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Whether there are ecological limits to species diversification is a hotly debated topic. Molecular phylogenies show slowdowns in

lineage accumulation, suggesting that speciation rates decline with increasing diversity. A maximum-likelihood (ML) method to

detect diversity-dependent (DD) diversification from phylogenetic branching times exists, but it assumes that diversity-dependence

is a global phenomenon and therefore ignores that the underlying species interactions are mostly local, and not all species in the

phylogeny co-occur locally. Here, we explore whether this ML method based on the nonspatial diversity-dependence model can

detect local diversity-dependence, by applying it to phylogenies, simulated with a spatial stochastic model of local DD speciation,

extinction, and dispersal between two local communities. We find that type I errors (falsely detecting diversity-dependence) are

low, and the power to detect diversity-dependence is high when dispersal rates are not too low. Interestingly, when dispersal is high

the power to detect diversity-dependence is even higher than in the nonspatial model. Moreover, estimates of intrinsic speciation

rate, extinction rate, and ecological limit strongly depend on dispersal rate. We conclude that the nonspatial DD approach can be

used to detect diversity-dependence in clades of species that live in not too disconnected areas, but parameter estimates must be

interpreted cautiously.
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Understanding the potential ecological limits to species diversifi-

cation remains a hotly debated topic (Harmon and Harrison 2015;

Rabosky and Hurlbert 2015; Kozak and Wiens 2016). The rising

availability of molecular data to create phylogenies has moti-

vated the development of a variety of methods to interpret lineage

diversification and better understand its mechanisms. Such meth-

ods include the lineages-through-time (LTT) plot—a semiloga-

rithmic plot that tracks the number of species that have descen-

dants at the present through time. LTT plots indicate that species

accumulation slows through evolutionary time (Moen and Mor-

lon 2014). This decreasing rate of diversification has often been

interpreted as a sign of diversity-dependence (Pybus and Har-

vey 2000; Weir 2006; Phillimore and Price 2008; Rabosky and

Lovette 2008a, 2008b), resulting in the absence of a correlation

between the crown age of phylogenies and current-day diver-

sity. Nevertheless, other explanations also exist including time-

dependent speciation and/or extinction rates, or the protracted

nature of speciation (Etienne and Rosindell 2012; Moen and

Morlon 2014).

To infer the presence of diversity-dependent (DD) diversifi-

cation from molecular phylogenies containing only extant taxa,

the standard procedure is to compare the fit of a DD model

(Valentine 1973; Sepkoski 1978) to a model with no diversity-

dependence, which is commonly known as the constant-rates

(CR) birth–death model (Raup et al. 1973). DD models as-

sume that evolutionary radiations are facilitated by ecological

opportunity (Schluter 2000), and that speciation is more likely

to happen when diversity is low. Importantly, although extinct

species leave no descendants at present, they may have affected

diversification and hence also the phylogenetic patterns that are

observed at present. An algorithm to compute the likelihood

of a model based on this idea from a species-level molecular
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phylogeny of present-day species (which may be incomplete as

long as the number of species not represented in the tree is spec-

ified) was developed a few years ago (Etienne et al. 2011). This

likelihood not only allows for estimation of lineage diversifica-

tion rates but can be used in likelihood-based tests to compare

the model to other diversity-independent models. Standard tests

based on the likelihood ratio and (corrected) Akaike informa-

tion criterion have recently been reported to be inadequate for

the comparison of DD versus CR models because of violation of

some of the assumptions leading to the χ2 distribution used in

these tests, but a bootstrap likelihood ratio test is available as an

alternative (Etienne et al. 2016). In summary, we currently have

the tools to check whether and when diversity-dependence can

be detected.

However, current models used to detect DD diversification

on molecular phylogenies assume that the global species richness

of a clade determines its rate of diversification, even if the species

belonging to the clade do not interact, for example, because of dis-

junct spatial distributions. Hence, the question arises how we can

detect diversity-dependence in such occasions. The ideal solution

would be a test with a spatial model that incorporates diversity-

dependence. In 2011, Goldberg et al. constructed a spatial model,

the geographic state speciation and extinction (GeoSSE) model

(Goldberg et al. 2011), which includes biogeographic states and

allows state changes at speciation and through local extinction.

However, it is built on the mathematical framework of the binary

state speciation and extinction (BiSSE) model (Maddison et al.

2007) and thus inherits the assumption from the BiSSE model that

all the evolutionary parameters are constant or time-dependent

(Rabosky and Glor 2010), but not strictly DD. Computing the like-

lihood for a spatial diversity-dependence model remains a chal-

lenge, however, because it needs to keep track of all species, even

currently extinct ones, in all spatial locations. An alternative solu-

tion is to test whether the above-mentioned bootstrap likelihood

ratio test based on the nonspatial diversity-dependence model can

detect local diversity-dependence. In this article we explore this

option.

We extend the DD diversification model to two locations

connected by dispersal, where both speciation and dispersal are

DD. In this spatial diversity-dependence model, we incorporate

both allopatric speciation and sympatric speciation and assume

constant extinction because DD extinction seems at odds

with empirical phylogenies (Etienne et al. 2011). We simulate

phylogenetic trees following this model using various values for

its parameters, to subsequently estimate parameters using a non-

spatial DD model (Etienne et al. 2011). We employ the bootstrap

likelihood test to explore whether we can detect diversity-

dependence when data are simulated under the spatial diversity-

dependence model.

Materials & Methods
MODEL

We introduce the simplest spatial DD diversification model by

assuming two regions, denoted by 1 and 2. We call this model the

spatial model. It is an extension of the DD diversification model

of Etienne et al. (2012), which has no spatial structure, and hence

will be called the nonspatial model. Our spatial model considers

local macroevolutionary processes (sympatric speciation and lo-

cal extinction) as well as species interactions between locations

(through dispersal and allopatric speciation). Our aim is to ex-

plore whether the simpler nonspatial model can detect diversity-

dependence from simulations under the more complicated spatial

model, and whether parameters estimated using the nonspatial

model relate in an informative way to the true parameters of the

generating spatial model.

We assume that sympatric speciation rates are linear func-

tions of the number of species present on the locations. We denote

the number of species on locations 1 and 2 by n1 and n2, re-

spectively. Sympatric speciation rates λ1(n1) and λ2(n2) for both

locations are defined as follows:

λ1(n1) = max

(
0,λ1,0 − (λ1,0 − μ)

n1

K1

)
(1)

λ2(n2) = max

(
0,λ2,0 − (λ2,0 − μ)

n2

K2

)
. (2)

Here, λ1,0 and λ2,0 are the intrinsic speciation rates of the two

locations; these are the rates when diversity is 0. Furthermore, K1

and K2 can be interpreted as the carrying capacities for the two

locations. We can rewrite these expressions as

λ1(n1) = max

(
0,λ1,0

(
1 − n1

K ′
1

))
(3)

λ2(n2) = max

(
0,λ2,0

(
1 − n2

K ′
2

))
, (4)

where we have defined

K ′
i = λi,0 Ki/(λi,0 − μ). (5)

The parameter K ′
i can be interpreted as the maximum number

of niches that the species in the clade can occupy (Etienne et al.

2011), and hence it is an ecological limit to diversity.

Dispersal between the two regions is also assumed to be DD:

M1→2(n2) = max

(
0, M0

(
1 − n2

K ′
2

))
(6)

M2→1(n1) = max

(
0, M0

(
1 − n1

K ′
1

))
, (7)
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where M0 is the intrinsic dispersal rate when diversity is 0 in the

receiving region, and the notation a → b stands for dispersal from

location a to location b. Equations 6 and 7 show that dispersal

rates are dependent on the diversity of the location species are

dispersing to. Diversity-dependence is often based on a niche-

filling argument: as diversity increases, it is increasingly harder

for a new species to enter the community and find its own niche

to establish in the community. Entering the community can oc-

cur either through speciation or through immigration. Hence, the

rate of sympatric speciation and of dispersal both depend on the

diversity in the location that the new species enters.

The consequence of dispersal is that some species inhabit

both regions at the same time; we will refer to these as “widespread

species.” In contrast, we will call species residing on a single lo-

cation “endemic species.” In our model we incorporate allopatric

speciation, that is, the split of a species that is present on both

locations into two species, each present on one location. The al-

lopatric speciation rate is assumed to be negatively related to the

intrinsic dispersal rate

λ12 = λ12,0

M0
, (8)

where λ12,0 is the allopatric speciation rate when the dispersal

rate equals unity. Equation (8) shows that as species dispersal

between locations increases, allopatric speciation becomes less

likely. Finally, we consider local extinction rates to be constant

because empirical phylogenies suggest they do not increase with

diversity, and we consider them equal for the two locations μ1,n =
μ2,n = μ for simplicity.

When the widespread species goes extinct on one location,

it becomes an endemic species. We call this evolutionary process

“range contraction.” For widespread species, complete extinction

can only occur by two consecutive local extinction events with-

out species dispersal between these events, that is, contraction

followed by local extinction. Thus we do not allow global ex-

tinction, that is, immediate complete extinction for widespread

species that is in line with the GeoSSE model (Goldberg et al.

2011).

Theoretically, it is possible to compute the likelihood of our

model given a phylogeny using the hidden Markov approach of

Etienne et al. (2012). However, because we have to consider all

the possible combinations of endemic and widespread species

richness (i.e. (a, b, c) with a endemic species on location A, b

endemic species on location B, and c widespread species), not

only for the lineages in the phylogeny, but also for now-extinct

species, the state space of the model is huge leading to severe

computational and numerical problems. Hence, our aim here is

to explore whether the computationally manageable nonspatial

model (Etienne et al. 2011) can be used for inferring diversity

dependence from phylogenies simulated under the spatial model.

SIMULATION

We simulated trees starting with two ancestral species, one in

each region. We used the Gillespie algorithm (Gillespie 1976) to

calculate the waiting time between two evolutionary events; this

time is exponentially distributed with the sum of all rates as pa-

rameter. The probability of each event occurring is proportional

to its rate relative to the sum of rates. A speciation event produces

a new species, whereas an extinction event eliminates one exist-

ing species. Species dispersal and contraction do not change the

number of species but alter the character of species, switching

between endemic and widespread. The simulation is performed

for a given amount of time (the crown age) and conditional on

survival of the crown lineages (i.e., the simulation is restarted if

one or both become extinct to guarantee that both ancestors have

descendants at present) after which the phylogenetic tree of the

extant species is constructed from the history of events. Here we

show a series of trees (see Figs. 1 and S1 and S2 for trees under

various scenarios to be discussed next) to demonstrate how trees

are shaped under different parameter combinations.

We simulated the phylogenies under a variety of parameter

values. To explore how the ecological limit to diversity affects the

detection of the DD signal, we designed three spatial scenarios

differing in ecological limits: two scenarios with identical limits

on each location (Scenario 1: K ′ = 20, Scenario 2: K ′ = 40),

and one scenario with different ecological limits (Scenario 3:

K ′
1 = 20, K ′

2 = 40). For comparison with the nonspatial model,

we additionally simulated two nonspatial scenarios differing in

ecological limit (Scenario 4: K ′ = 20 and Scenario 5: K ′ = 40).

We assumed a crown age of 15 time units, which can be interpreted

as 15 million years. We fixed the values for the intrinsic speciation

rates:

λ1,0 = λ2,0 = 0.8, λ12,0 = 0.2.

We looked at the same set of extinction rates as in (Etienne et al.

2011, 2016): 0,0.1,0.2,0.4. Finally, we studied the behavior of

the model and the inference under a gradient of intrinsic disper-

sal rates: M0 = 0, 0.05, 0.1, 0.15, 0.3, 0.5, 1, 5, 1000. The case

M0 = 0 corresponds to a birth–death process occurring on two

independent locations. As M0 increases, the model tends toward

the nonspatial model (with one important difference, see “Re-

sults”) and species at the tips become increasingly widespread

species. In all, we simulated 36 parameter sets for each scenario.

For each parameter set, we generated 100 phylogenetic trees.

INFERENCE

We applied a bootstrap likelihood ratio test (Gudicha et al. 2016;

Etienne et al. 2016; Tekle et al. 2016) to the simulated data to

determine the power of the nonspatial model to detect diversity-

dependence in the spatial model. The χ2 likelihood ratio test
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Endemic species Endemic species Widespread species

μ = 0 μ = 0.1 μ = 0.2 μ = 0.4

M0 = 1000

M0 = 5

M0 = 1

M0 = 0.15

M0 = 0

Figure 1. Examples of phylogenetic trees produced in Scenario 1. Because the trees for migration rates between 0 and 1 are very

similar, we only display five values of extinction (µ = 0, 0.15, 1, 5, 1000) . The branches are colored by the location of species. Sympatric

speciation and allopatric speciation are also distinguishable by the color of the nodes and the daughter species.

cannot be used due to the mismatch between type I error rate and

the significance level used as reported in Etienne et al. (2016).

The bootstrap likelihood ratio test (Etienne et al. 2016) proceeds

as follows:

(1) Collect an empirical dataset of phylogenetic branching times.

One can also simulate data under another model for a specific

parameter set (which was the case for our study in which we

simulated under the spatial model).

EVOLUTION JUNE 2018 1 2 9 7
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(2) Estimate from these data the maximum-likelihood (ML) pa-

rameters under the CR model and the DD model (the nonspatial

model). Then calculate the likelihood ratio that is denoted by

L R0.

(3) Generate a bootstrap sample by simulating XC R datasets under

the CR model using the parameter estimates obtained for the

CR model in step 2.

(4) For each of these XC R simulated CR datasets, estimate the

parameters under the CR model as well as the DD model and

compute the likelihood ratio (L Ri for dataset i).

(5) Compare the observed L R0 with the distribution of L Ri -

values (i = 1..XC R) from the bootstrap simulations. Count

the number of simulations with L R larger than L R0 and de-

note the number by RC R . The p-value of the test is defined as

(RC R + 1)/(XC R + 1).

(6) A significance level α (e.g., 0.05) is set to accept or reject the

CR model by comparison with the P-value. Record the L R

associated with this α, L Rα.

(7) To assess the power of the test, simulate X DD times under the

DD model with the ML parameters estimated under the DD

model in step 2.

(8) For these X DD datasets simulated in step 7, estimate param-

eters under both CR and DD model and compute the L R for

each dataset.

(9) The larger the number of the likelihood ratios exceeding L Rα,

the clearer is the signal of diversity-dependence. Denote the

number of the X DD simulations in which the L R is larger than

L Rα by RDD . Define the power of the test by RDD/(X DD + 1).

We performed this method for all the parameter sets. We

thus have 36 parameter sets of 100 simulations each with 2000

bootstrap samples, totaling 7.2 million simulations and param-

eter estimations for each scenario. Given that each parameter

estimation takes a few minutes, the total computation time for 5

scenarios was 50–100 million minutes, roughly, 100–200 years

on a single computer. Hence, we performed these calculations on

a high-performance computing cluster, but even then computa-

tional time was substantial. We therefore provide all simulations

and data as supplementary material.

Results
MODEL BEHAVIOR

To study how the model behaves under different dispersal and

extinction rates, we plotted the species-through-time (STT) plots

that include both extant and extinct species under different K ′

settings (see Fig. 2 for Scenario 1 and Figs. S7–S9 for other sce-

narios). The STT plots show how the total number of species

changes due to macroevolutionary events. The STT plots that we

show here are for a single location because in our model the

diversity-dependence is defined as local dynamics. We also plot-

ted the nonspatial STT plots tracking the total number of species

in the system, that is, for both locations together as supplemen-

tary results (see Figs. S10–S12). As expected, from the local STT

plots we observed a positive correlation between species dispersal

and species richness and a negative correlation between extinc-

tion and species richness. However, in the nonspatial STT plots

dispersal seems to have a complex influence on the global species

richness. Although the effect of dispersal is small, it gets larger

with increasing extinction rate. We will discuss it later in the sec-

tion of parameter estimation. To test the model behavior under

high species dispersal rate, we additionally explored an extreme

case in which dispersal rate is extremely large (M0 = 1000). In

this case, all parameter settings varying only in extinction rates

lead a similar increasing pattern in species richness and the di-

versity in both locations reach the ecological limit rapidly (e.g.,

K ′ = 20 for Scenario 1, see Figs. 2 and S7–S9 for other scenar-

ios). This phenomenon is similar to a pure birth process due to the

extremely high dispersal rate. The biological explanation is that

once an endemic species is produced, it spreads out to the other

location immediately, which makes it almost impossible to go

globally extinct. Therefore, the system is filled with widespread

species and a few endemic species at the equilibrium level, which

is identical to the ecological limit.

Furthermore, we studied LTT plots for extant species for

both locations together, which allows comparison with LTT plots

from the nonspatial model. We observed a pattern of an early

burst and the pull of the present (Nee et al. 1994; Kubo and

Iwasa 1995; Fig. 3 for Scenario 1 and Figs. S13–S14 for other

scenarios), except for the highest extinction rate (μ = 0.4) and

lowest dispersal rate (M0 = 0), for which the shape of the LTT

plot approaches a straight line.

DETECTING DIVERSITY-DEPENDENCE

Diversity-dependence can be detected with high power except

when extinction is high (larger than 0.4) and species dispersal is

low (smaller than 1) at the significance level α = 0.05 (see Fig. 5

for Scenario 1 and Figs. S5 and S6 for other scenarios). This

suggests that extinction tends to erase the signature of diversity-

dependence, while species dispersal strengthens the signal. When

relating this to the STT and LTT plots, we observe that weak

signals of diversity-dependence are accompanied with a low rate

of species accumulation. In contrast, strong evidence for diversity-

dependence often occurs for low extinction and high dispersal.

Both these situations lead to intense species interactions. We also

observe substantial early bursts for LTT plots whenever diversity-

dependence is detected.

To explore whether the DD signal would be stronger in the

scenario that has a higher ecological limit to diversity, we stud-

ied the power of the test for different scenarios with different

1 2 9 8 EVOLUTION JUNE 2018



BRIEF COMMUNICATION

μ = 0 μ = 0.1 μ = 0.2 μ = 0.4

N
um

be
r o

f l
in

ea
ge

s
2
5

10
20
40
80

2
5

10
20
40
80

2
5

10
20
40
80

2
5

10
20
40
80

2
5

10
20
40
80

2
5

10
20
40
80

2
5

10
20
40
80

2
5

10
20
40
80

2
5

10
20
40
80

−15 −10 −5 0−15 −10 −5 0−15 −10 −5 0−15 −10 −5 0

M0 = 0

M0 = 0.05

M0 = 0.1

M0 = 0.15

M0 = 0.3

M0 = 0.5

M0 = 1

M0 = 5

M0 = 1000

Time

Figure 2. Species-through-time (STT) plots that include extinct species for one location across all parameter settings of Scenario 1. Lower

extinction accelerates species accumulation. Species dispersal increases the number of species at equilibrium. The dashed line at value

20 shows the input value of K ′. The black line denotes the median STT plot, the gray shading represents the quantiles (minimum, 2.5th

percentile, 25th percentile, 75th percentile, 97.5th percentiles, maximum).

ecological limits. Figure 4 shows power to detect diversity-

dependence under different parameter combinations of three spa-

tial scenarios. We observe that systems with a higher ecological

limit to diversity show a broader range of high detection power

in parameter space. In particular, the scenario with distinct lim-

its (K ′
1 = 20, K ′

2 = 40) on two locations shows an intermedi-

ate strength of diversity-dependence between two scenarios with

identical limits, stronger than Scenario 1 (K ′ = 20) and weaker

than Scenario 2 (K ′ = 40).

We next explored whether the partition of the community into

two locations would weaken the strength of the DD signal. The

nonspatial Scenarios 4 and 5 have the same value of ecological
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Figure 3. Lineages-through-time (LTT) plots that only include extant species and their ancestors across 100 simulations for each explored

parameter combination of Scenario 1. The black line denotes the median STT plot, the gray shading represents the quantiles (minimum,

2.5th percentile, 25th percentile, 75th percentile, 97.5th percentiles, maximum).

limits as the spatial Scenarios 1 and 2, respectively, but constrain

the species diversification to only one single location. The spatial

structure indeed affects the diversity-dependence detection but in

a complex manner (see Figs. 5 and S5 and S6 for other spatial

scenarios). When the locations are more isolated, that is, they have

little species interaction between them, the nonspatial scenarios

show stronger diversity-dependence than the spatial scenarios.

When dispersal rate increases, this pattern is reversed, because

species dispersal reduces extinction thus leading to a high rate of

species accumulation.

PARAMETER ESTIMATE ACCURACY AND PRECISION

The performance of parameter estimation depends strongly on the

extinction and dispersal rates. Accurate parameter estimations are

obtained for low extinction and dispersal. The median estimates

for the ecological limit are around the sum of the local limits

(Figs. 6 and S3 and S4 for other scenarios) when both extinction

and dispersal rates are low. But bias in parameter estimates

increases for larger dispersal and extinction rates. This is due to

the fact that both dispersal and extinction strongly control the

species richness of the system. Extinction has a negative effect on

1 3 0 0 EVOLUTION JUNE 2018
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Figure 4. Power of the diversity-dependence detection for three spatial scenarios. The dark blue color denotes high power of diversity-

dependence, light blue denotes low power.

diversity so we find that our estimate of the ecological limit

decreases with increasing extinction. The influence of dispersal

on species richness is more complex. On the one hand, dispersal

promotes the conversion of endemic species to widespread

species thereby decreasing species richness. On the other hand,

dispersal reduces extinction and thereby increases species

richness. We observe this phenomenon in our simulation study,

especially for high extinction. In all scenarios, the estimates

of the ecological limit increase at first but then drop with the

dispersal rate increases. This also explains the pattern that the

equilibrium of species richness in the nonspatial STT plots first

increases and then declines with increasing dispersal rate.

Speciation and extinction estimates are robust when both

extinction and dispersal rates are low. However, when species

dispersal increases the speciation estimates are biased upward

while extinction is biased downward. Interestingly, the speciation

estimates are biased up to a value equal to the sum of the local

speciation rates of the two locations. The extinction estimates

are biased down to zero, which agrees with the explanation that

dispersal reduces extinction.

We also tested the influence of diversity on parameter esti-

mation. Through comparing among scenarios with varying eco-

logical limits, we found that higher species diversity leads to less

variation in estimates. This is also true for simulations with the

nonspatial model.

Discussion
DD diversification has long been recognized as a potential

explanation for slowdowns in species accumulation (Weir

2006; Phillimore and Price 2008; Rabosky and Lovette 2008a;

Rundell and Price 2009; Rabosky 2013). Methods to estimate

model parameters from phylogenetic trees exist (Etienne et al.

2011; Etienne and Haegeman 2012) but have not yet fully

addressed the question: if diversity-dependence is operating,

can it be reliably detected? Etienne et al. (2016) looked at

simulations with the nonspatial DD model and studied when the

presence or absence of diversity-dependence can be detected

using the likelihood derived for this nonspatial model. In this

article, we take a further step to explore if this nonspatial

likelihood approach is still applicable when data are generated

by a spatial model in which diversity-dependence occurs at a

local scale. We developed a spatial DD diversification model

that incorporates species interactions between two locations.

Our spatial DD diversification model advances existing phy-

logenetic tools by integrating spatial dynamics and lineage

diversification processes that depend on species richness.

While models combining biogeography and macroevolutionary

diversification are already available (Nepokroeff et al. 2003;

Sanmartı́n et al. 2008; Goldberg et al. 2011), our model is the

first to incorporate diversity-dependence.

We demonstrated that the method based on the non-

spatial diversity-dependence model can detect local diversity-

dependence simulated under our spatial model, except when

dispersal is rare or extinction is high. Extinction weakens and dis-

persal strengthens the signal of diversity-dependence. Variability

between simulations decreases somewhat with lower extinction,

but more so with higher dispersal rate. Hence, stochasticity due to

extinctions is less prominent than stochasticity due to asynchrony

between locations. When extinction is high, diversity-dependence

detection is difficult, but this is also true when the data are gen-

erated by the nonspatial model itself (Etienne et al. 2016), so this

is not caused by the difference between generating and inference

model per se. The STT plots suggest that this is because diver-

sity is relatively low during a large part of the macroevolutionary

history, and hence diversity-dependence was nearly absent. Pa-

rameter estimates were biased and more so for higher extinction

rates. Again, this bias caused by extinction was also found when
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Figure 5. P -values and powers of the test of spatial Scenario 1 and nonspatial Scenarios 4 and 5: as the dispersal rate increases, the

P -value declines approaching 0 while the power of the test rises up to 1. The signal of diversity-dependence tends to be detected with

high dispersal and low extinction. Especially, in the case of the pure birth process, all the scenarios show such a strong signal that the

distribution bars of P -values and powers are compressed to thick black lines. When extinction rate is 0.4, diversity-dependence is not

detected statistically until dispersal rate reaches 1. In the box plots, thick solid lines, boxes and whiskers denote the percentiles of 50, 75,

and 95%, respectively.

generating and inference model were both nonspatial (Etienne

et al. 2016).

Our results reveal the influence of geographic structure and

species diversity on the diversity-dependence detection. Compar-

ing statistical power among the three spatial scenarios, we found

that the strength of the diversity-dependence detection depends

mostly on the species diversity of the community regardless of

the specific limits of the locations. This higher power is simply

because with larger K ′ trees are larger and thus contain more in-

formation. However, it does not mean that diversity-dependence

itself is stronger. Diversity-dependence only really affects diver-

sification when the diversity is close to equilibrium. If the eco-

logical limit is too large to allow equilibrium to be reached within

the given time (the crown age), diversity-dependence will have

little effect on diversification. Hence, we expect that diversity-

dependence detection becomes more difficult when we increase

K ′ to such values that equilibrium is still far away with the given

time. Our comparison between spatial scenarios and nonspatial

scenarios demonstrated the negative effect of spatial partition-

ing on the power of diversity-dependence detection but only

when dispersal rate is low. This is mainly because we do not

allow global extinction for widespread species, and thus increas-

ing dispersal rate reduces extinction thereby promoting species

richness. If we allowed for global extinction, we would expect

the power of detecting diversity-dependence in spatial scenar-

ios with large dispersal rate to approach the power in nonspa-

tial scenarios. But new issues will then arise: how do we define

global extinction, and how can we distinguish between global

extinction and local extinction? This will depend on the type of

extinction. For example, extinction caused by natural disasters

may be operating mostly on a local scale and are therefore in-

dependent between regions. By contrast, extinction caused by an

infectious disease is likely correlated with dispersal, and hence

global and local extinction are linked. Because such complex

mechanisms are not easy to incorporate into the relatively simple

model that we consider, we assumed a model with uncorrelated
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Figure 6. Maximum-likelihood estimates for the ecological limit parameter K ′, speciation rate and extinction rate for all the parameter

settings of spatial Scenario 1 versus nonspatial Scenarios 4 and 5. The dashed lines indicate the values used in the simulations. In the box

plots, thick solid lines, boxes, and whiskers denote the 50, 75, and 95% percentiles, respectively.

and constant extinction (but see Ezard et al. 2011; Sanmartı́n and

Meseguer 2016).

Our two-location model is the simplest case of a multiple-

location model. A more general model for any number of locations

is required to explore if local diversity-dependence can reliably be

detected. To perform the same kind of analysis with such a model

as we did here for two locations, we face two main challenges.

First, our simulations use the Gillespie algorithm to determine

the waiting time between two evolutionary events; because more

locations imply more events, the sum of all event rates will become

extremely large and hence the waiting time will become extremely

short resulting in simulations taking a very long time. Second, the

spatial arrangement of multiple locations affects dispersal patterns

and thereby the results of our model. Hence, we would have to

explore many spatial arrangements of the locations. Based on our

results for two locations, we expect that diversity-dependence will

be detected well when dispersal is not too low and extinction is

not too high, where the power of the detection method will depend

subtly on the spatial arrangement.

Even with many locations, the model remains only a coarse

approximation to reality. We do not model species interactions

mechanistically, but simply define a phenomenological carrying

capacity, but, importantly, on a local scale. The literature on com-

petition models is huge, so the question is where one would start to

explore the robustness of our approach to varying the underlying

competition mechanisms. We suggest to move toward mecha-

nistic models in steps that are small in terms of model structure,

but large in their conceptual difference. For example, one could

incorporate an influence of phylogenetic relatedness on inter-

action strength. Phylogenetic structure emerges from our model

itself, so this relatively small change in model structure implies

an interesting feedback mechanism that is a major conceptual

change. Another example would be to include trait evolution and

trait-dependent competition. These mechanisms, however, still
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imply a local carrying capacity, and we therefore expect that our

results will hold up in more complex, but more realistic models.

Our results provide context for the empirical scientists who

want to apply the nonspatial inference tool to her or his phylogeny.

We have shown that even if the species in the phylogeny are

spatially distributed, the nonspatial tool is able to tell whether

ecology (diversity) is limiting diversification. Only when a high

extinction combined with low dispersal is expected, then some

caution is needed. Furthermore, the parameters inferred using the

nonspatial tool bear some relationship to the real processes, but

should not be interpreted too literally.
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