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Summary The dog is a valuable model species for the genetic analysis of complex traits, and the use of

genotype imputation in dogs will be an important tool for future studies. It is of particular

interest to analyse the effect of factors like single nucleotide polymorphism (SNP) density of

genotyping arrays and relatedness between dogs on imputation accuracy due to the

acknowledged genetic and pedigree structure of dog breeds. In this study, we simulated

different genotyping strategies based on data from 1179 Labrador Retriever dogs. The study

involved 5826 SNPs on chromosome 1 representing the high density (HighD) array; the

low-density (LowD) array was simulated by masking different proportions of SNPs on the

HighD array. The correlations between true and imputed genotypes for a realistic masking

level of 87.5% ranged from 0.92 to 0.97, depending on the scenario used. A correlation of

0.92 was found for a likely scenario (10% of dogs genotyped using HighD, 87.5% of HighD

SNPs masked in the LowD array), which indicates that genotype imputation in Labrador

Retrievers can be a valuable tool to reduce experimental costs while increasing sample size.

Furthermore, we show that genotype imputation can be performed successfully even

without pedigree information and with low relatedness between dogs in the reference and

validation sets. Based on these results, the impact of genotype imputation was evaluated in

a genome-wide association analysis and genomic prediction in Labrador Retrievers.

Keywords genome-wide association studies, genomic prediction, imputation accuracy,

low-density array design, pedigree information, reference set

Introduction

The genetic, physiological and behavioural features of

domestic dogs make them a valuable animal model for the

genetic analysis of complex traits in genome-wide associa-

tion studies (GWAS) (van Steenbeek et al. 2016) that are

also of interest in humans (Boyko 2011; Machiela &

Chanock 2014; Hayward et al. 2016). Furthermore, the

continuing popularity of pet dogs and concern for their

welfare demand advanced breeding strategies like the use of

genomic selection to improve animal health, maintain breed

standards and control inbreeding. Establishing genomic

selection in pedigreed dogs would generally require

genome-wide genotyping of large numbers of pet dogs.

However, costs of genotyping can be a limiting factor as has

been shown in studies of livestock species (Anderson et al.

2008; Huang et al. 2012; Gualdr�on Duarte et al. 2013).

Huang et al. (2012), for example, estimated costs for

genotyping using a combination of low-density (LowD)

and high-density (HighD) SNP genotyping arrays as rang-

ing from $20.58 to $34.84 per individual compared to

$120 per individual when genotyping all individuals at

HighD. A LowD array is not currently available in dogs, but

the financial benefit of using LowD arrays instead of HighD

arrays is likely to be similar to that for other species.

Using LowD SNP genotyping arrays however leads to a

loss of genotype information in comparison to a HighD

array. To increase the cost effectiveness of genotyping,

genotype imputation can be used to infer higher density

genotypes, as has been shown in livestock species (Gualdr�on

Duarte et al. 2013; Carvalheiro et al. 2014; Boison et al.

2015; Ventura et al. 2016). Several approaches are avail-

able for imputing genotypes; they can be categorized

primarily as methods using linkage disequilibrium (LD)

alone [e.g. IMPUTE2 (Howie et al. 2009), BEAGLE (Browning &

Browning 2009) and MACH (Li et al. 2010)] and methods

using both LD and pedigree information [e.g. FINDHAP
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(VanRaden et al. 2011), ALPHAIMPUTE (Antol�ın et al. 2017) or

FIMPUTE (Sargolzaei et al. 2014)]. Imputation methods

exploiting LD are based on the assumption that individuals

sharing alleles at one marker will also tend to share alleles

at linked SNPs. Thus, missing alleles of individuals geno-

typed with a LowD array can be imputed by identifying

shared haplotypes within the reference population geno-

typed with a HighD array (Li et al. 2009; Marchini & Howie

2010). Pedigree-based methods make inferences between

closely related individuals to identify shared haplotypes

(Antol�ın et al. 2017) and thus provide an alternative source

of information when the genotyped SNPs are not sufficiently

informative.

In the only previous study of imputation in dogs,

Friedenberg & Meurs (2016) analysed the imputation of

genotypes from a SNP array to whole-genome sequence

(WGS) data in dogs, focusing on the reference panel

composition. However, the canine HighD array remains

expensive and thus limits the potential sample size of

genomic studies. Therefore, it is valuable to also assess the

accuracy of genotype imputation from a hypothetical LowD

array to the HighD array with the aim of developing a cost-

effective genotyping strategy for GWAS and genomic

selection. Considering the acknowledged genetic structure

and inbreeding within dog breeds (Lindblad-Toh et al.

2005) and the fact that, compared to livestock species,

pedigree information and genotyped ancestors are less

available in dogs, it is of interest to evaluate the influences

of key factors on imputation accuracy. These factors include

the influence of marker density of the LowD array, the

relationships between dogs in the study and the use of

pedigree information.

The aim of this study was to analyse the effects of genetic

and pedigree characteristics on the accuracy of genotype

imputation in Labrador Retrievers using simulated scenar-

ios based on a real dataset. Furthermore, this study provides

first insights on how the application of imputed genotypes

would influence GWAS and genomic prediction in dogs.

Methods

Dataset

The dataset of genotyped dogs for this analysis comprised

1179 Kennel Club registered (purebred) Labrador Retrievers

from the UK and has previously been used for studies of

complex traits (e.g. S�anchez-Molano et al. 2014a,b). The

pedigree structure for these dogs had the following features:

the genotyped dogs were offspring of 725 sires (1.63 dogs

per sire) and 1069 dams (1.10 dogs per dam), four of these

sires and 22 of these dams were genotyped and included in

the dataset (such that 32 dogs had at least one parent

genotyped), 547 dogs were half-siblings and 131 dogs were

full-siblings. The remaining dogs (n = 501) shared no close

relatives (e.g. parents or siblings) within the dataset. The

genomic relationship between dogs in the validation and in

the reference sets was calculated for every scenario using

GEMMA (Zhou & Stephens 2012). For every dog in the

validation set, the average and the maximum genomic

relatedness with the dogs in the reference set were

calculated (Table S1). It was previously demonstrated that

the population of Labrador Retrievers used in this study

reflects the overall genomic diversity of the UK population

(Wiener et al. 2017).

Genotyping and quality control

The dogs were genotyped with the Illumina Canine High

Density BeadChip, which comprises 173 662 SNPs. Filter-

ing and quality control are described by S�anchez-Molano

et al. (2014a). Briefly, SNPs with a call rate less than 98.4%,

reproducibility (GenTrain score) less than 0.6, low or

confounded signal characterised by AB R mean (mean

normalized intensity of the AB cluster) less than 0.3, a

minor allele frequency (MAF) less than 0.01 and deviations

from Hardy-Weinberg equilibrium were discarded. To

reduce computational time, we carried out genotype impu-

tation for different scenarios for 5826 filtered SNPs on

chromosome 1 (CFA1), which is the largest autosome and

has the highest gene content (122.68 Mb, 2078 genes;

NCBI Annotation Release 105). To analyse the application

of genotype imputation in GWAS and genomic prediction,

106 282 filtered markers for the whole genome were used.

Genotype imputation

FIMPUTE (version 2.2) software (Sargolzaei et al. 2014) was

used to perform the imputation of missing genotypes. FIMPUTE

first imputes missing genotypes by using pedigree informa-

tion. If no pedigree information is provided or the imputed

genotypes are not inferred, population information is used

to construct haplotypes by an overlapping sliding window

approach. This approach takes relatedness information into

account by adjusting the window sizes from long to short

segments to capture distant relationships. The constructed

haplotypes are then used for inferring the missing geno-

types. The default settings of FIMPUTE (shrink factor of 0.150

and overlap of 0.650 of the sliding windows) were used for

this study. Imputation accuracy was calculated using the

most likely genotypes estimated by FIMPUTE for all missing

genotypes.

Scenarios for imputation

To analyse the effects of genetic and pedigree characteristics

on the performance of genotype imputation, scenarios were

designed based on four criteria and are summarised in

Table 1. The scenarios were based on four approaches:

1 Size of the reference population: 10% (‘Ref10’), 50%

(‘Ref50’) and 90% (‘Ref90’) of the dogs were randomly
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assigned to the reference population, and the remainder

was assigned to the validation population.

2 Use of pedigree information in imputation: Scenario 1was

repeated without pedigree information (‘Ref10NoPed’,

‘Ref50NoPed’ and ‘Ref90NoPed’ respectively).

3 Relatedness between the reference and validation pop-

ulation: Only full-sibs and paternal half-sibs were used

(n = 660). One offspring of each sire was randomly

selected for the reference population, resulting in 206

dogs in the reference population and 454 dogs in the

validation population (scenario ‘REL’). As a control, the

same number of dogs as in REL was randomly sampled

from the full dataset without considering pedigree

information (‘REL-C’).

4 SNP density of the LowD array: Ref10 was repeated for

varied SNP densities on the LowD array. LowD arrays

were simulated masking 50%, 75%, 87.5%, 93.8%,

96.9% and 98.4% SNPs as missing, corresponding to

consecutively halving the number of non-masked SNPs.

For all scenarios, the reference population was genotyped

with the HighD array comprising the 5826 SNPs on CFA1.

For the first three scenarios (1, 2 and 3) the SNPs from the

LowD array were masked as missing at 87.5% of the HighD

array’s SNPs. This was done by coding all SNPs as missing

except every eighth SNP, when ordered by their position on

CFA1. For these scenarios, the number of markers on the

LowD array was similar to the number of markers on CFA1

on the 22K array that was previously available for dogs.

The same masking procedure was applied for approach 4

but for different masking densities (e.g. coding every second

SNP as missing for 50% masking density and coding all

SNPs as missing except every fourth for 75% masking

density). Statistics describing the distribution of marker

density on the HighD and LowD arrays are provided in

Table S2.

For validation of imputation, 10 replicates were performed

for all scenarios, except for REL, for which the dogs were

randomly reassigned to either the reference or validation

population and imputation was repeated. Each dog was used

in the validation population a different number of times for the

particular scenarios, for example, once out of 10 replicates for

Ref90, five times for Ref50 and nine times for Ref90.

Further, an analysis of variance was run for the measures

of imputation accuracy to test for the effect of relatedness by

comparing the REL to the REL-C scenarios.

Measures of imputation accuracy

The percentage of correctly imputed genotypes (‘% correct’)

and the correlation between true and imputed genotypes

(‘corr’) were computed to evaluate the success of imputa-

tion. The % correct was the proportion of correctly imputed

genotypes out of all imputed SNPs. The corr measure was

calculated using the R package SICURRACY version 0.3.2

(Edwards 2017) as the Pearson correlation between the

true genotypes and the imputed discrete genotypes (0, 1 or

2). True and imputed genotypes were standardised (by

subtracting the mean allele frequency divided by the

standard deviation) to correct for MAF, as proposed by

Bouwman et al. (2014), with allele frequencies estimated

from the true genotypes of the validation population. The %

correct and corr were computed for each dog (animal-wise

accuracy) and then averaged across all dogs in a scenario.

To evaluate the effect of MAF on imputation accuracy, corr

was also calculated for each SNP (SNP-wise accuracy

averaged across all dogs in a scenario). The SNPswere binned

according to their MAF, as estimated in the HighD dataset,

into the followingMAF bins: [0, 0.025), [0.025, 0.05), [0.05,

0.075), [0.075, 0.1), [0.1, 0.2), [0.2, 0.3), [0.3, 0.4) and [0.4,

0.5), as described by Hickey et al. (2012). The measure %

correct has been shown to overestimate imputation accuracy

for SNPs with lowMAF (Hickey et al. 2012; Calus et al. 2014)

and therefore was not provided for this analysis.

Application of imputed genotypes

A GWAS for the hip-dysplasia-related trait Norberg Angle

right (NA_right), as described by S�anchez-Molano et al.

(2014a), and the genomic prediction of the same trait, as

described by S�anchez-Molano et al. (2015), were repeated

using imputed genotypes for the whole genome. Therefore,

87.5% of the 106 282 markers were masked in 90% of the

dogs to simulate the Ref10 scenario. The GWAS was carried

out using a linear mixed model in GEMMA (Zhou & Stephens

2012) (for more information see S�anchez-Molano et al.

2014a). To validate differences between the GWAS using

real genotypes (GWASreal) and the GWAS using imputed

genotypes (GWASimputed), the correlation between the

P-values and the effect size of every marker was calculated.

To estimate the breeding valuewith imputed genotypes of the

Table 1 Overview of scenarios.

Name nRef/nVal SNPsmasked (%) Pedigree

Reference

set

Ref90 1062/117 87.5 Yes Random

Ref90NoPed 1062/117 87.5 No Random

Ref50 590/589 87.5 Yes Random

Ref50NoPed 590/589 87.5 No Random

Ref10 117/1062 50–98.41 Yes Random

Ref10NoPed 117/1062 87.5 NO Random

REL 206/454 87.5 Yes Systematic

REL-C 206/454 87.5 Yes Random

nRef, number of dogs in the reference set; nVal, number of dogs in the

validation set; SNPsmasked, proportion of SNPs in the high-density array

that were masked to generate the low-density array; random, dogs

randomly grouped into reference and validation sets; systematic, dogs

in the validation set with at least one half-sibling in the reference set.
1For Ref10, masking of SNPs was step-wise increased by 50% to

generate multiple low-density arrays with 50%, 75%, 87.5%, 93.8%,

96.9% and 98.4% masked SNPs.
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same trait, the GBLUP method was applied using ACTA (Gray

et al. 2012) (for further information see S�anchez-Molano

et al. 2015). Here, to validate differences between estimating

breeding values (EBVs) with true and imputed genotypes,

measures of the accuracy of genomic prediction (correlation

of the predicted EBV with phenotype averaged over five

validation sets, r; predictive abilities of EBVs, PA) were

calculated for the imputed dataset and compared to that for

the real dataset.

Results

Size of the reference population

The scenario with the largest reference population (Ref90)

resulted in the highest percentage of correctly imputed

genotypes (% correct = 98.6%) and highest correlation

between true and imputed genotypes (corr = 0.95) when

compared to scenarios with smaller reference populations

(Ref50 and Ref10). Reducing the size of the reference

population reduced % correct to 98.4% and 97.4% for

Ref50 and Ref10 respectively (Table 2). The corr statistic

was reduced similarly to 0.94 and 0.92 for Ref50 and Ref10

respectively (Table 2).

Pedigree information

When imputation was carried out without pedigree infor-

mation, both % correct and corr were reduced by a very

small amount for all scenarios (Table 2). For the scenario

Ref10 for example, correct % was reduced from 97.43% to

97.37% and corr was reduced from 0.916 to 0.915.

Relatedness between reference and imputation
population

Using the reference set of full- and half-sibs (REL) increased %

correct by 1% and increased corr from 0.926 to 0.972

compared to the control (REL-C) (Table 2, Table S3). The

difference between imputation accuracy (% correct and corr)

for REL and the 10 REL-C replicates was significant

(P < 0.001). Moreover, corr (0.97) and % correct (98.8%)

were higher for the REL scenario than for all other scenarios

analysed in this study.

SNP density of the LowD array

Decreasing the SNP density of the LowD array decreased

both % correct and corr of the imputed genotypes (Fig. 1a,

b). In the figure, boxplots of each dog’s % correct (Fig. 1a)

and corr (Fig. 1b) values under different SNP densities of the

LowD array are depicted. The highest LowD array density

(50%) yielded the highest % correct (98.9%) and corr

(0.94), and this decreased to 84.1% and 0.65% respectively

for the 98.4% density. The reduction of imputation accu-

racy was more severe when the proportion of masked SNPs

was 93.5% or above.

The corr statistic increased with increasing MAF for all

LowD array densities (Fig. 2). In the figure, the average corr

when calculated for SNPs in different MAF bins are

depicted. The greatest increase was observed between

MAF bins [0, 0.025) and [0.025, 0.05).

Application of imputed genotypes

Genome-wide imputation accuracy for the Ref10 scenario with

87.5%maskedgenotypeswas0.93 � 0.04.The correlationofP-

valuesbetween theGWASreal andGWASimputed forNA_rightwas

0.824. The effect sizes for the SNPs of the GWASreal and

GWASimputed for this trait also showed high concordances

(r = 0.741) with a few outliers (Fig. 3). All outlier SNPs had a

verylowMAF(between0.01and0.015).TheaccuracyoftheEBV

for NA_right was r = 0.147 and PA = 0.273 compared to

r = 0.145 and PA = 0.272 for the real data reported by

S�anchez-Molano et al. (2015).

Discussion

In this study, we analysed different parameters with potential

influence on the accuracy of genotype imputation in

Labrador Retriever dogs. Results showed high imputation

accuracies, even for high levels of masking on the LowD

array; for example, when masking 87.5% of the SNPs on the

HighD array, the percentage of correctly imputed genotypes

Table 2 Animal-wise imputation accuracy by scenario.

Scenario

Proportion of correctly

imputed genotypes

(% correct)1

Correlation between true

and imputed genotypes

(corr)1

Average SD Average SD

Ref902 98.626 1.677 0.948 0.078

REf90NoPed2 98.553 1.674 0.946 0.078

Ref502 98.390 1.819 0.939 0.088

Ref50NoPed2 98.315 1.817 0.938 0.088

Ref102 97.432 2.359 0.916 0.095

Ref10NoPed2 97.373 2.351 0.915 0.095

REL3 98.792 1.213 0.972 0.035

REL-C3 97.668 2.265 0.926 0.086

1Statistics were calculated across all 10 replicates for the particular

scenarios except for REL, for which there were no replicates.
2Dogs were randomly grouped into the reference and the validation

sets, and 87.5% of genotypes were masked in the high-density array to

generate the low-density array; Ref90, 90% of dogs in the reference

set; Ref50, 50% of dogs in the reference set; Ref10, 10% of dogs in the

reference set; NoPed, indicates that the imputation of the particular

variant was run without pedigree information.
3Dogs in the reference set (31%) had at least one half-sibling in the

validation set (REL; 69%). The REL-C controls had the same number of

dogs as REL, but dogs were selected at random for the reference and

the validation sets. In REL and REL-C, 87.5% of genotypes were also

masked in the high-density array to generate the low-density array.
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(% correct) ranged from 97.4% (Ref10NoPed) to 98.8%

(REL) and the correlation between true and imputed geno-

types (corr) ranged from 0.92 (Ref10NoPed) to 0.97 (REL).

Pedigree information and relatedness

We expected imputation with pedigree to be more accurate

considering that FIMPUTE is a program that exploits pedi-

gree information (Sargolzaei et al. 2014). Accordingly,

imputation without pedigree (Ref10NoPed, Ref50NoPed

and Ref90NoPed) resulted in lower imputation accuracies

across scenarios in contrast to their counterparts with

pedigree (Ref10, Ref50 and Ref90); however, the difference

was very small for all scenarios. Similar observations have

been made in cattle, for which accuracies calculated for

imputations without pedigree information were at least as

good as for imputations with pedigree (Boison et al. 2015).

In datasets with a large number of unrelated animals, as

Figure 1 Animal-wise imputation accuracy vs. SNP density of the low-density array. Boxplots (maximum, 75% quartile, median, 25% quartile,

minimum) show animal-wise accuracy measurements: (a) the correctly imputed genotypes (% correct) and (b) correlation between true genotypes

and imputed genotypes (corr) vs. different levels of masking of the high-density array to generate the low-density array (for which 10% of dogs were

randomly grouped into the reference set and the remaining 90% into the validation set, scenario Ref10).

Figure 2 Marker-wise correlation between true genotypes and imputed genotypes vs. the minor allele frequency of masked SNPs for different

proportions of masked SNPs in the low-density array (for which 10% of dogs were randomly grouped into the reference set and the remaining 90%

into the validation set, scenario Ref10).
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was the case in the current study, the information provided

by using pedigree information is presumably very limited.

This finding is particularly interesting for imputation in

dogs: information about relatedness may be missing in non-

registered pets, but those dogs might still be useful for a

genetic study because they express interesting phenotypes

or are carriers of a rare disease.

In another scenario of this study (REL), relatedness

between dogs in the reference and validation populations

was maximised. Genotype imputation in the REL scenario

performed better than in all other scenarios. This is consis-

tent with previous studies in livestock, in which it has been

shown that imputation accuracy is positively correlated with

the number of genotyped ancestors (Howie et al. 2009;

Mulder et al. 2012; Pausch et al. 2013; Bouwman et al.

2014; Boison et al. 2015; Khankhanian et al. 2015).

Regarding relatedness, there is less family structure in dogs

(even in pedigreed dogs) than is found in livestock animals; in

the case of this real dataset, for which pet dogs living in

normal households were recruited to analyse a specific

disease, about half of the dogs had no genotyped close

relatives. However, the differences in imputation accuracy

between REL and all other scenarios were small, especially

considering the % correct findings. These findings indicate

that dogs should not be excluded from imputation due to

poor kinship with the overall dataset, but it is worth selecting

dogs for the reference vs. the validation set according to their

relatedness to maximise imputation success.

Design of the LowD array

Imputation accuracy decreased with decreasing SNP den-

sity on the LowD array, which is consistent with studies

across livestock and crop species (Hickey et al. 2012; van

Binsbergen et al. 2014; Boison et al. 2015). In general, the

decrease of imputation accuracy with decreasing SNP

density could be attributed to the greater difficulty of

phasing genotypes into haplotypes in the validation popu-

lation, which is less precise the fewer SNPs are available.

Although a high extent of LD has been observed within

various dog breeds (Lindblad-Toh et al. 2005) and this

population (Wiener et al. 2017), the difficulty of phasing

with a small number of SNPs also appears to be the case for

dogs.

The decrease in imputation accuracy in this study was

steeper once the percentage of masked SNPs exceeded

93.8%, similar to the results from an imputation experiment

in maize with the same proportions of masked SNPs (Hickey

et al. 2012). However, it is apparently not the proportion of

SNPs that need to be imputed that is important but rather

the actual SNP density of the LowD array for the chromo-

some. For example Friedenberg & Meurs (2016) reported

very high correlations in dogs between true and imputed

genotypes (~0.95) for a genome-wide percentage of missing

SNPs similar to our chromosome-wide 98.4% masking

level, whereas in our study, corr reached only 0.65. What

presumably led to the more accurate imputation in their

study is that their LowD array had superior SNP coverage

per chromosome (several thousands) in contrast to the

sparse coverage of only 91 genotyped SNPs on CFA1 in the

LowD array in our study after masking 98.4% of SNPs. A

higher coverage of the chromosome by the LowD array

improves the reconstruction of haplotypes, because in

individuals that are not closely related, the shared haplo-

type stretches are much shorter than in related individuals

(Li et al. 2009). Accordingly, increasing the SNP density on

the LowD array (and thus chromosome coverage) yielded

higher imputation accuracies in the Ref10 scenario (Fig. 1).

Results from the current study suggest that if a LowD array

was designed for dogs in order to carry out genotype

imputation, the number of genotyped SNPs per chromosome

should not fall too low. Based on our results for CFA1, ~728
SNPs (when 87.5% genotypes are masked) could be seen as a

compromise between accurate imputation and a small num-

berofSNPs to reducegenotypingcosts.Thiswouldcorrespond

to a genome-wide ~22K array if our results are representative

of the remaining chromosomes. Further work would need to

be done on optimal spacing of markers on the LowD array, as

some regions (e.g. the major histocompatibility complex

region) might require denser coverage than others.

Imputation accuracy also depended on the allelic diver-

sity. Regardless of the SNP density on the LowD array in the

Ref10 scenario, imputation accuracy was the lowest for

SNPs with extremely low MAF (<0.025) and improved as

MAF increased. It is assumed that a low MAF hinders the

construction of haplotypes, as only a small number of

animals are carriers of the minor allele (Heidaritabar et al.

2015). However, it is worth considering markers with a low

Figure 3 Effect sizes of SNPs for the trait Norberg Angle right

calculated by a GWAS using the true genotypes (GWASreal) and

imputed genotypes (GWASimputed).
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MAF when designing a LowD array for dogs, because when

87.5% or fewer SNPs were masked, masked SNPs with low

MAF (down to 0.05) still showed reasonable accuracies.

Furthermore, it should be considered that although

Labrador Retrievers were among the 28 breeds used to

develop the 170K array, other breeds may be less polymor-

phic for these SNPs and thus imputation accuracy might be

somewhat lower. If the analysis of rare variants is of interest

in a genetic study, genotype imputation from HighD arrays

to WGS data might be useful, as shown by Southam et al.

(2017).

Size of the reference population

In addition to the design of the LowD array, the number of

individuals genotyped at LowD and HighD is important.

Decreasing the size of the reference population from 1062

dogs (Ref90) to 117 dogs (Ref10) decreased imputation

accuracy somewhat, in accordance with previous studies in

livestock (Khatkar et al. 2012; Garc�ıa-Ruiz et al. 2015;

Heidaritabar et al. 2015; Moghaddar et al. 2015). This can

be explained by a decreased number of haplotypes in

the reference population that overlap with the haplotypes in

the validation population. However, the scenario with the

smallest reference population (Ref10) with 87.5% masked

SNPs still yielded reasonable accuracies.

Application of imputed genotypes

We showed that the GWASimputed for the hip-dysplasia-

related trait NA_right gave results similar to GWASreal,

considering both P-values for the association and the SNP

effects. Poor concordance was shown by SNPs with a very

low MAF. This observation further underpins the impor-

tance of a sufficient allele frequency for correct imputation,

which further limits the use of imputed genotypes from

LowD arrays in the fine mapping of complex traits (reviewed

by Dreger et al. 2016). Instead, accurate genotype imputa-

tion from HighD arrays to WGS data, as demonstrated by

Friedenberg & Meurs (2016), could be the key to cost-

effective fine mapping of complex traits. However, a

commercial canine LowD array may be justified to provide

a cost-effective way of identifying genomic regions using a

GWAS (with subsequent fine mapping) and implementing

genomic selection, given the very high concordance

between EBVs for NA_right using imputed genotypes and

using real genotypes (r = 0.147 and PA = 0.273 vs.

r = 0.145 and PA = 0.272 in S�anchez-Molano et al. 2015).

Implications

The goal of implementing genotype imputation in genetic

studies is to apply an appropriate trade-off between geno-

typing costs and imputation accuracy. The aim of this study

was to analyse a real-case scenario for genotype imputation

in dogs and determine factors that have an influence on

imputation accuracy. Although we only simulated the

LowD arrays, the results provide valuable information for

the design of real LowD arrays and the development of an

imputation strategy for canine genetic studies.

Assuming a scenario with the commonly used SNP

genotyping array for the reference population (HighD

array = 170K SNPs) and an ~22K array as a LowD array

for the imputed population, reasonable imputation accura-

cies can be reached in dogs even without pedigree informa-

tion and the weaker relatedness compared to livestock

animals. In accordance, dogs with no relatives or unknown

pedigree should be kept in the analysis because they may

provide other valuable information. Nevertheless, our results

and previous findings in livestock animals suggest that

genotype imputation can be improved by informed assign-

ment of dogs into the reference and validation populations.

However, although genotype imputation from LowD

arrays to HighD arrays is an appropriate approach for the

identification of regions of interest in GWAS and genomic

selection, genotype imputation from HighD arrays to WGS

data should be considered for the dissection of complex

traits and the analysis of rare variants.

Acknowledgements

The authors want to thank all colleagues at the Roslin

Institute involved in sampling of and data preparation for

the Labrador Retriever population. Funding was provided

by the Dogs Trust (UK), BBSRC Institute Strategic Pro-

gramme Grants (to the Roslin Institute) and RESAS,

Scottish Government (to SRUC).

Conflict of interest

The authors declare that they have no conflict of interest.

References

Anderson C.A., Pettersson F.H., Barrett J.C., Zhuang J.J., Ragoussis J.,

Cardon L.R. & Morris A.P. (2008) Evaluating the effects of

imputation on the power, coverage, and cost efficiency of genome-

wideSNPplatforms.American Journal ofHumanGenetics83, 112–9.

Antol�ın R., Nettelblad C., Gorjanc G., Money D. & Hickey J.M.

(2017) A hybrid method for the imputation of genomic data in

livestock populations. Genetics Selection Evolution 49, 30.

van Binsbergen R., Bink M.C., Calus M.P., van Eeuwijk F.A., Hayes

B.J., Hulsegge I. & Veerkamp R.F. (2014) Accuracy of imputation

to whole-genome sequence data in Holstein Friesian cattle.

Genetics Selection Evolution 46, 41.

Boison S.A., Santos D.J.A., Utsunomiya A.H.T., Carvalheiro R.,

Neves H.H.R., O’Brien A.M.P., Garcia J.F., S€olkner J. & da Silva

M.V.G.B. (2015) Strategies for single nucleotide polymorphism

(SNP) genotyping to enhance genotype imputation in Gyr (Bos

indicus) dairy cattle: comparison of commercially available SNP

chips. Journal of Dairy Science 98, 4969–89.

© 2018 The Authors. Animal Genetics published by John Wiley & Sons Ltd
on behalf of Stichting International Foundation for Animal Genetics, 49, 303–311

Genotype imputation in dogs 309



Bouwman A.C., Hickey J.M., Calus M.P. & Veerkamp R.F. (2014)

Imputation of non-genotyped individuals based on genotyped

relatives: assessing the imputation accuracy of a real case

scenario in dairy cattle. Genetics Selection Evolution 46, 6.

Boyko A.R. (2011) The domestic dog: man’s best friend in the

genomic era. Genome Biology 12, 216.

Browning B.L. & Browning S.R. (2009) A unified approach to

genotype imputation and haplotype-phase inference for large

data sets of trios and unrelated individuals. American Journal of

Human Genetics 84, 210–23.

Calus M.P.L., Bouwman A.C., Hickey J.M., Veerkamp R.F. & Mulder

H.A. (2014) Evaluation of measures of correctness of genotype

imputation in the context of genomic prediction: a review of

livestock applications. Animal 8, 1743–53.

Carvalheiro R., Boison S.A., Neves H.H.R. et al. (2014) Accuracy of

genotype imputation inNelorecattle.GeneticsSelectionEvolution46,69.

Dreger D.L., Rimbault M., Davis B.W., Bhatnagar A., Parker H.G. &

Ostrander E.A. (2016) Whole genome sequence, SNP chips and

pedigree structure: building demographic profiles in domestic dog

breeds to optimize genetic trait mapping. Disease Models &

Mechanisms 9, 1445–60.

Edwards S. (2017) SICCURACY: Stefan’s imputation accuracies package. R

package version 0.7.0. https://github.com/stefanedwards/Sicc

uracy.

Friedenberg S.G. & Meurs K.M. (2016) Genotype imputation in the

domestic dog. Mammalian Genome 27, 485–94.

Garc�ıa-Ruiz A., Ruiz-Lopez F.J., Wiggans G.R., Tassell C.P.V. &

Montaldo H.H. (2015) Effect of reference population size and

available ancestor genotypes on imputation of Mexican Holstein

genotypes. Journal of Dairy Science 98, 3478–84.

Gray A., Stewart I. & Tenesa A. (2012) Advanced complex trait

analysis. Bioinformatics 28, 3134–6.

Gualdr�on Duarte J.L., Bates R.O., Ernst C.W., Raney N.E., Cantet

R.J. & Steibel J.P. (2013) Genotype imputation accuracy in a F2

pig population using high density and low density SNP panels.

BMC Genetics 14, 38.

Hayward J.J., Castelhano M.G., Oliveira K.C. et al. (2016) Complex

disease and phenotype mapping in the domestic dog. Nature

Communications 7, 10460.

Heidaritabar M., Calus M.P.L., Vereijken A., Groenen M.A.M. &

Bastiaansen J.W.M. (2015) Accuracy of imputation using the

most common sires as reference population in layer chickens.

BMC Genetics 16, 101.

Hickey J.M.,Crossa J., BabuR.&de losCamposG. (2012)Factorsaffecting

the accuracy of genotype imputation in populations fromseveralmaize

breeding programs.Crop Science52, 654.

Howie B.N., Donnelly P. & Marchini J. (2009) A flexible

and accurate genotype imputation method for the next gener-

ation of genome-wide association studies. PLoS Genetics 5,

e1000529.

HuangY.,Hickey J.M.,ClevelandM.A.&MalteccaC. (2012)Assessment

of alternative genotyping strategies tomaximize imputation accuracy

atminimal cost.Genetics Selection Evolution 44, 25.

Khankhanian P., Din L., Caillier S.J., Gourraud P.-A. & Baranzini

S.E. (2015) SNP imputation bias reduces effect size determina-

tion. Statistical Genetics and Methodology 6, 30.

Khatkar M.S., Moser G., Hayes B.J. & Raadsma H.W. (2012)

Strategies and utility of imputed SNP genotypes for genomic

analysis in dairy cattle. BMC Genomics 13, 538.

Li Y., Willer C., Sanna S. & Abecasis G. (2009) Genotype imputation.

Annual Review of Genomics and Human Genetics 10, 387–406.

Li Y., Willer C.J., Ding J., Scheet P. & Abecasis G.R. (2010) MACH:

using sequence and genotype data to estimate haplotypes and

unobserved genotypes. Genetic Epidemiology 34, 816–34.

Lindblad-Toh K., Wade C.M., Mikkelsen T.S. et al. (2005) Genome

sequence, comparative analysis and haplotype structure of the

domestic dog. Nature 438, 803–19.

Machiela M.J. & Chanock S.J. (2014) GWAS is going to the dogs.

Genome Biology 15, 105.

Marchini J. & Howie B. (2010) Genotype imputation for genome-

wide association studies. Nature Reviews Genetics 11, 499–511.

Moghaddar N., Gore K.P., Daetwyler H.D., Hayes B.J. & van der

Werf J.H.J. (2015) Accuracy of genotype imputation based on

random and selected reference sets in purebred and crossbred

sheep populations and its effect on accuracy of genomic

prediction. Genetics Selection Evolution 47, 97.

Mulder H.A., Calus M.P.L., Druet T. & Schrooten C. (2012)

Imputation of genotypes with low-density chips and its effect

on reliability of direct genomic values in Dutch Holstein cattle.

Journal of Dairy Science 95, 876–89.

Pausch H., Aigner B., Emmerling R., Edel C., G€otz K.-U. & Fries R.

(2013) Imputation of high-density genotypes in the Fleckvieh

cattle population. Genetics Selection Evolution 45, 3.

S�anchez-Molano E., Woolliams J.A., Pong-Wong R., Clements D.N.,

Blott S.C. & Wiener P. (2014a) Quantitative trait loci mapping for

canine hip dysplasia and its related traits in UK Labrador

Retrievers. BMC Genomics 15, 833.

S�anchez-Molano E., Woolliams J.A., Blott S.C. & Wiener P. (2014b)

Assessing the impact of genomic selection against hip dysplasia

in the Labrador Retriever dog. Journal of Animal Breeding and

Genetics 131, 134–45.

Sánchez-Molano, E., Pong-Wong, R., Clements, D.N., Blott, S.C.,

Wiener, P. & Woolliams, J.A. (2015) Genomic prediction of

traits related to canine hip dysplasia, Frontiers in Genetics 6,

1–9.

Sargolzaei M., Chesnais J.P. & Schenkel F.S. (2014) A new

approach for efficient genotype imputation using information

from relatives. BMC Genomics 15, 478.

Southam L., Gilly A., S€uveges D. et al. (2017) Whole genome

sequencing and imputation in isolated populations identify

genetic associations with medically-relevant complex traits.

Nature Communications 8, 15606.

van Steenbeek F.G., Hyt€onen M.K., Leegwater P.A.J. & Lohi H.

(2016) The canine era: the rise of a biomedical model. Animal

Genetics 47, 519–27.

VanRaden P.M., O’Connell J.R., Wiggans G.R. & Weigel K.A.

(2011) Genomic evaluations with many more genotypes. Genet-

ics Selection Evolution 43, 10.

Ventura R.V., Miller S.P., Dodds K.G., Auvray B., Lee M., Bixley M.,

Clarke S.M. & McEwan J.C. (2016) Assessing accuracy of

imputation using different SNP panel densities in a multi-breed

sheep population. Genetics Selection Evolution 48, 71.

Wiener P., S�anchez-Molano E., Clements D., Woolliams J., Haskell

M. & Blott S. (2017) Genomic data illuminates demography,

genetic structure and selection of a popular dog breed. BMC

Genomics 18, 609.

Zhou X. & Stephens M. (2012) Genome-wide efficient mixed model

analysis for association studies. Nature Genetics 44, 821–4.

© 2018 The Authors. Animal Genetics published by John Wiley & Sons Ltd
on behalf of Stichting International Foundation for Animal Genetics, 49, 303–311

Friedrich et al.310

https://github.com/stefanedwards/Siccuracy
https://github.com/stefanedwards/Siccuracy


Supporting information

Additional supplemental material may be found online in

the supporting information section at the end of the article.

Table S1 Average genomic relationship between dogs in the

reference and validation set for every scenario. For every

dog in the validation set, the average and the maximum

genomic relatedness (GRmean; GRmax) with the dogs in the

reference set were calculated.

Table S2 Marker spacing (in kbp) on the HighD and LowD

arrays for CFA1.

Table S3 Animal-wise imputation accuracy (% correct

and corr) for the 10 replicates of the control scenario

REL-C.
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