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Abstract

To understand how the brain regulates behavior, many variables must be taken into account, with 

sex as a prominent variable. In this review, we will discuss recent human and rodent studies 

showing the sex-specific involvement of the neuropeptides vasopressin and oxytocin in social and 

anxiety-related behaviors. We discuss that sex differences can be evident at pre-pubertal ages as 

seen in the sex-specific regulation of social recognition, social play, and anxiety by the vasopressin 

system in juvenile rats. We further discuss that the oxytocin system in humans and rodents alters 

brain activation, anxiety, and sociosexual motivation in sex-specific ways. Finally, we propose that 

knowledge of vasopressin and oxytocin mediated sex-specific brain mechanisms can provide 

essential insights into how these neuropeptide systems contribute to sex-specific vulnerability as 

well as resilience to perturbations, with subsequent relevance to social and emotional disorders.

1. Studying both sexes provides a more complete understanding of how the 

brain modulates behavior

The 2014 National Institutes of Health policy of implementing sex as biological variable has 

stimulated a lot of discussion, with pros and cons of the policy voiced by a wide variety of 

scientists [1–5]. There is a strong tendency of simplifying and standardizing experimental 

designs and methods, including using a limited number of model organisms, contexts, and 

behavioral tests, and limiting studies to one sex [6–9]. This approach has been essential to 

gain a basic understanding of how the brain modulates behavior. Yet, we have obtained a 

very narrow and incomplete view of brain function [6]. In a first step to gain a more 

complete and meaningful understanding of how the brain mediates behavior, both sexes 

must be studied. Although males and females may be similar at the behavioral level, they 

often use different mechanisms to respond to social and emotional challenges and 

opportunities [10, 11]. To illustrate the importance of studying both sexes, this mini-review 

will highlight a few recent studies that have provided insights into the behavioral roles of the 
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neuropeptides vasopressin (AVP) and oxytocin (OXT) in males and females, often with 

intriguing sex-specific outcomes.

2. Involvement of the AVP system in the sex-specific regulation of social 

and anxiety-related behaviors (Fig. 1)

AVP is synthesized in several hypothalamic and extrahypothalamic regions and can 

modulate the activation of numerous brain regions through the AVP V1a receptor (V1aR). In 

this section, we will discuss recent studies that focused on the behavioral roles of the AVP 

system in the lateral septum (LS), a key brain region involved in the regulation of emotion, 

reward, and social behavior [12]. The LS receives vasopressinergic innervations from the 

bed nucleus of the stria terminalis (BNST) and medial amygdala (MeA) [13, 14]. The LS-

AVP system in the rat shows complex sex differences: compared to females, adult males 

have denser AVP axonal fibers, but less V1aR binding [15–18] (Fig 1A). Many studies have 

shown an important role of the LS-AVP system in the regulation of various social behaviors 

in adult male rodents [19–26]. Recent comparative studies have demonstrated the 

involvement of the LS-AVP system in social behavior regulation in females as well. In 

detail, application of a V1aR antagonist into the LS impaired social recognition in both adult 

male and female rats [17] (Fig 1D). Likewise, administration of AVP into the LS prolonged 

social recognition in both adult male and female rats [17] (Fig. 1D). Together, these findings 

indicate that, despite sex differences in AVP fiber and V1aR densities, the LS-AVP system in 

adult rats seems to play a similar role in the regulation of social recognition in males and 

females.

Interestingly, a similar analysis of juvenile (5-week-old) rats revealed sex differences in the 

function of the LS-AVP system. LS-AVP fiber density is significantly lower in juveniles of 

both sexes compared with adults; yet, juvenile males have denser LS-AVP fibers than 

females [16] (Fig 1B, C). In contrast, LS-V1aR binding is very dense at both ages, but here, 

juvenile males show lower V1aR binding density than females (Fig 1B, C) [17]. With 

regards to the functional implications, pharmacological blockade of V1aR in the LS did not 

impair social recognition in juvenile males and females, but instead, induced a preference to 

investigate the previously encountered stimulus rat over the novel stimulus rat [17]. 

Moreover, administration of AVP into the LS improved social recognition in female, but not 

male, juveniles [17]. These results demonstrate that the regulation of social recognition by 

the LS-AVP system and sex differences in this regulation are age-dependent.

Analysis of other behaviors in juvenile rats revealed that the sex-specific role of the LS-AVP 

system is highly behavior specific. Here, pharmacological blockade of V1aR in the LS 

increased social play behavior in juvenile males, but decreased social play behavior in 

females [27, 28]. Social play is a highly rewarding behavior predominantly displayed by 

juveniles and social play interactions contribute to the development of social skills [29]. LS-

V1aR blockade did not alter social preference (i.e., preference to investigate a novel 

conspecific over a novel object) [30], social novelty preference (i.e., preference to 

investigate a novel conspecific over a cage mate) [30], or anxiety-related behavior [28] in 

either sex. Together, these findings demonstrate that the LS-V1aR in juvenile male and 
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female rats is important for the regulation of specific types of behavior, i.e., social 

recognition and social play behavior. Intriguingly, LS-V1aR blockade alters social 

recognition in a similar direction in males compared to females, but alters social play in an 

opposite direction in males compared to females. This implies that the LS-V1aR-activated 

pathways mediating social recognition are likely similar between the sexes, while the LS-

V1aR-activated pathways mediating social play are likely distinct between the sexes.

Finally, we determined the effects of AVP administered into the LS on social recognition, 

social play, and anxiety-related behavior in juvenile rats. Application of AVP into the LS 

improved social recognition in female, but not male, juveniles [17]. Moreover, LS-AVP 

administration increased social play in female, but not male, juveniles when tested in the 

home cage [27, 28]. Along with the LS-V1aR blockade-induced decrease in social play 

behavior, this suggests that social play in a familiar setting is facilitated by the LS-AVP 

system. In contrast, LS-AVP administration decreased social play behavior in female, but not 

male, juveniles when tested in a novel cage [28]. This indicates that the effects of LS-AVP in 

female juveniles are strongly dependent on the familiarity of the environment. Interestingly, 

AVP increased anxiety-related behavior on the elevated plus-maze in male, but not female, 

juveniles [28]. This anxiolytic effect of LS-AVP in male juvenile rats is in line with studies 

in adult male rodents (adult virgin female rodents have not been tested) [22, 25, 31, 32]. 

Overall, these comparative studies in juvenile rats suggest that AVP applied to the LS 

changes primarily social behaviors in juvenile females, while altering primarily anxiety-

related behavior in juvenile males.

To summarize, the LS-AVP system in rats is involved in the sex-specific regulation of social 

recognition, social play, and anxiety-related behavior in juveniles as well as in the age-

specific regulation of social recognition (Fig 1B). Although the V1aR antagonist and AVP 

may have some affinity for the OXT receptor (OTR) [33], it seems unlikely that this 

contributed to the observed sex-specific effects, because parallel studies administering OTR 

antagonist or OXT into the LS yielded different behavioral effects than those mediated by 

V1aR antagonist or AVP, respectively [27, 28]. Two main questions that need to be 

addressed are how this sex-specific regulation (1) corresponds with sex differences in LS-

AVP fibers and LS-V1aR binding and (2) affects downstream pathways. It is likely that LS-

V1aR activation modulates the activation of other neurotransmitter systems in the LS. The 

LS receives input from major neurotransmitter cell groups, including glutamatergic, 

GABAergic, serotoninergic, dopaminergic, and norepinephrinergic input [12]. We recently 

showed that blockade of ionotropic glutamate receptors in the LS decreased social play 

behavior in juvenile female, but not male, rats [34]. It would be interesting to determine 

whether LS-V1aR activation modulates LS-glutamate activity to regulate social play in sex-

specific ways. Finally, LS-V1aR activation likely induces sex-specific changes in the 

activation of downstream pathways to modulate social recognition, social play, and anxiety 

in sex-specific ways. These could include intracellular pathways as well as LS projection 

regions important for learning and memory (such as hippocampus, indirect projection via 

hypothalamus [35]) to mediate social recognition, regions important for motivation and 

reward (such as the ventral tegmental area and nucleus accumbens [12]) to mediate social 

play behavior, and regions important for emotion (such as the amygdala and hypothalamus 

[12, 35] to mediate anxiety-related behavior (see Fig. 1C).
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3. Involvement of the OXT system in the sex-specific regulation of social 

and anxiety-related behaviors (Fig. 2)

OXT modulates social and anxiety-related behaviors in males and females of various species 

including humans, rats, and mice, and often does so in sex-specific ways (for comprehensive 

reviews see [36, 37]. Yet, in most rodent and primate species (including humans) examined, 

there are no sex differences in OXT synthesis or number of OXT neurons in the brain 

[reviewed in 36, 37] (Fig 2A). Furthermore, in juvenile and adult rats, there are no sex 

differences in OXT fiber density in forebrain regions encompassing the social behavior 

neural network, including the LS, BNST, MeA, medial preoptic area, anterior hypothalamus, 

and ventromedial hypothalamus [16] (Fig. 2A). However, a sex difference was found in Fos-

activated OXT neurons in the supraoptic nucleus of the hypothalamus (SON) in juvenile 

rats. Here, juvenile male rats showed higher Fos expression in SON-OXT neurons than 

juvenile female rats, a sex difference that was independent on whether the juveniles were 

exposed to a sex- and age-matched play mate for 10 min or nothing 90 min before perfusion 

[38]. These results suggest the potential for higher OXT release in male compared to female 

juveniles. Interestingly, a sex difference was found in the extracellular release of OXT in 

response to social stimuli in adult rats. In detail, extracellular OXT release (expressed as 

percentage from baseline OXT release) in the posterior BNST was higher in adult male rats 

compared to females during exposure to a social recognition test [39] (Fig 2A). Finally, sex 

differences have been found in OTR expression in the rodent brain. For example, adult male 

rats showed higher OTR mRNA expression [40] and higher OTR binding density [18, 41] 

than females in the ventromedial hypothalamus. Furthermore, juvenile and adult male rats 

showed higher OTR binding density than females in the posterior BNST [18, 41] (Fig 2A) 

and medial amygdala [18, 41]. In contrast, lower OTR binding density was found in adult 

male prairie and montane voles compared to females in the medial prefrontal cortex (mPFC) 

[42]. These examples illustrate the complex pattern of sex differences in the OXT system, 

which are highly species-, and brain region-specific [reviewed in 26, 37]. Further research is 

required to unravel how sex differences in the OXT system are involved in enabling males 

and females to display species-appropriate behaviors in similar or sex-specific ways.

Recent studies in humans and rats suggest that the sex-specific behavioral regulation by the 

OXT system may involve activation of sex-specific neural circuitries (Fig. 2B). For example, 

young adult women respond to intranasal OXT by a strengthening of resting-state amygdala-

mPFC functional connectivity, an effect that was not seen in young adult men or older adult 

women [43]. It should be noted, however, that young adult men had greater amygdala–

mPFC connectivity strength than women under placebo, which could have favored an effect 

of OXT in women only. Yet, these findings indicate that the OXT system plays a role in 

modulating connectivity strength between subcortical and cortical regions that may have 

implications for sex-specific behaviors. Furthermore, intranasal OXT decreased fear and 

threat-induced amygdala blood oxygen level-dependent (BOLD) activation in men, but 

increased it in women [44–47] (Fig. 2B). Interestingly, the opposite effect was found during 

human cooperation. Here, intranasal OXT administration increased amygdala BOLD 

activation in men, but decreased it in women [48, 49] (Fig 2B). Intranasal OXT further 

induced sex-specific BOLD activation in the nucleus accumbens (increased activation in 
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men, no change in women), and insular cortex (increased activation in men, decreased 

activation in women [48, 49]) (Fig. 2B). Strikingly, intracerebroventricular application of 

OXT in awake adult rats induced sex differences in BOLD activation in the same brain 

regions as in humans, i.e., more OXT-induced activation in the amygdala of females, less 

OXT-induced activation in the insular cortex in females, and more OXT-induced activation 

in the nucleus accumbens and insular cortex of males [50] (Fig. 2B). This implies that there 

are some similarities between humans and rats in the sex-specific effects of OXT on brain 

activation and may provide an opportunity to use rats as model organism to investigate the 

underlying mechanisms.

Recent studies in mice provide evidence for the involvement of OTR in the mPFC in 

mediating sex differences in anxiety-related behavior (Fig. 2C, D). OTRs are expressed by a 

small population of interneurons in the mouse mPFC, with equal expression in males and 

females [51]. However, optogenetic stimulation of these OTR-expressing interneurons 

decreased anxiety-related behavior in males, while it did not alter anxiety-related behavior in 

females [52] (Fig 2C). Likewise, viral vector-mediated knockdown of the OTR in the mPFC 

increased anxiety-related behavior in males, but not in females [52]. Although 

electrophysiological recordings of OTR-expressing interneurons in the mPFC did not show 

differences between males and females, mPFC pyramidal neurons (that likely receive input 

from OTR-expressing interneurons) responded in a sex-specific way. Here, optogenetic 

stimulation of OTR-expressing interneurons induced a stronger inhibitory effect in layer 2/3 

pyramidal neurons in males and a stronger inhibitory effect in layer 5 pyramidal neurons in 

females [52] (Fig. 2D). Layer 2/3 pyramidal neurons are important for intraregional 

connectivity while layer 5 pyramidal neurons have axons projecting to regions outside the 

cortex. Moreover, OTR-expressing interneurons show a remarkably different gene 

expression profile in male versus female mice (shown in Table S2 in [52]). Together, this 

demonstrates the potential of OTR-expressing interneurons in the mPFC to be part of a 

distinct neural network in male versus female mice that, in turn, may underlie the observed 

sex differences in anxiety-related behavior mediated by activation or inhibition of mPFC 

OTR-expressing interneurons.

Interestingly, the mPFC-OTR in female mice plays a role in sociosexual motivation [51]. In 

detail, impairing OTR function in the mPFC (either by chronic silencing of OTR-expressing 

interneurons, viral vector-mediated knockdown of the OTR gene in OTR-expressing 

interneurons, or administration of an OTR antagonist into the mPFC) reduced the preference 

of estrus female mice to investigate a novel adult male mouse over a novel object [51] (Fig 

2C). In contrast, the preference to investigate a novel female over a novel object was not 

altered upon silencing mPFC-OTR in estrus female mice [51]. This indicates that activation 

of mPFC-OTR mediates sociosexual motivation rather than general social motivation in 

female mice. Furthermore, optogenetic stimulation of OTR-expressing interneurons in the 

mPFC increased the preference of female mice to investigate a male mouse over a novel 

object, while it didn’t alter the preference of male mice to investigate a female mouse over a 

novel object [52] (Fig 2C). This suggests a sex-specific regulation of sociosexual motivation 

by mPFC-OTR. However, social investigation was higher in male than female mice [52]. 

Thus, a ceiling effect may have prevented optogenetic mPFC-OTR activation to further 

increase social interest in male mice. An essential experiment would be to determine 
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whether sociosexual motivation could be decreased in male mice by blocking mPFC-OTR 

function. Unfortunately, this experiment has yet to be performed. If further research were to 

find that impairing mPFC-OTR function in males does not alter sociosexual motivation, then 

it would be highly interesting to investigate the sex-specific mechanisms underlying mPFC-

OTR-mediated sociosexual motivation.

In contrast to mice, OXT application to the mPFC of rats reduced anxiety-related behavior 

(as measured on the elevated plus-maze) in both sexes [53], indicating a species-specific role 

of mPFC-OTR in modulating anxiety (Fig. 2C). The OXT effects on anxiety in rats were 

restricted to the prelimbic mPFC, required OTR (not V1aR) activation, and were likely 

mediated via activation of GABAergic interneurons [54]. Furthermore, mPFC-OTR 

blockade impaired pup retrieval behavior, increased maternal aggression, and increased 

anxiety in lactating rats [55] (Fig. 2C), suggesting an extended role for mPFC-OTR in not 

only sociosexual motivation, but more broadly in reproductive behaviors (mating and 

maternal care) in female rodents. Given the possible sex differences in sociosexual 

motivation mediated by mPFC-OTR in mice [52], it would be interesting to determine 

whether the mPFC-OTR is involved in sex-specific reproductive behaviors in rats.

To summarize, we discussed that OXT application induced sex differences in the activation 

of similar brain regions in humans and rats [44–50]. Furthermore, the mPFC-OTR is 

involved in the sex-specific regulation of anxiety-related behavior in mice but not in rats 

[52–55]. Finally, the mPFC-OTR was shown to regulate sociosexual motivation in female 

mice [51]. It is yet unclear to what extent these sex-specific effects mediated by the OXT 

system occurred due to sex differences in OXT neurotransmission and/or sex differences in 

downstream targets. Studies in mice have started to shed light on such potential mechanisms 

by showing sex differences in gene expression of mPFC-OTR interneurons and sex 

differences in the strength of inhibition by mPFC-OTR interneurons on specific subsets of 

pyramidal mPFC neurons [52], which both may enable the sex-specific regulation of anxiety 

by mPFC-OTR.

4. Sex differences in behavior mediated by AVP and OXT: Basis for sex 

differences in social and emotional disorders? (Fig. 3)

The above-discussed studies in humans and rodents illustrate that the integration of sex as a 

variable provides unique and essential insights into the different ways AVP and OXT can 

regulate behavior, which, in turn, may have relevance for human health and disease. 

Specifically, the sex-specific regulation of behavior by AVP and OXT systems suggests that 

perturbations of these systems will have different consequences for males versus females. In 

support, several studies have shown sex-specific changes in AVP and OXT systems in 

response to various environmental challenges, especially when they occur in early life [56–

59]. Moreover, AVP and OXT have been implicated in the pathophysiology and treatment of 

several social and emotional disorders [60, 61] and these disorders often show a strong sex 

bias in prevalence and treatment responses [62, 63]. Accordingly, if one sex is more 

vulnerable, then it follows that the other sex must be more resilient to the development of 

these disorders. Therefore, comparing the roles of AVP/OXT systems in males versus 
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females may provide important insights into the mechanisms that mediate sex-specific 

vulnerability and resilience to social and emotional disorders in which AVP and/or OXT 

play a role (Fig. 3). Finally, the above-discussed studies have shown that the sex-specific 

regulation of social and anxiety-related behaviors by the AVP system is evident during early 

development [27, 28]. This may have relevance for understanding sex-biased social and 

emotional disorders that have an early onset, such as autism spectrum disorder. In closing, 

neuroscientists have only just begun to uncover the sex-specific involvement of the AVP and 

OXT systems in behavior and brain functions. These findings have reassured the importance 

of including both sexes in basic and preclinical research. Further research into the 

mechanisms and conditions by which the AVP and OXT systems regulate behavior 

differently in males compared to females is necessary in providing a more complete 

understanding of the various ways in which the brain regulates behavior which, in turn, will 

provide insights into the sex-biases observed in social and emotional disorders.
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Highlights

• AVP regulates social recognition, social play, and anxiety in sex-specific ways 

in juvenile rats

• OXT induces sex-specific activation of the amygdala, nucleus accumbens, and 

insular in humans and rats

• OXT in the prefrontal cortex regulates anxiety in sex-specific ways in mice 

but not rats

• OXT in the prefrontal cortex modulates sociosexual motivation in female 

mice

• AVP/OXT may provide insights into sex-specific vulnerability and resilience 

to social/emotional disorders
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Figure 1. Sex differences in the vasopressin (AVP) system in the rat brain and sex-specific 
regulation of behavior by the lateral septum (LS) AVP system in rats
(A) Sex differences are found in the AVP pathway from bed nucleus of the stria terminalis 

(BNST) and medial amygdala (MeA) to the lateral septum (LS): 1. Adult male rats have 

more AVP-immunoreactive (AVP-ir) cells in the posterior BNST than adult female rats, 

while there are fewer cells and no sex difference in juvenile rats [adapted from 16]. 2. Adult 

male rats have more AVP-immunoreactive (AVP-ir) cells in the posterodorsal MeA than 

adult female rats, while there are fewer cells and no sex difference in juvenile rats [adapted 

from 16]. 3. In the ventral caudal part of the LS, adult and juvenile male rats show denser 

AVP-ir fibers than females, and adults show denser AVP-ir fibers than juveniles [adapted 

from 16]; Photomicrographs (scale bar = 100 μm) depict AVP-ir fibers in the ventral caudal 

part of the LS of a juvenile and adult male and female rat [adapted from 16]. 4. In the 

dorsolateral LS, juvenile female rats have denser AVP V1a receptor (V1aR) binding than 

juvenile male rats, and adults show denser V1aR binding than juveniles [adapted from 17]; 

Autoradiographs show dense V1aR binding in the dorsolateral LS, which includes the dorsal 

part of the LS (LSd) and the lateral portion of the intermediate part of the LS (LSi) [adapted 

from 17]. (B) Pharmacological studies in adult rats demonstrate that, despite sex differences 

Bredewold and Veenema Page 13

Curr Opin Neurobiol. Author manuscript; available in PMC 2019 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



in the LS-AVP system, V1aR antagonist impairs and exogenous AVP improves social 

recognition in both male [17, 19, 20, 22, 23] and female [17] rats. The role of the LS-AVP 

system is more complicated in juvenile rats: the LS-AVP system regulates social play (V1aR 

antagonist, exogenous AVP) [27, 28] and social recognition (exogenous AVP) [17] in sex-

specific ways. It should be noted that the same dose of the V1aR antagonist 

d(CH2)5[Tyr(Me)2]AVP (10 ng/0.5 μl) and the same dose of AVP (200 pg/0.5μl) were used 

in [27, 28], suggesting age differences in the role of the LS-AVP system regulating social 

recognition. Social recognition is reflected by the ability to discriminate between a novel and 

a familiar same-sex 3-week-old stimulus rat; Social preference is reflected by the preference 

to investigate a novel conspecific over a novel object; Social novelty preference is reflected 

by the preference to investigate a novel conspecific over a cage mate. The role of the LS-

AVP system in anxiety-related behavior as determined on the elevated plus-maze (EPM) 

reveals for the most part anxiogenic effects of LS-AVP in adult and juvenile male rats. It 

should be noted that an increase in anxiety was seen after chronic V1aR antagonist 

application in the LS [32], while a decrease in anxiety was seen after a single V1aR 

antagonist application in the LS [31]. (C) The LS has many projections to telencephalon, 

diencephalon and mesencephalon, with the most notable output to the ventral tegmental area 

(VTA), nucleus accumbens (NAc), periaqueductal grey (PAG), dorsal raphe nucleus (DRN), 

hypothalamus (HYP), amygdala (AMY), and thalamus (THA) [12, 35]. It is possible that 

sex differences in the behavioral effects of LS-AVP manipulations can be, in part, attributed 

to sex differences in the recruitment of specific LS outputs to mediate behavior. These can 

include LS-induced changes in mesolimbic reward systems (through e.g., VTA and Nac), 

neuroendocrine and autonomic projections (through e.g., HYP, PAG, and indirectly via 

AMY), alterations in monoamine functioning (serotonin through DRN connection and 

norepinephrine through LC connection, not shown). aca, anterior part of the anterior 

commissure; cc, corpus collosum; Cpu, caudate putamen; EPM, elevated plus-maze; F, 

female; FFA, fiber fractional area; LSd, dorsal part of the lateral septum; LSi, intermediate 

part of the lateral septum; LSv, ventral part of the lateral septum; M, male; *p < 0.05.

Bredewold and Veenema Page 14

Curr Opin Neurobiol. Author manuscript; available in PMC 2019 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Sex differences in the oxytocin (OXT) system in the rat brain and sex-specific effects on 
brain activation and behavior by the OXT system
(A) Analysis of the rat OXT system reveals sex differences in some, but not all OXT 

parameters: 1. No sex differences are found in OXT mRNA expression in the paraventricular 

nucleus (PVN) and supraoptic nucleus (SON) of the hypothalamus in adult rats [adapted 

from 41]. The autoradiogram depicts OXT mRNA expression (black) in the left PVN and 

left SON in a 16-μm coronal brain section of an adult male rat [adapted from 41]. 2. No sex 

differences are found in OXT-immunoreactive (OXT-ir) fiber density (expressed as fiber 

fractional area or FFA) in the bed nucleus of the stria terminalis (BNST) of juvenile and 

adult rats [adapted from 16]. Photomicrographs depict OXT-ir fibers in the BNST of a male 

and female adult rat [adapted from 16]; Scale bar indicates 100 μm. 3. Juvenile male rats 

have more Fos-positive OXT-ir neurons in the SON than females [38]; Fos is an immediate 

early gene used as marker for neuronal activation. 4. Adult male rats show higher 

extracellular OXT release (calculated as percentage of baseline OXT release) in the posterior 

BNST compared to females during both trials of the social discrimination tests in which the 

rats were exposed to an unfamiliar sex-matched juvenile rat during trial 1 (T1) and the same 

previously encountered unfamiliar juvenile rat (now familiar) along with a second unfamiliar 

sex-matched juvenile rat during trial 2 (T2) [adapted from 39]. 5. Juvenile and adult male 
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rats show denser OXT receptor binding in the posterior BNST compared to females [adapted 

from 18]. Autoradiograms show representative OXT receptor binding in the posterior BNST 

of an adult male and adult female rat [adapted from 18]. (B) Intranasal application of OXT 

in humans and intracerebroventricular administration of OXT in rats induce sex-specific 

blood-oxygen-level dependent (BOLD) activation of the amygdala, nucleus accumbens, and 

insula [44–50]. In the human studies, men and women were exposed to fearful and/or 

threatening images or scenes (Fear/threat) or were exposed to an interactive social game (the 

Prisoner’s Dilemma Game) to examine cooperative interactions (Cooperation). Images 

depict coronal sections of the human brain (source: https://msu.edu/user/brains/brains/

human/) and rat brain [source: 64]. Colors in the coronal brain section depict the amygdala 

(blue), nucleus accumbens (green), and insula (red). (C) Studies in mice show that the OXT 

receptor (OTR) in the medial prefrontal cortex (mPFC) regulates anxiety-related behavior 

and sociosexual motivation in sex-specific ways [51, 52]. In contrast, the mPFC-OTR in rats 

regulates anxiety-related behavior similiary in males and females [53]. Moreover, the mPFC-

OTR is involved in maternal care (pup retrieval), maternal aggression, and anxiety in 

lactating rats [55]. (D) Studies in mice have shown that in vitro optogenetic stimulation of 

OTR-expressing interneurons induces a stronger inhibitory postsynaptic current (IPSC) in 

layer 2/3 pyramidal neurons (important for intra-mPFC connectivity) in males compared to 

females and a stronger IPSC in layer 5 pyramidal neurons (important for output to 

subcortical regions) in females compared to males [52]. * p<0.05 versus females.
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Figure 3. Unraveling the neuronal mechanisms that makes one sex vulnerable and the other sex 
resilient may help to improve treatment options for social and emotional disorders
AVP and OXT regulate social behaviors in sex-specific ways, suggesting that perturbations 

of AVP/OXT systems have different behavioral consequences for males compared to 

females and could cause one sex to be more vulnerable and the other sex to be more resilient 

to the development of a specific social or emotional disorder. Studying the mechanisms 

underlying the sex-specific behavioral effects of AVP and OXT systems will not only 

provide a more complete understanding of the function of the brain for behavior, but also has 

the potential to provide insights into sex-specific vulnerability and resilience to these 

neuropsychiatric disorders. PTSD, posttraumatic disorder; BPD, borderline personality 

disorder.
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