecular players 
in these critical pathways.18 Apart from both plasma and extracel-
lular matrix VWF, other GPIbα binding partners include coagulation 
proteins factors XI and XII, thrombin, thrombospondin, and high-
molecular-weight kininogen, the leukocyte integrin αMβ2, and 
P-selectin, found on activated platelets and endothelial cells. The 
ectodomain of GPIbα also associates with the extracellular portion 
of the platelet collagen receptor GPVI19 (see below) and this interac-
tion influences how collagen engages GPVI.19,20 Whilst the binding 
sites within GPIbα for these ligands remain to be fully described, all 
of these binding proteins engage the extracellular region of GPIbα. 
The consequences of VWF binding to the GPIb-IX-V complex has 
remained a matter of some debate; however, if the A1 domain (the 
GPIbα-binding portion of VWF) is presented to the platelet in an 
appropriate context, this binding interaction can generate power-
ful intracellular phosphorylation events.21 The cytoplasmic tail por-
tions of GPIbα and GPIbβ associate directly with components of the 
platelet cytoskeleton including actin, and α-actinin, and engagement 
of GPIb-IX-V by VWF leads to actin polymerisation, an event that is 
sensitive to the level of shear stress to which the platelet surface is 
exposed.22 GPIb-IX-V also contains sequences which bind 14-3-3ζ 
at the GPIbα C-terminus, as well as protein kinase A, tissue necrosis 
factor-alpha receptor-associated factor (TRAF)-4, and calmodulin 
binding sites on GPIbβ.23–25 14-3-3ζ in association with phosphoino-
sitol 3-kinase26 regulates the VWF-binding affinity of GPIb-IX-V and 
inhibiting 14-3-3ζ association blocks receptor signalling.23

F IGURE  1 Platelet adhesion/signaling 
receptors and their ligands. Platelet 
glycoproteins GPIbα and GPVI can bind 
a variety of ligands, many of which 
trigger intracellular signals that lead to 
platelet activation, degranulation and 
increased affinity of αIIbβ3 for fibrinogen. 
Cytoskeletal proteins and 14-3-3ζ 
associate with the cytoplasmic tails of the 
GPIb-IX-V complex. GPIb-IX-V contains 
intersubunit and intrasubunit disulphide 
bonds, represented by S, symbolising the 
link between adjacent sulfhydryl moieties 
in GPIbα and between GPIbα and GPIbβ. 
Calmodulin (CAM) associates with the 
juxtamembrane cytoplasmic regions of 
GPIbβ, GPV, and GPVI. The penultimate 
residue of GPVI is cysteine, represented 
by a free sulfhydryl group, SH. Not all 
cytoplasmic components known to 
associate with cytoplasmic tails of each 
receptor are shown
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1.2 | GPVI

GPVI is one of a number of platelet membrane proteins that can bind 
collagen (others include GPV, CD36 and α2β1)27; however, it is re-
garded as the major receptor for collagen as this receptor rapidly trig-
gers powerful intracellular signalling events and activating pathways 
that enable the platelet to respond and adhere to collagen28 (Figure 1). 
GPVI is a member of the immunoglobulin (Ig)-like superfamily of adhe-
sion proteins and contains two extracellular Ig-like domains. Within the 
cytoplasmic tail region, GPVI has a calmodulin-binding sequence29 and 
a sequence which binds TRAF-4.25 Surface expression of GPVI requires 
the tandem expression of the Fc receptor (FcR) γ chain, an ~10-kD pro-
tein that links with GPVI via a salt bridge within the plasma membrane. 
The cytoplasmic domain of FcRγ contains an immunoreceptor tyrosine 
activation motif (ITAM) and together the GPVI/FcRγ complex transmits 
ligand-induced signalling events into the platelet by triggering phospho-
rylation of two tyrosine residues with the ITAM and subsequent activa-
tion of p72-spleen tyrosine kinase (Syk).28 Along with collagen, GPVI 
can bind laminin,30 fibrin,31,32 fibrinogen,33,34 histones,35 adiponectin,36 
and the extracellular matrix metalloproteinase inducer (EMMPRIN)37 
expressed on monocytes and leukocytes. Intact GPVI is also essential 
for efficient generation of thrombin at the platelet surface.31 The best 
characterized GPVI interaction is with collagen. When engaged by col-
lagen, both the intracellular38 and extracellular39 regions of GPVI/FcRγ 
can dimerize and this is likely to aid and enhance the clustering of the 
receptor,40 and bring ITAMs within the cytoplasmic tail of GPVI/FcRγ 
together. This triggers tyrosine phosphorylation of members of the Src 
family of kinases leading to upregulation of phosphoinositide (PI)-3 ki-
nase activity and integrin activation. As the ectodomains of GPVI and 
GPIbα are co-associated on the platelet membrane,19 it is reasonable 
to believe that these two adheso-signaling proteins display a level of 
functional cooperation and coordinated output across a range of shear 
and ligand exposure conditions. Interestingly, the ectodomain of GPIbα 
can modulate the rate and extent of activation of platelets by colla-
gen20 and collagen-related peptide.19 In particular, anti-GPIbα mono-
clonal antibodies that target the anionic sulphated tyrosine region of 
GPIbα (amino acids 269-282) interfere with platelet responsiveness to 
these GPVI ligands. This was not related to any specific antibody prop-
erty as specific removal of the GPIbα ectodomain by treatment with 
the snake venom protein mocarhagin also ablated collagen-related 
peptide-induced aggregation.19 By altering one or both of the ligand 
binding regions of GPVI and GPIbα, platelet responsiveness particu-
larly to collagen is likely to be modulated.

2  | PLATELET ADHESION RECEPTORS 
FUNCTION UNDER FLUID SHEAR STRESS

The engagement of the GPIb-IX-V complex by VWF and VWF/collagen 
occurs in flowing blood and is an exquisite example of a shear-sensitive 
interaction. The interaction occurs through immobilized VWF partially 
unfolding under fluid shear and enabling a region within the A1 domain 
of VWF to be accessible and interact with the N-terminal portion of the 

GPIbα subunits within the complex.41 This complex interaction occurs 
and is sustained under a range of shear stress rates via specialized bonds 
that are sensitive to shear stress and this interaction directly impacts 
on the rate and extent of platelet activation.42,43 GPIbα also senses and 
responds to changes in fluid shear stress and whilst the mechanisms by 
which this subunit of the GPIb-IX-V complex alters its affinity for VWF 
remain to be elucidated, regions within the GPIbα ectodomain that do 
not overlap with the VWF ligand binding region have been identified 
to influence both the affinity of the receptor for ligand and the abil-
ity of the receptor complex to maintain VWF binding under fluid shear 
stress. These include a region within leucine-rich repeats 6 and 744 and 
a mechanosensing domain within the extracellular juxtamembrane re-
gion of GPIbα.45 The former was identified as binding a cyclic peptide 
termed OS-1, identified by phage display to act as an allosteric inhibi-
tor of VWF-GPIbα interactions.44 The latter is a region spanning ~60 
amino acids lying between the macroglycopeptide and transmembrane 
domain of GPIbα, which unwinds in response to pulling of prebound 
VWF A1 domain, as demonstrated in experimental systems using opti-
cal tweezers.45 Both studies illustrate the potential of nonligand bind-
ing ectodomain regions of the GPIbα subunit to influence and promote 
ligand binding capacity and affinity, and potentially stabilize receptor 
ligand interactions at fluid shear rates found in the vasculature.

GPVI plays an important role in hemostasis and thrombosis 
through integrin activation, supporting adhesion and the initial stages 
of platelet aggregation. However, patients and mice with platelets 
lacking GPVI show only a mild bleeding diathesis46–48 most likely due 
to the existence of compensatory pathways that generate thrombin 
and that lead to platelet activation independent of GPVI.49 However, 
the situation is different under thrombotic conditions where mice 
with platelets lacking GPVI are protected against arterial thrombosis 
and subsequent neointima formation50 and demonstrate an impaired 
thrombus formation at high shear rates.51 GPVI is likely to contribute 
significantly to stable thrombus formation as the ectodomain is im-
portant for efficient thrombin formation31,52 and GPVI-fibrin interac-
tions are likely to stabilize a forming thrombus under shear stress.31,32

Clinical therapies that target platelet responsiveness (antiplate-
let therapy) can successfully reduce cardiovascular events, especially 
in people at higher risk; however, all current antiplatelet therapies 
carry an increased probability of bleeding. Because loss of GPVI 
does not result in major hemostatic complications, the therapeutic 
potential of targeting GPVI is an exciting area that is being actively 
explored.53–55 Anti-GPVI antibodies, particularly single domain anti-
body clones and fragment antigen-binding (Fab) fragments may be 
useful candidate antithrombotic reagents56,57 as they could poten-
tially interfere with collagen-GPVI interactions and trigger metallo-
proteolytic GPVI shedding and/or internalization.

3  | METALLOPROTEINASE-MEDIATED 
RECEPTOR SHEDDING

Along with triggering fibrinogen binding to the major platelet integrin 
αIIbβ3, activation of pathways from both the GPIb-IX-V complex and 
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GPVI leads to a rapid and irreversible metalloproteinase-mediated 
cleavage of the ligand-binding ectodomains of GPIbα, GPV, and 
GPVI58–60 (Figure 2). In a process that was initially characterized 
in murine platelets,61–63 the ectodomains of these receptors are 
cleaved within extracellular juxtamembrane regions resulting in the 
release of an ~110-130-kDa fragment of GPIbα (termed glycocalicin) 
and an ~55-kDa GPVI fragment59 from human platelets. The extra-
cellular region of GPV is also released by the action of thrombin to 
produce an ~20-kDa platelet-associated fragment59,64 and by metal-
loproteolytic cleavage of the complete extracellular region to leave 
an ~5-kDa remnant fragment.59 This process is clearly different from 
other forms of receptor removal which involve either the export of 
receptors from the plasma membrane via packaging in extracellular 
vesicles65 such as occurs with platelet and endothelial P-selectin, 
or internalization processes whereby receptors are either moved to 
ligand-inaccessible surface-connected canalicular storage pools or 
degraded.66,67 In contrast to GPIbα which appears to be constitu-
tively shed,18,68 GPVI is stable on the surface of circulating nonacti-
vated platelets59,60 with no evidence of a platelet-associated 10-kDa 
remnant fragment. This supports the use of intact and soluble GPVI 
as platelet-specific markers of activation.69

4  | PLATELET METALLOPROTEINASES

The receptor and bioactive protein shedding process is mediated by 
members of the A Disintegrin And Metalloproteinase (ADAM) family 
with prominent roles for ADAM10 and ADAM17 across biology.70–72 
The ADAMs family of metalloproteinases (Figure 3) has more than 40 
members and most members share a basic domain structure consist-
ing of an N-terminal prodomain followed by a catalytic, a disintegrin, 
and a cysteine-rich domain. Most family members contain epidermal 

growth factor-like domains (although ADAM10 and ADAM17 do 
not) followed by a single pass transmembrane domain and a short 
cytoplasmic tail.72,73 ADAM10 and ADAM17 are both found on the 
membrane of resting platelets and these enzymes mediate the cleav-
age of GPVI and GPIbα, respectively. In murine platelets, shedding 
of these receptors may involve contributions from both ADAM10 
and ADAM17.74 ADAMs proteinases, particularly ADAM10 and 
ADAM17 are broadly expressed across a variety of cell types, both 
at the cell surface and in intracellular granules as zymogens. The pro-
domain is removed from immature ADAMs prior to being brought to 
the cell surface as mature catalytically active proteins.72 However, 
on platelets, mature ADAM10 and ADAM17 both seem to be consti-
tutively present at the platelet surface, and in the case of ADAM10 
at least, have detectable proteolytic activity.75 The crystal structure 
of the ADAM10 ectodomain was recently solved76 and revealed a 
compact arrangement of the domains permitting intrinsic autoinhibi-
tion of the catalytic domain within the mature protein by the disin-
tegrin and cysteine-rich domains and preventing substrate access to 
the metalloproteinase active site. This suggests that there is a level 
of control of ADAM10 activity at a membrane surface, under resting 
conditions.

Platelet granules also contain a number of members of the ma-
trix metalloproteinase (MMP) family.77 These metalloproteinases 
generally do not have a transmembrane domain and so are released 
from storage granules of platelets and many other cell types where 
they are able to diffuse into extracellular and interstitial spaces. As 
their name suggests, MMPs cleave many different types of matrix 
proteins including collagens, laminins, and fibronectin. Platelet-
associated MMP-1, MMP-2, MMP-9, and MMP-14 have been shown 
to differentially modulate and at times inhibit thrombus formation 
by exerting collagenolytic activity.78 MMPs are also able to act at the 
platelet surface where, for example, MMP-1 cleaves the thrombin 

F IGURE  2 Ectodomains of GPIbα, 
GPV, and GPVI are shed under conditions 
of platelet activation. Calmodulin 
dissociation from the juxtamembrane 
cytoplasmic region of GPIbβ, GPV and 
GPVI is a common event also observed 
in metalloproteolytic shedding of a 
number of cell receptor ectodomains 
across vascular biology. GPIbα and GPIbβ 
intersubunit disulphide bonds which 
remain intact after shedding of the 
glycocalicin ectodomain are represented 
as S symbols

Physiological triggers of
GPlbα shedding

Physiological triggers of
GPVI shedding

VWF engagement,
platelet activation

GPVI ligands
collagen, fibrinA1

Apoptosis, ageing

O2
Oxidative stress,
serotonin

Antiplatelet
autoantibodies
Elevated
shear stress

FX FXa Coagulopathy

GPlbβ

GPlX

Glycocalicin

sGPV

sGPVI

α-Thrombin

ADAM10ADAM10
ADAM17S

S

CAM CAM

CAM
cytoskeleton

I
T
A
M

I
T
A
M

FcRγ



244  |     GARDINER

receptor protease activated receptor (PAR)-1 at a distinct site that 
strongly activates Rho-GTP pathways, signalling cell shape change 
and motility.79 Similarly, MMP-2 engages with αIIbβ3 and is able to 
cleave PAR-1 at a noncanonical site resulting in the activation of 
phosphatidylinositol 3- kinase, enhanced aggregation, and a contri-
bution to arterial thrombosis.80 Dual roles for ADAMs and MMPs 
in platelet biology are likely, and it will be of great interest to ex-
amine how these metalloproteinase superfamily members cooper-
ate and coordinate their respective activities to fully enable platelet 
function.

5  | REGULATORY MECHANISMS 
THAT MAY INFLUENCE PLATELET 
RECEPTOR SHEDDING

How platelet receptor levels are regulated on circulating platelets 
remains an open question. As the process is largely driven by met-
alloproteinases, control of receptor cleavage events is likely to be 
provided either by direct inhibition of the catalytic process or by 
controlling access of the enzyme to the substrate. In the case of 
GPIbα, roles for a membrane-proximal region of the GPIbβ cytoplas-
mic domain81 and a 28-amino acid mechanosensory domain within 
the extracellular juxtamembrane region of GPIbα82 in maintenance 
of stable surface levels of the GPIbα subunit have been identified. 
Both of these regions regulate the availability of the ADAM17 cleav-
age site within GPIbα to metalloproteases such as ADAM17 and so 
aid in control of GPIbα levels.

The endogenous inhibitors of both ADAMs proteins and the 
MMPs are members of the tissue inhibitors of metalloprotein-
ase (TIMP) family.83 There are four members of the TIMP family 
and studies have shown that megakaryocytes and platelets have 
mRNA transcripts and detectable levels of protein for all TIMPs.84 
Interestingly, the TIMP-2 transcript is actively transcribed in 
thrombin-stimulated platelets.85 ADAM10 is primarily inhibited by 
TIMP-1 and ADAM17 by TIMP-3 although there is a significant 
amount of cross-inhibition amongst the family.86 TIMPs are found 
in the plasma as well as in intracellular storage granules of most 
cell types including platelets. TIMPs are able to compete with en-
dogenous ADAM substrates for binding sites within the catalytic 
and disintegrin-like domains of ADAMs, and so disrupt access of 
the catalytic domain for the substrate. However, little is known 
about the regulatory role of TIMPs in platelet ADAMs and MMP 
biology.

Tetraspanins featuring the TspanC8 subgroup (Tspan5, 10, 14, 
15, 17, and 33)87,88 and the iRhom subgroup of protease-inactive 
rhomboids (iRhom1 and 2)89,90 have emerged as important regu-
lators of ADAM10 and ADAM17, respectively. In nucleated cells, 
members of the TspanC8 subgroup are required for correct enzy-
matic maturation and trafficking of ADAMs to the cell surface. In 
certain cell types, there is evidence that cells can target the ADAMs 
to distinct substrates91 and this may involve different TspanC8s 
and iRhoms.88,92–96 Roles for iRhoms and tetraspanins (in particular 
Tspan14)97 in regulating platelet ADAMs activity are exciting ave-
nues of research enquiry that are likely to explain differential cleav-
age of GPVI and GPIbα in circulating platelets.

F IGURE  3 Domain structure of 
ADAMs. (A) ADAMs have a uniform 
domain structure with a prodomain 
that is removed prior to transport 
to the cell membrane, followed by a 
metalloproteinase, disintegrin,cysteine-
rich and epidermal growth factor-like 
domains domains, a transmembrane 
domains and a cytoplasmic tail. ADAM10 
and ADAM17 do not have EGF-like 
domains and do have a free sulfhydryl 
(SH) group within the prodomain 
which may coordinate with the HEHH 
Zn2+ binding sequence within the 
metalloproteinase domain. (B) Analysis of 
the crystal structure of human ADAM10 
[76] suggests a closed conformation of 
the enzyme under resting conditions 
where the cysteine-rich domain 
occludes the metalloproteinase active 
site. Under conditions of activation, the 
metalloproteinase domain is freed and a 
substrate can gain access to the catalytic 
site
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In response to ligand engagement, exposure to elevated shear or 
during coagulopathy, GPVI is proteolytically cleaved from the plate-
let surface. In a system that is reminiscent of the classical ADAM17-
mediated shedding of leukocyte L-selectin,98 detachment of 
calmodulin from the cytoplasmic juxtamembrane binding site, either 
by ligand engagement or by treatment of platelets with an inhibitor 
of calmodulin, triggers the release of the GPVI ectodomain.60 In the 
following sections, the mechanisms most relevant to physiological 
shedding of platelet receptors will be discussed, with a focus on the 
regulation of platelet GPVI levels.

6  | TRIGGERS OF PLATELET 
RECEPTOR SHEDDING

6.1 | Laboratory approaches

There are various ways that proteolytic release of GPVI can be 
triggered involving either physiological or experimental tools 
and reagents that act either in intracellular and/or extracellular 
spaces. The standard means of activating ADAMs across cell bi-
ology involves treatment of cells with phorbol myristyl acetate 
(PMA) which crosses the plasma membrane and serves to acti-
vate protein kinase C and either trigger passage of mature ADAMs 
proteins to a membrane surface, or (as in the case of platelets) 
enhance the proteolytic activity of ADAMs present at the cell 
surface.91,99 ADAMs activity can also be upregulated by treat-
ment of cells with thiol-modifying reagents100 such as N-ethyl 
maleimide (NEM) which is a very effective means to trigger al-
most complete release of GPVI from platelets.59,101 While the 
mechanism of action of NEM is not clearly defined, this reagent 
may react with a cysteinyl group present within the prodomain of 
all ADAMs. This reactive “cysteine switch” sits within a divalent 
cation binding site and coordinates the binding of Zn2+ which is 
essential for catalytic activity of the metalloproteinase.100 NEM 
and other thiol-modifying reagents may modify this cysteine 
group to release any inhibitory mechanism and drive the enzyme 
into a high affinity enhanced catalytic state. The calmodulin in-
hibitor N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide 
hydrochloride (W7) is a cell-permeable competitive antagonist 
which competes with intracellular calmodulin binding sequences 
for calmodulin binding. Dissociation of calmodulin from receptor 
cytoplasmic juxtamembrane sequences forms part of the ligand-
mediated signalling process,98 and so treatment with W7 circum-
vents the need to provide a ligand. In platelets, treatment with 
W7 results in detachment of receptor-bound calmodulin and trig-
gers shedding of GPVI, GPV, and GPIbα.102 Interestingly, the W7 
mechanism of action does not increase the endogenous platelet 
ADAM10 activity,75 suggesting that calmodulin dissociation alters 
the availability of the ADAM10 cleavage site within GPVI. These 
reagents are highly useful laboratory tools that have enabled 
rapid evaluation of ADAMs structure and catalytic potential for 
a huge range of substrates in both primary cell culture and in cell 
lines. In platelets, these reagents have broad utility, particularly 

NEM where treatment of washed platelets or platelet-rich plasma 
for 15-30 minutes with 5 mmol L−1 NEM is sufficient to liberate 
greater than 90% of GPVI and so permit an assessment of GPVI 
shedding potential across blood donor populations, as well as cre-
ate a GPVI-deficient platelet to aid in the assessment of platelet-
activating plasma components.103

An additional means to remove GPVI from the surface of plate-
lets that has been put to excellent use in mouse models of thrombo-
sis and hemostasis is the use of anti-GPVI antibodies.104,105 Injection 
of mice with intact antibodies or Fab fragments that bound to GPVI 
epitopes either within the collagen-binding domain or outside, in-
duced a transient thrombocytopenia and a down regulation of 
platelet GPVI. Antibody treatment in vitro did not achieve the same 
loss, and additional work demonstrated the existence of a pathway 
downstream of GPVI that efficiently led to internalization and irre-
versible loss of murine GPVI.67 Whether the same process of GPVI 
internalization occurs in human platelets treated with anti-GPVI an-
tibodies in vitro, or with anti-GPVI autoantibodies in vivo has not 
been reported, however, treatment of human platelets treated with 
anti-GPVI antibodies can induce GPVI shedding in vitro. In one study 
with eight monoclonal antibodies, this loss was independent of en-
gagement of FcγRIIa (present on human but not mouse platelets) 
by the Fc portion of the antibody106 indicating antibody binding to 
GPVI could directly trigger metalloproteolysis.

6.2 | Exposure to GPVI ligands

Fibrillar collagen type 1 is the major collagen type that engages 
GPVI. Together with collagen type 3, it is the predominant collagen 
found in the subendothelium in the blood vessel wall.107 An assess-
ment of GPVI binding of other collagen types has been made; how-
ever, the majority of studies of GPVI shedding induced by collagen 
exposure have utilized the type 1 form. Collagen and the chemically 
crosslinked collagen-related peptide (CRP), a GPVI-specific agonist, 
both induce shedding of GPVI in suspension assays and require ac-
tivation of intracellular signalling events including phosphorylation 
of Src family kinases and Syk as well as activation of PI-3 kinase but 
do not require engagement or outside-in signalling from the integrin 
αIIbβ3. Ligand-induced GPVI shedding can proceed in the absence 
of integrin engagement.60 Shedding triggered by other GPVI ligands 
which may engage and cluster GPVI through sites other than the 
collagen-binding site remains a field of discovery. At the International 
Society on Thrombosis and Haemostasis meeting in Berlin, a num-
ber of new GPVI interactions were discussed in both oral and poster 
presentations. Fibrin is a more recently described ligand for GPVI 
and studies have demonstrated that while fibrin–GPVI interaction 
will generate intracellular signals,32,108 this signalling is not required 
for fibrin-induced GPVI shedding.109 The fibrin interaction with 
GPVI is mediated by the D-dimer region of fibrin33,108 and for GPVI 
shedding to occur, fibrin must be polymerized.109 Whether fibrin 
can bind platelet GPVI monomer or dimer33,108 remains a matter for 
debate; however, dimeric GPVI-Fc fusion proteins do not engage fi-
brin.110 Similarly, the fibrin-binding site within GPVI is contentious. 
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In one study, the GPVI-fibrin interaction occurred only with GPVI in 
dimeric form and could be abrogated by pretreatment with collagen 
or CRP, implying at least partial overlap of the binding site for these 
ligands,33 however, fibrin-GPVI monomer interactions and separate 
CRP and fibrin binding sites were proposed in another study.108 
Under certain experimental conditions and in collaboration with 
αIIbβ3, the fibrin monomer component fibrinogen also can engage 
GPVI.33,34 Understanding how these two GPVI ligands intersect and 
contribute to GPVI function is important, as selective disruption 
of one type of GPVI-ligand interaction, either through competitive 
inhibition at the ligand-binding site, or at the level of GPVI dimeri-
zation represents an enticing new approach to develop antiplatelet 
agents with minimal effects on hemostasis.

6.3 | Activation of coagulation

Through comparison of sGPVI levels in matched plasma and serum 
samples from healthy donors, it emerged that GPVI shedding can be 
triggered by coagulation.111 Through the use of direct inhibitors of 
thrombin and active factor X (FXa), together with other inhibitors 
of the coagulation pathway, a major role for thrombin in triggering 
the release of GPVI either directly by acting on GPVI or indirectly 
through activation of thrombin receptors on platelets has been ruled 
out.60,109,111 Generation of FXa either through recalcification in the 
presence of thrombin inhibitors, or by treatment of platelet-rich 
plasma with Russell viper venom, a direct FX activator, resulted in 
the rapid release of GPVI that could be blocked by broad spectrum 
metalloproteinase inhibitors, and partially blocked by a specific in-
hibitor of ADAM10. Similar to fibrin-mediated GPVI shedding,109 
this mechanism of shedding did not require platelet activation, de-
granulation, or aggregation, implying that FXa can directly trigger 
ADAM10-mediated cleavage of GPVI. In the absence of a consensus 
sequence within GPVI that is recognized by FXa, FXa may either di-
rectly act on ADAM10 to enhance substrate cleavage or indirectly 

modulate an intermediary factor that is involved in GPVI stability at 
the platelet surface. Coagulation-induced shedding of platelet GPVI 
in human plasma via a metalloproteinase-mediated FXa-dependent 
mechanism may serve to down-regulate GPVI expression under pro-
coagulant conditions independent of GPVI ligands. Monitoring levels 
of sGPVI in plasma from patients with high levels of FXa and/or fibrin 
deposition who are at risk of developing disseminated intravascular 
coagulation,111 or sepsis109 may be useful for clinical management of 
these complex patients.

6.4 | Exposure to elevated fluid shear stress

Human platelets normally circulate in a resting state and are exposed 
to shear rates within a physiologic range (~20-2000 s−1).11,112,113 
Platelets may encounter shear rates well beyond 10 000 s−1 under 
pathologic conditions, for example, in a stenosed atherosclerotic 
artery or within mechanocirculatory support devices such as left 
ventricular assist devices (LVADs) or extra-corporeal membrane 
oxygenation (ECMO) devices, and become activated and begin 
to aggregate. Shear-dependent platelet activation is initiated by 
binding of plasma VWF to platelets primarily through GPIbα, lead-
ing to platelet activation, secretion of ADP, and other agonists, 
and αIIbβ3-dependent aggregation.113,114 Additionally, when ex-
posed to elevated fluid shear stress, metalloproteolytic shedding 
of GPVI is triggered.101 In experimental systems shear-induced 
GPVI shedding was not as a consequence of VWF engagement 
of GPIb-IX-V or platelet activation as shear-induced shedding oc-
curred in washed platelets where VWF engagement was blocked 
by anti-GPIbα or anti-VWF monoclonal antibodies, and in platelet-
rich plasma isolated from a patient with Type 3 von Willebrand 
disease (where VWF was absent). Shear-induced shedding did not 
require platelet signalling pathways or activation of αIIbβ3 and ap-
peared to be a direct effect of exposure to fluid shear stress. This 
shear-dependent instability of the platelet adhesion receptors is 

F IGURE  4 Extracellular proteolysis 
controls the active levels of a range of 
growth factors, chemokines and adhesion 
receptors. Levels of a range of active 
biological compounds are controlled by 
the action of members of the ADAMs 
family of metalloproteinases. Only a 
selection of these proteins are shown 
here. These bioactive proteins cooperate 
and influence a broad spectrum of critical 
biological processes. EGFR, epidermal 
growth factor receptor; GP glycoprotein; 
ICAM, intercellular adhesion molecule; 
IL, interleukin; TGF, transforming growth 
factor; TNF, tissue necrosis factor
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likely to be of paramount importance in patient groups where risk 
of both thrombosis and of bleeding are heightened. Deployment 
of devices such as LVADs or ECMO necessitates the use of signifi-
cant antiplatelet and anticoagulant medication however in cohorts 
of people in receipt of mechanocirculatory support, exposure to 
fluid shear stress levels approaching 50 000 s−1 was associated 
with loss of platelet adhesion receptors in conjunction with loss of 
VWF multimers.115–117 This loss may combine with other disease-
related vascular factors and contribute to the high rate of serious 
bleeding seen in this patient cohort.118 Whether measurement of 
sGPVI levels in plasma samples taken prior to implantation will 
enable stratification of patients into low- and high-risk bleeding 
groups115 and the opportunity to tailor antiplatelet and anticoagu-
lant therapy is the subject of ongoing research.

6.5 | Antiplatelet antibodies and autoantibodies

In primary immune thrombocytopenia (ITP) and in heparin-
induced thrombocytopenia (HIT), patients generate antibodies 
that are reactive with antigens on the surface of platelets and 
megakaryocytes. In ITP, these antibodies disrupt megakaryo-
cytopoiesis, induce platelet apoptosis or opsonise the surface 
of the platelet enhancing the rate of clearance of platelets by 
the liver and spleen.119 In at least a subset of patients, antibody 
binding to platelet surface antigens including GPIbα, αIIbβ3, and 
α2β1 leads to engagement of platelet FcγRIIa by the Fc portion 
of the autoantibody. In ITP patients with anti-GPVI autoantibod-
ies, the loss of responsiveness to collagen by light transmission 
aggregometry, loss of platelet GPVI by flow cytometry, or en-
hanced GPVI shedding has been demonstrated.103,120–122 In this 
pathological scenario, autoantibody-mediated GPVI loss may 
involve signalling contributions from both GPVI and FcγRIIa. In 
HIT, autoantibodies that recognise platelet factor-4 in combina-
tion with heparin, form immune complexes which also engage 
FcγRIIa.123 FcγRIIa is a second ITAM-containing signalling recep-
tor, and this binding can trigger significant platelet activation 
and platelet clearance124 as well as activation of GPVI shedding  
pathways.125

7  | CONCLUSION

Metalloproteolysis of receptor ectodomains is a regulatory mecha-
nism that is common to many cell types across cell biology (Figure 4). 
In some cases, this mechanism liberates a bioactive portion of a la-
tent factor, while in others cases, it is a means of controlling the reac-
tive or adhesive properties of a cell or enabling the cell to sense its 
surroundings. In platelets, the release of the ligand binding portions 
of GPVI and GPIbα are likely to modulate the densities of each of 
these cooperating receptors, parameters that are important for the 
adhesive properties of the platelet. When using platelets from mice 
deficient in their subtle receptor density changes act to limit throm-
bus growth and propagation of coagulation at the site of thrombus 

formation. However, beyond these outcomes that are critical for 
hemostasis, and in keeping with the burgeoning roles for platelets 
in innate immunity and inflammation, loss of these ectodomains are 
also likely to influence how platelets engage with other cells such 
as leukocytes and endothelial cells as well as tumor cells.126 Indeed, 
modulation of receptor levels on the surface of platelets is likely to 
be critical for new avenues of research where platelets are demon-
strated to undergo diapedesis127 and in the utility of platelets for 
delivery of therapies to critical sites of injury, inflammation, and 
metastasis.128,129
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