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Abstract

Chemical ionization plays an important role in many aspects of pharmacokinetic (PK) processes 

such as protein binding, tissue partitioning, and apparent volume of distribution at steady state 

(Vdss). Here, estimates of ionization equilibrium constants (i.e., pKa) were analyzed for 8,132 

pharmaceuticals and 24,281 other compounds to which humans might be exposed in the 

environment. Results revealed broad differences in the ionization of pharmaceutical chemicals and 

chemicals with either near-field (in the home) or far-field sources. The utility of these high-

throughput ionization predictions was evaluated via a case-study of predicted PK Vdss for 22 

compounds monitored in the blood and serum of the U.S. population by the U.S. Centers for 

Disease Control and Prevention National Health and Nutrition Examination Survey (NHANES). 

The chemical distribution ratio between water and tissue was estimated using predicted ionization 

states characterized by pKa. Probability distributions corresponding to ionizable atom types (IATs) 

were then used to analyze the sensitivity of predicted Vdss on predicted pKa using Monte Carlo 

methods. 8 of the 22 compounds were predicted to be ionizable. For 5 of the 8 the predictions 

based upon ionization are significantly different from what would be predicted for a neutral 

compound. For all but one (foramsulfuron), the probability distribution of predicted Vdss 
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generated by IAT sensitivity analysis spans both the neutral prediction and the prediction using 

ionization. As new data sets of chemical-specific information on metabolism and excretion for 

hundreds of chemicals are being made available (e.g., Wetmore et al., 2015), high-throughput 

methods for calculating Vdss and tissue-specific PK distribution coefficients will allow the rapid 

construction of PK models to provide context for both biomonitoring data and high-throughput 

toxicity screening studies such as Tox21 and ToxCast.
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1. Introduction

Regulatory agencies worldwide are tasked with characterizing the safety of tens of 

thousands of commercial chemicals, yet only a small subset have been fully characterized 

with respect to hazard and exposure (Egeghy et al., 2012; Judson et al., 2009; USGAO, 

2009; USGAO, 2013). As thousands of new chemicals are introduced into commerce each 

year (Judson et al., 2009; USGAO, 2009; USGAO, 2013; Wilson and Schwarzman, 2009), it 

becomes much more challenging to set research priorities for determining what risk, if any, 

these chemicals in our environment pose to human and ecological populations (Thomas et 

al., 2013).

High throughput, in vitro testing programs such as Tox21 (Tice et al., 2013) and ToxCast 

(Kavlock et al., 2012) have been screening thousands of chemicals for potential bioactivity. 

However, interpretation of these data relies on nominal tested concentration unless the 

results can be extrapolated to in vivo conditions (e.g., Wetmore et al., 2015). The Centers for 

Disease Control and Prevention (CDC) National Health and Nutrition Examination Survey 

(NHANES) includes measurements of hundreds of xenobiotic chemical concentrations in 

blood and serum in the U.S. population (CDC, 2012). But, without knowing how these 

chemicals distribute within the body, blood concentrations cannot be related to potential 

concentrations in tissues that might be targets of toxic effects. Further, without knowing 

tissue distribution, neither the total body burden of the chemical nor the rate of exposure can 

be estimated.

Tissue distribution of chemicals remains an important aspect of pharmacokinetics (PK) that 

is not rapidly measured using in vitro or in vivo techniques. Tissue PK methodologies exist 

in the PK literature for the prediction of chemical distribution into specific tissues or the 

whole body (e.g., volume of distribution at steady-state or Vdss) but require specific 

information on physico-chemical behavior. In silico prediction of such chemical tissue 

distribution is heavily influenced by three key parameters: binding to tissue and plasma, 

hydrophobicity, and ionization (Peyret et al., 2010; Schmitt). Hydrophobicity (quantified by 

the octanol-water partition coefficient, logP) drives distribution of neutral compounds; 

however, a neutral compound at one pH can become ionized, for example, at a physiological 

pH. Thus, chemical ionization is key in estimating distribution (illustrated in Fig. 1). For 

predicting tissue distribution, tissues can be broadly described as consisting of components 
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with differing affinities for chemicals depending on the charged state of the organic chemical 

molecule, as shown in Fig. 1 (Peyret et al., 2010; Schmitt). The resulting ratio between the 

total concentration (ionized and un-ionized) of chemical in the tissue and the plasma is the 

distribution coefficient (logD) (Manners et al., 1988). In PK, logD is described through 

tissue-specific partition coefficients (PC) (Peyret et al., 2010; Schmitt).

At a given pH, some atoms of a compound can donate (dissociation) to or receive 

(association) protons from one or more atoms or sites within the compound (Fig. 2). 

Chemical association/dissociation changes the overall molecular charge, with the potential 

for coexistence of multiple microspecies (i.e., different charge states of the same parent 

molecule). The chemical association/dissociation equilibrium constant (pKa) characterizes 

the pH at which concentrations of protonated or deprotonated chemical microspecies 

associated with an ionizable atom or site are in equilibrium. The aim of the present work 

was to generate ionization profiles of chemicals at an atomic level using a rapid approach 

suitable for thousands of chemicals.

pKa is often reported in scientific literature as a single numerical value, sometimes 

categorized as “acid” or “base”. This is sufficient for a compound that undergoes a single 

ionization, but in many cases there are multiple ionizations, and each pKa needs to be 

characterized in the range of 0 < pH < 14, as shown in Fig. 2. This information is vital for 

PK because the overall charge and the fraction extant at a certain pH follows the Henderson-

Hasselbalch equation (Hasselbalch, 1916; Henderson, 1908), which has a different behavior 

for acidic (negative to neutral) and basic (neutral to positive) events as pH is increased. 

Therefore, ionization cannot be characterized by a scalar pKa value only, nor is it possible to 

compare predictions of quantitative structure–activity relationship models without further 

characterizing the ionization kinetics.

Understanding chemical-specific ionization properties is critical for predicting tissue 

distribution. As new data sets of chemical-specific information on metabolism and excretion 

for hundreds of chemicals are being made available (e.g., Wetmore et al., 2015), high-

throughput methods for calculating Vdss and tissue-specific PK distribution coefficients will 

allow the rapid construction of compartmental and physiologically-based PK models. PK 

distribution describes how chemicals can accumulate preferentially in certain tissues, 

producing higher concentrations in that tissue, as characterized by tissue-specific PC. Much 

PK literature has been devoted to prediction of tissue PCs (Haddad et al., 2000; Peyret et al., 

2010; Poulin and Krishnan, 1996a; Poulin and Krishnan, 1996b; Poulin and Theil, 2000; 

Rodgers et al., 2005; Rodgers and Rowland, 2006; Schmitt, 2008). These models provide the 

context for use and interpretation of both biomonitoring data (e.g., NHANES) and high-

throughput toxicity screening studies (e.g., Tox21 and ToxCast). When appropriate PC and 

metabolism/physiological information are used, dynamic simulation of physiologically 

based pharmacokinetic (PBPK) models allows prediction of chemical concentrations in 

specific tissues at different times (Caldwell et al., 2012; Mumtaz et al., 2012; Pearce et al., 

2017; Yoon et al., 2012)..

In this study, estimates of pKa were generated for 32413 compounds to which humans might 

be exposed. This included 8132 pharmaceuticals and 24281 pesticidal, industrial and 
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consumer use compounds. A high-throughput method for assessing the effects of ionization 

on compound PK, the ionizable atom type (IAT), was used. IATs are specific configurations 

of atoms within a chemical that has the propensity to protonate or deprotonate. Using IATs, 

a probability distribution of pKa values and therefore the probability of an atom to become 

ionized were estimated for 13 IATs based on predictions for all 32413 chemicals. Broad 

differences were identified in the ionization of chemicals intended for pharmaceutical use 

and chemicals with both near-field (in the home) and far-field sources. The utility of these 

high-throughput ionization predictions was evaluated by assessing the impact of chemical 

ionization on predicted Vdss for 22 NHANES chemicals using Monte Carlo sampling to 

explore the impact of uncertainty in the predictions for each IAT in each compound.

2. Materials and methods

This study uses existing ionization prediction tools (ChemAxon, SPARC, and ADMET 

Predictor) for a library of 32413 chemicals. The predictions are organized by IAT to 

characterize probability distributions for certain types of ionization events in order to 

perform sensitivity analysis of the predicted Vdss.

For clarification in this manuscript, the word “distribution” is used in three ways: 1) with 

respect to PK, the concentration of chemical in different tissues of the body (e.g., a 

lipophilic compound accumulating in adipose tissue); 2) in a related, but more chemistry-

focused sense, it is “the overall ratio of organic and aqueous phases of a compound, ionized 

and un-ionized at equilibrium” (Kwon, 2001); and 3) as statistical probability distribution, 

i.e., a mathematical function describing the relative likelihood of a given value. To 

disambiguate throughout this paper, the three distributions are designated as “PK” or 

“tissue”, “chemical”, and “probability” distributions, respectively.

2.1 Chemical Library

The U.S. Environmental Protection Agency (U.S. EPA) has identified more than 50,000 

chemicals, including many synthetic chemicals, to which humans might be significantly 

exposed (Richard and Williams, 2002). These chemicals cover a variety of use classes such 

as consumer products, food additives, and human and veterinary drugs and were collected 

from the following sources, with significant overlap:

• 43,596 chemicals with documented use, and therefore exposure potential, stored 

in the Chemical and Product Categories (CPCat) database (Dionisio et al., 2015), 

which is part of the Aggregate Computational Toxicology Repository (ACToR) 

system (Judson et al., 2008; Judson et al., 2012).

• A list of approximately 15,000 curated chemical structures for multiple 

inventories of environmental interest in the DSSTox collection of structures from 

the public DSSTox (Richard and Williams, 2002). In particular, structures for all 

of the ToxCast (Dix et al., 2007) and Tox21 (Collins et al., 2008) chemicals were 

included.

• The Canadian domestic substances list (DSL) (Environment and Climate Change 

Canada, 2016) and a list of all substances (~ 24,000 chemicals) thought to be in 
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commerce in Canada, including chemicals with potential for human or ecological 

exposure (Health Canada, 2009).

• Approximately 10,000 chemicals from the Endocrine Disruptor Screening 

Program (EDSP) Universe of Chemicals. U.S. EPA’s EDSP is required to test 

certain chemicals for endocrine-disrupting potential, in particular, through the 

estrogen receptor (Fenner-Crisp et al., 2000).

• A list of approximately 15,000 chemicals from PHYSPROP data sets with valid 

structures and after removal of duplicates (Mansouri et al., 2016; USEPA, 2015).

A KNIME structure-standardization workflow was used to process these lists of chemicals 

(Mansouri et al., 2016). To characterize any potential differences in the lists, the ACToR Use 

Categories (Dionisio et al., 2015) were used to assign chemicals to pharmaceutical, near- 

and far-field environmental chemical classes. The ACToR Use Categories were developed 

using data from federal, state, and international regulatory listings of chemicals in specific 

classes. Chemicals were assigned to specific use categories by tabulating the number of 

times a chemical fell into a category in all of the regulatory listings. A chemical was 

assigned to a category if it fell into that category three or more times. If it passed the “three-

hit” threshold for more than one category, the chemical was assigned to multiple categories.

In this study, pharmaceutical compounds were considered pharmacologically active 

substances intended for internal or external use for the treatment and prevention of disease. 

Whether the pharmaceuticals failed or succeeded to be introduced commercially was not a 

consideration. Environmental compounds were separated into those with near- and far-field 

sources (e.g., in the home vs. industrial release) (Arnot et al., 2006). Table 1 gives a general 

overview of the classification scheme for each chemical type.

2.2 pKa predictions

The Marvin pKa plug-in from ChemAxon (Cambridge, MA, USA) was selected for 

predicting pKa in this research (Szegezdi and Csizmadia, 2007; Szegezdi and Czismadia, 

2004). ChemAxon’s Marvin pKa plug-in uses only three atomic descriptors (partial charge, 

atomic polarizability, and structure-specific increments) with nonlinear relationships to 

predict the pKa microconstants, which are subsequently used to obtain the macroconstants 

(Szegezdi and Csizmadia, 2007; Szegezdi and Czismadia, 2004). The plug-in also reports 

the position in the chemical simplified molecular-input line-entry system (SMILES) string 

(or visualization interface showing the molecule itself), specifying the atom that becomes 

ionized for each pKa. Functional groups identified with ADMET Predictor (Simulations 

Plus, Buffalo, NY, USA) were used to organize types of ionizations, allowing sensitivity 

analysis (Simulations Plus, 2017).

In addition to predictions made using the ChemAxon pKa plug-in, pKa predictions from 

SPARC Performs Automated Reasoning in Chemistry (SPARC; ARChem, Danielsville, GA, 

USA) and ADMET Predictor were also compared (Supplemental Figure S1). For 

compounds that both accept and donate protons due to microconstant transitions between 

chemical microspecies, SPARC and ADMET Predictor report the ionization as a “mixed” 

pKa. This “mixed” category adds ambiguity to the predictions because it requires an 
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inference mechanism to relabel the mixed pKa predictions and thus makes the calculation of 

the Henderson-Hasselbalch equation unclear. Hence, only the ChemAxon Marvin pKa plug-

in results were used in our analysis. See the appendix for a discussion of pKa prediction 

paradigms.

2.3 Ionizable Atom Types

A two-dimensional representation of a chemical was generated using SMILES (Helson, 

2007; Weininger, 1988) to identify the specific atoms associated with the pKa value and the 

atoms’ protonation/deprotonation action. ADMET Predictor identified 82 functional groups, 

each one containing a fingerprint of the atomic configurations for which a specific atom will 

become ionized. These configurations are referred to as putative IATs. Note that IATs are 

atom-centric, where only the ionizable atom of a chemical and that atom’s local 

neighborhood were considered, not the molecule as a whole. This allowed clear labeling of 

each pKa as proton donating (acidic pKa; apKa) or accepting (basic pKa; bpKa). The 

ionizable atom and its atomic neighborhood formed a fingerprint of a specific type of 

ionization event, which will be referred to as the IAT signature.

A library of SMILES substrings was developed using the SMILES strings for compounds 

with an IAT predicted using ADMET Predictor (Simulations Plus, 2017). These SMILES 

substrings were then used to create a library of signatures for 13 commonly predicted IATs. 

These signatures identify putative ionizable sites in SMILES strings of unknown chemicals 

and further specify the maximal putative IAT the SMILES signature represented, e.g., the 

IAT routine will not identify a hydroxyl group (-OH) that is part of the larger carboxyl group 

(-COOH). The putative IATs are confirmed to be a true IAT if and only if the atom has a 

covalent bond available to accept or donate a hydrogen atom. If so, then the atom is added to 

its corresponding IAT library.

After building IAT libraries, two parameters were derived: (i) the frequency that an IAT is 

ionized in the [0, 14] pH range and (ii) the probability distribution of predicted pKa values 

associated with the IAT. IATs were assumed, by inspecting the resulting distributions, to be 

normally distributed.

2.4 Prediction of Tissue Distribution

PCs of chemical-specific tissue to free fraction in plasma (PCT:p) were predicted using the 

method of Peyret et al. (2010). Tissue specificity was based on the cellular fraction of total 

volume; the water, lipid, and protein fraction of cellular volume; and the fractions of types of 

lipid (Peyret et al., 2010). Chemical specificity was based on (i) the octanol-water PC (Pow = 

elogp) obtained from the ChemAxon pKa Plug-in and (ii) ionization scheme: neutral 

chemical model, the IAT- and ChemAxon pKa Plugin-based association/dissociation 

constants.

The tissue:plasma PCs (PCT:p) were determined from
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PCT : p =
FctPCctw + FitPCitw

FpPCpw + FePCe
, (1)

where the subscripts denote the matrices (m) cellular tissue (ct), interstitial fluid (it), 
erythrocytes (e) and plasma (p); Fm is the percent of the tissue comprised by each matrix; 

PCmw is the PC for each matrix (Peyret et al., 2010), and T is the set of tissues 

parameterized in Schmitt (2008).

The PC for each matrix m was predicted as (Peyret et al., 2010):

PCmw =
(1 + Im) · Fwm + Pow · Fnlm + Im · PCaplw · Faplm + (1 + Im) · PCprw · Fprm

(1 + Iw) , (2)

where each matrix m is comprised of the following constituents (c): water (w), neutral lipids 

(nl), acidic phospholipids (apl), and protein (pr); Fcm is the fraction of each matrix m 
comprised of each constituent c; Pow is the octanol:water partition coefficient; PCaplw is set 

to zero for interstitial fluids and plasma where it is assumed no acidic phospholipids exist, 

and otherwise is predicted as the blood:plasma ratio scaled by the erythrocyte content, since 

erythrocytes provide binding pockets that are similar to acidic phospholipids to bind basic 

compounds; and PCprw is binding by albumin and lipoproteins as characterized by unbound 

fraction in plasma (Fu). w is water, m is the matrix, nl is neutral lipids, apl is acidic 

phospholipids, and pr is protein (Peyret et al., 2010). Each variable in Eq. (2) also had an 

indicator function (not shown) to ensure that biologically implausible partitioning did not 

occur. In Figure 1, the presence of an arrow from C, N, and A to a matrix represents the 

indicator function equal to 1, lack of an arrow represents the indicator function set to 0. Im is 

the variable influenced by pKa and represents the ratio of the concentration of the chemical 

in the ionized state to the concentration in the neutral form for a given pKa –pH pair. The 

Henderson-Hasselbalch equation is utilized to calculate the Im, where

Im =

0 neutral
10pH−pKa monoprotic acids
10pKa−pH monoprotic bases

10
2pH − pKa2 − pKa1 + 10

pH−pKa1 diprotic acids

10
pKa1 + pKa2 − 2pH

+ 10
pKa1 − pH

diprotic bases
10pH−apKa + 10bpKa−pH zwitterions

⋮ ⋮

, (3)

and pH varies according to tissue as in Schmitt (2008). Note that Eq. (2) is an extension of 

the calculation of logD, which is equal to logP for neutral compounds, but incorporates 

ionization through taking the log of the sum of the concentrations of ionized and non-
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ionized compounds in octanol divided by the sum of the concentrations of ionized and non-

ionized compounds in water.

A special case of equations were used for highly lipophilic organic compounds (HLOC). In 

these cases, the logP and tissue lipid content dominated the partition coefficient calculations. 

Equations can be found in (Haddad et al., 2000; Poulin and Haddad, 2012).

With the partition coefficients in hand, the Vdss can be calculated. The Vdss (in L/kg 

bodyweight) for serum or blood reflects the aggregate tissue distribution of a chemical for 

the whole body. The calculation of the Vdss is the predicted PCs scaled by physiological 

tissue volumes:

Vdss = V plasma + ∑T ∈ TissueVTPCT : p, (4)

where VT is the percentage volume of a tissue (in kg, obtained from Schmitt (2008)]), and 

PCT:p is the PC for the tissue.

2.5 Sensitivity Analysis Using IAT Probability Distributions

The utility of high-throughput ionization predictions is evaluated by examining the 

importance of correctly determining the effect of chemical ionization on predicted Vdss for 

environmentally relevant chemicals. IAT probability distributions, the assumption of 

chemical neutrality, and the point estimates obtained by ChemAxon pKa Plugin are 

compared in a sensitivity analysis of ionization effects using the Vdss derived from the 

predicted PCs as the reporter parameter.

A Monte Carlo sampling with replacement strategy (bootstrapping), implemented in R 

(version 3.3.2), used the developed pKa probability distributions associated with IATs, to 

perform a sensitivity analysis of the effects of pKa values on the apparent Vdss using the 

tissue-based PC calculations of Peyret et al. (2010). Although many modern tools for 

predicting pKa attempt to characterize the uncertainty in their predictions, these 

characterizations are by necessity based on performance using the available training set, and 

most training sets are focused on pharmaceutical chemicals (Liao and Nicklaus, 2009). For 

this reason, an alternative approach was used in this study that focused on the probability 

distribution for chemicals predicted to have specific IATs.

The sensitivity analysis was performed on a set of chemicals from the NHANES (CDC, 

2012), which include 109 compounds in the blood and serum of the U.S. population tracked 

by NHANES. Of the 109 chemicals, 22 have the necessary parameters needed for PC 

calculation, particularly Fu in plasma, shown in Table 2 (Wetmore et al., 2015; Wetmore et 

al., 2012)].

3. Results

pKa predictions were generated for the 32413 chemicals. Fig. 3 illustrates the number of 

association and dissociation actions of these chemicals using the predicted pKa values 

derived from ChemAxon versus the pH at which the ionization occurs. This also shows the 
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acidic/basic pKa predictions as a function of chemical class. The ionization profiles of 

pharmaceutical compounds versus compounds with potential near- and far-field 

environmental sources were distinct: Far-field chemicals had the broadest range of pKa 

values, while pharmaceuticals had the narrowest (Table S1). Pharmaceutical compounds 

have a distinct bpKa (potential to become positively charged) mode with the peak just above 

the physiologically relevant pH at or near 7.4, whereas the far-field chemicals have modes 

that peak on either side of pH 7.4. This difference is interesting in the context of PCs 

because the mode of the bpKa ionization for pharmaceutical compounds is very close to the 

plasma pH of the tissue-based PC prediction method used in this analysis (Peyret et al., 

2010); this peak indicates that partitioning into acidic phospholipids could play a large role 

in pharmaceutical compound tissue distribution.

Of the three classes, pharmaceutical compounds have the highest propensity to be ionized 

(87% [6,751 of 7,766] of all pharmaceuticals are ionizable; Table S1). The near-field 

environmental chemicals have the fewest compounds that are ionized, with well over half of 

the chemicals being non-ionizable (Table S1). Note also that of the predicted ionizable sites, 

the pKa values show relatively few ionized sites at the physiological pH, i.e., a strong dip 

between the modes at 6 < pH < 8.

Chemicals that were predicted to be charged, with pKa outside the 0–14 pH range (i.e., very 

strong/weak acids or bases), are designated as “terminally ionized.” As shown in Fig. 3, the 

probability distribution of non-terminally ionized pKa values that are predicted in far-field 

chemicals closely resembles the pharmaceutical compound probability distribution, with 

modes around 4, 10, and 14. Far-field environmental chemicals, however, have a stronger 

tendency toward low pKa values compared to the pharmaceuticals, likely due to, e.g., sulfur 

compounds such as surfactants.

Chemicals predicted to be terminally ionized, particularly those with pKa much less than 

zero, were predominantly far-field environmental chemicals. Further investigation is needed 

to determine whether the pKa values for these compounds were truly extreme values, or 

whether the structures of the compounds were so different from the training sets used in the 

models that they produced erroneous values (i.e., outside the models’ domain of 

applicability).

3.1 IAT identification and parameterization

Fig. 4 shows the average number of occurrences for a subset of IATs for all chemicals, 

normalized by the total number of chemicals in each class. These are then sorted from low to 

high by the average number of IATs identified per chemical in the pharmaceutical class. 

These values are the expected number of each IAT per compound in each chemical class. 

Chemical classes tend to have differing IAT compositions and IAT loads (Fig. S2). This is 

true particularly for highly represented groups such as aliphatic hydroxyls, ethers, amides, 

and aromatic nitrogens. Pharmaceuticals also tend to be enriched in aliphatic IATs (aliphatic 

hydroxyl, aliphatic primary amines, and aliphatic carboxyl), potentially reflecting the 

propensity for anabolic pathways in these compounds. Far-field compounds tend to be 

enriched in aromatic IATs found in several environmental compounds (aromatic hydroxyl, 

aromatic primary amines, and aromatic carboxyl), possibly reflecting the properties of the 
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compounds in which they occur. Lipophilicity, for example, is desirable for solvents, but is 

less desirable in pharmaceuticals. Other IATs of note in environmental compounds are 

sulfonates, ethers, and NO2 nitrogens commonly found in surfactants. Near-field 

environmental chemicals tend to have the lowest concentration of IATs, although these 

chemicals are enriched in sulfur-containing IATs.

Fig. 5 shows the density of predictions from the ChemAxon pKa Plugin for the selected 

IATs in Fig. 4. Table 3 shows the fraction of times each IAT pattern is ionized versus the 

total number identified in the SMILES string. This illustrates the number of each IAT 

predicted to be ionized versus the total IAT predicted by the ChemAxon pKa Plugin and the 

resulting percentage of the IAT that is associated with an ionization. The probability 

distribution of IAT pKa values in Figure 5 captures the variability in pKa prediction given the 

surrounding neighborhood of the IAT.

In general, the IAT functional groups with well-defined probability distributions have a high 

percentage of pKa values predicted for the IAT. Examples include, the carboxyls (97.3%; 

AlCbxyl_-COOH), aromatic hydroxyls (72.5%; ArHdrxl_-OH), tertiary amines (81.6%; 

TerAmine_>N-), and primary aliphatic amines (91.7%; PriAmAli_-NH2). Other IATs, 

however, are rarely protonated/deprotonated, such as aliphatic hydroxyls (42.8%; AlHdrxl_-

OH), primary aromatic amines (53.7%; PriAmAro_-NH2), and especially ethers (10.1%; 

Ether____-O-). It is interesting to note that the percentage ionized tends to correspond with 

how close the IAT probability distribution tends to the middle of the pKa range.

Several of the IATs in Fig. 5 show tight probability distributions for predicted pKa values, 

and this suggests that there is little variability in their atomic neighborhoods. Chief among 

these tight distributions are the aliphatic carboxyls (AlCbxyl_-COOH) and primary aliphatic 

amines (PriAmAli_-NH2), both of which are terminal atom groups with lognormal 

distributed predictions. Ethers (Ether_-O-) and aliphatic hydroxyls (AlHdrxl_-OH) also 

share this behavior, but most of these IATs do not become ionized (10.1% and 42.8%, 

respectively) compared to the terminal groups above (97.3% and 91.7%, respectively), 

possibly because all instances of the relatively noncomplex atomic fingerprints were 

captured. The aromatic hydroxyl (ArHdrxl_-OH) probability distribution also displayed a 

well-defined peak, yet with greater variance than other compounds, likely due to the variable 

aromatic ring structure neighborhoods in which they occur.

Most IAT probability distributions in Fig. 5 show subtle differences between the chemical 

classes. Pharmaceutical compound IATs tend to prevent the compounds from distributing 

into some tissues, such as fat, that would result in longer half-lives. Pharmaceuticals have: 

(1) a higher proportion of negatively charged IATs, such as the carbonyls (Carbonyl_C=O) 

and aliphatic carboxyls (AlCbxyl_-COOH); and (2) a lower proportion of positively charged 

aliphatic IATs (i.e., primary aliphatic amines (PriAmAli_-NH2), secondary amines 

(SecAmine_>NH), and tertiary amines (TerAmine_>N-); do not get partitioned in to acidic 

phospholipids). Note also that pharmaceuticals have a higher proportion of positively 

charged primary aromatic amines. This is likely due to the fact that there are relatively few 

primary aromatic amine (PrimAmAro_-NH2) IATs, and small sample size causes the 

average number of these positively charged IATs in pharmaceutical compounds to appear 
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higher (as shown in Fig. 3, Fig. S2). Additionally, as seen in the primary Amine (PriAmine_-

NH2) panel, less than half of these are charged (pKa < ~5) rather than uncharged (pKa > ~9). 

Finally, several IATs have wide probability distributions. In particular, aromatic nitrogens 

(ArNitrog_=N-) follow no apparent parametric distribution, and secondary amines 

(SecAmine_>NH) have one mode around pH 10 but also have uniformly distributed 

predictions along the remainder of the pH spectrum suggesting that there these IATs are 

more complex than the simple local neighborhood approach taken in this analysis.

3.2 Sensitivity Analysis of Ionization and Volume of Distribution

Fig. 6 shows the results of the Monte Carlo analysis to assess how the uncertainty in the pKa 

value affects the Vdss for the NHANES chemicals for which we have sufficient information 

to make predictions (namely, fraction unbound in plasma, Fu). Fig. 6 compares the apparent 

Vdss for probability distributions of the chemicals in Fig 5 that result from sampling pKa 

values with replacement from the IAT probability distribution associated with a given IAT 

on a molecule.

The red dots in Fig. 6 indicate the Vdss for that chemical based on its exact ChemAxon 

predictions, while the box-and-whisker plots (with black dots indicating outliers beyond 1.5 

* interquartile range (Tukey, 1977)]) indicate the range of Vdss from the sensitivity analysis. 

The blue dots in Fig. 6 indicate the Vdss if ionization had been ignored altogether. For 

example, the median, canonical, and neutral Vdss values of BPA tend to cluster around 

approximately 80 L/kg.

The neutral chemical assumptions and the predictions from ChemAxon are often 

overlapping (Fig. 6) and this is clearly seen for neutral chemicals. However, for five of the 

eight ionizable compouds, the neutral assumptions and the ChemAxon predictions are 

significantly different (e.g., atrazine). For all but one of the chemicals in Fig. 6, the 

probability distribution of predicted Vdss generated by IAT sensitivity analysis spans both 

the neutral prediction and the prediction based on the ChemAxon prediction. When there is a 

significant difference (e.g., foramsulfuron), our pKa sensitivity analysis method 

overestimates Vdss, which might be health-protective since low volumes of distribution 

increase the probability of metabolic clearance (Smith et al., 2015).

The predicted Vdss of BPA in this analysis is overpredicted when compared to literature 

estimates which range from 4.6 to approximately 27.0 L/kg, depending on the route that the 

dose was administered (Kurebayashi et al., 2003; Yoo et al., 2000). This overprediction is 

more likely due to the PC estimation than to ionization. The prediction of PCs assumes that 

tissue distribution is by diffusion only and does not consider transporters, which can alter the 

partitioning of BPA and its primary metabolite BPA glucuronide (Mazur et al., 2012; 

Moscovitz et al., 2016; Teeguarden et al., 2005), potentially lowering its Vdss.

For the non-ionizing chemicals in Fig. 6, denoted by (N), the red dot and box-and-whisker 

plots overlap. Some neutral chemicals such as alachlor, acetochlor, and metalochlor have 

outlying points that are likely due to mispredicted carbonyl (Carbonyl_C=O) groups. These 

groups can make the chemical acidic, which can in turn prevent partitioning into adipose 
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tissue. The median value is unaffected since only 6.7% of the carbonyls are predicted to be 

ionized despite the predicted carbonyl groups.

Among the ionized compounds, the range for Vdss was wider or narrower depending on 

compound. In Fig. 6, compounds varied due to the interplay between various ionizable sites, 

i.e., chemicals with multiple pKas, in general, have wide distributions. Most notably, 

Bisphenol A has identical sites that can become charged. The neutral chemicals that have 

wide ranges have IATs with a low likelihood of ionization. For example, Ethers and 

Carbonyls become negatively charged, which essentially removes the lipid compartment 

from the equation.

4. Discussion

A major challenge in assessing any risk posed by thousands of untested and unmeasured 

chemicals is cost-efficient predictive models (National Academies of Sciences and 

Medicine, 2017). PK methods are needed to keep pace with expanded biomonitoring data 

(i.e., exposure) and high-throughput screening (i.e., hazard). High-throughput methods allow 

for prediction of key PK properties such as Vdss and tissue-specific PK distribution 

coefficients (Haddad et al., 2000; Peyret et al., 2010; Poulin and Krishnan, 1996a; Poulin 

and Krishnan, 1996b; Rodgers et al., 2005; Rodgers and Rowland, 2006; Schmitt, 2008). 

However, these models require measurement or prediction of chemical ionization, as 

characterized by pKa. Here we have examined the predicted ionization properties for 32413 

compounds. These data revealed broad differences between pharmaceuticals and those 

chemicals with either near-field (in the home) or far-field sources. The introduction of 

distributions for specific ionizable atom types (IATs) allowed sensitivity analysis via Monte 

Carlo sampling. As an example, we evaluated the sensitivity of predicted Vdss to chemical 

ionization predictions on Vdss for NHANES compounds.

The Vdss values in Table 2 allow inference of body burden from measured concentrations in 

blood or serum. Further, if rates of metabolism and excretion can be determined, as done by 

Wetmore et al. (2015), then sufficient information is available for parameterizing a “one 

compartment” PK model. If the PCs are handled separately rather than as an aggregate Vdss, 

a PBPK model can be constructed. This high-throughput method for calculating Vdss and 

tissue-specific distribution coefficients allows the rapid construction of PK models to 

provide context for both biomonitoring data and toxicity screening study data such as Tox21 

and ToxCast.

In the current study we assumed that text mining using regular expression libraries captured 

all patterns that determine IAT in SMILES strings. We further assumed that the application 

of ADMET Predictor IAT predictions is consistent with the algorithmically different 

ChemAxon pKa plug-in. Neither of these assumptions, however, affected a significant 

portion of the compounds in our chemical list (≅ 0.8%). Nevertheless, it should be noted that 

for high-throughput and data-poor analyses, such assumptions are inevitable in order to 

make useful inferences. If an assumption is wrong, the prediction are likely to be inaccurate.
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Another assumption is that the CAS Registry numbers (CASRN) are correct and associated 

with the appropriate chemical structures. In fact, CASRN might be associated with incorrect 

chemical SMILES strings; often, a single chemical can have several CASRN, or one 

CASRN is associated with several different chemicals. This work resolves this issue by 

developing and applying a set of rules to make unique CASRN-to-chemical assignments, 

which has the potential to make erroneous assignments of ACToR UseDB category terms to 

chemicals. This, in turn, affected the chemical class portion of this analysis. However, such 

changes potentially occurred to fewer than 300 chemicals, or approximately 1% of the data 

set, and therefore are unlikely to change the analysis significantly.

Previous analyses of pKa method sensitivity (Liao and Nicklaus, 2009) that are based on 

small subsets of only pharmaceutical compounds. Here we have used our large library of 

primarily environmental compound predictions to develop probability distributions for 

specific IATs. These IAT distributions allow for sensitivity analysis via Monte Carlo 

simulation to quantify the potential uncertainty that can be attributed to each predicted pKa. 

Wide distributions for predicted values (e.g., Vdss) are indicative of greater uncertainty, 

compared to chemicals with tight distributions. Such considerations can inform in chemical 

prioritization.

A strength of the IAT method is that the data is not restricted to a specific set of chemicals. 

Though we chose to use a large dataset of environmental compounds, any large dataset of 

chemicals could be substituted to derive the IAT distributions. Hence, this method could be 

extended to pharmaceutical pKa predictions or derived from regulatory datasets).

Sensitivity analysis by sampling substitute pKa values from an IAT probability distribution 

has potential positive and negative consequences. One positive outcome is that a large range 

of most likely volumes of distribution will be represented by our predictions, which is 

demonstrated by: (1) the span of predictions containing both the neutral and the ChemAxon 

pKa plug-in predictions (e.g., atrazine, BPA, oxasulfuron, carbaryl); and, (2) cases where 

both our method and the ChemAxon pKa plug-in have the same prediction for the ionized 

form of the chemical (e.g., 2,4-dichlorophenoxyacetic acid). On the other hand, it is possible 

that predictions made by our method will fall outside the neutral and pKa plug-in ionization 

predictions.

For example, our method overpredicts acephate vs pKa plug-in, but the prediction is much 

closer than for foramsulfuron. Foramsulfuron is an extreme case: For the neutral prediction, 

in Equation 2, PowFnlm is the only non-zero term in the numerator and, due to the low logP, 

is a small value (no ionization, hence denominator = 1). For the ionized term, the pKa Plugin 

value for the secondary amine group, 3.46, is several orders of magnitude lower than the 

peak of the secondary amine (SecAmine_>NH) probability distribution (~ 9.5; Fig. 5) peak. 

In this case, the term for the neutral partitioning is set to zero, and the numerator is only 

acidic phospholipid partitioning, scaled by the value of Im = 10pka–pH = 103.46–7.4 = 1.1 × 

10−4. Hence, the ionized Vdss is lower than the neutral Vdss. Our prediction has three 

possible secondary amine groups in the foramsulfuron molecule. For any predicted 

ionizations, the value chosen will likely be orders of magnitude higher than the pKa 

predicted by pKa Plugin, and hence will have much larger values of Im in the numerator, 
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which explains the overpredictions. Acephate is overpredicted for the same reasons. The pKa 

predicted by pKa Plugin is 6.54, still two orders of magnitude lower than the SecAmine 

(SecAmine_>NH) peak but close enough to the physiological pH of 7.4 to cause 

approximately 10 % of the IATs to be ionized.

A limitation in sensitivity analysis based upon sampling IAT probability distributions are the 

tails of the probability distributions. For example, the amide (Amide_C(=O)N<) IAT of 

oxasulfuron. In this instance, the amide in oxasulfuron is in a configuration such that the pKa 

for the ionizable atom is predicted at the extreme of the amide IAT probability distribution, 

approximately a full 10 units of the pH scale away from the mean of the probability 

distribution. Hence, a pKa value > 7.5 sampled from the amide IAT probability distribution, 

which causes the amide to be negatively charged at the physiological range, will negate any 

partitioning into acidic phospholipids and thus lower the Vdss. As was shown, the 

probability distribution of mis-predictions still showed signatures of certain IAT 

configurations, particularly with compounds that should be neutral (e.g., phthalates). In such 

cases, computational post-hoc classification could be used to modify the predicted Vdss 

based on a set of rules for a given IAT configuration.

Sensitivity analyses also rest upon the ability to parameterize the models used the analyses. 

The method presented here relies on pharmacokinetic parameters. Most such parameters can 

be either predicted in silico (e.g., logP) or found in literature. However, current in silico 

predictiors for parameters such as Fu either have been developed exclusively using 

pharmaceutical chemicals or currently rely on proprietary descriptors that are not available 

for all chemicals of interest (Ingle et al., 2016).

Further improvements to the IAT distributions themselves could be obtained by using more 

of the chemical neighborhood and 3D structures of the chemicals to get finer granularity 

(e.g., Geidl et al. (2015), Bochevarov et al. (2016)). This could potentially make tighter IAT 

pKa probability distributions by, e.g., splitting pKa probability distributions such as the 

aromatic nitrogens (ArNitrogen_=N-) and secondary amines (SecAmine_>N) on such 

higher order chemistries.

Future work to parameterize simple PBPK models through prediction of PK distribution into 

specific tissues (i.e., tissue partitioning) can proceed by considering the relationship between 

logP and pKa (expressed through the logD parameter), absorption, metabolic clearance, and 

the plasma binding (Fu). The plasma binding has a large effect in tissue-composition-based 

PC prediction methods that rely on Fu to determine the partitioning (Schmitt (2008). When 

plasma protein binding data are available or are predicted (Ingle et al., 2016), the techniques 

presented here for profiling pKa, allow high-throughput, computationally inexpensive 

prediction of the apparent Vdss.

This study has identified differences between broad classes of chemicals through 

consideration of predicted ionization as characterized by pKa. These ionization predictions 

have been understood in terms of the occurrence of specific IATs. By characterizing the 

probability distribution of predictions for key IATs across an extensive chemical library, we 

are now able to perform sensitivity analysis for chemical properties that depend upon pKa 
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predictions. As an example, we have predicted Vdss for chemicals monitored in the blood 

and serum of the U.S. population by NHANES. These predictions inform the chemical body 

burden indicated by biomonitoring data. Importantly, sensitivity analysis based upon IAT 

probability distributions informs confidence in a manner that is suitable for application to 

thousands of chemicals that may be in the environment.
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Refer to Web version on PubMed Central for supplementary material.
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Appendix

Several pKa prediction programs exist (Liao and Nicklaus, 2009). Commercial predictors 

span a range of mechanisms to predict the protonation state of particular atoms, including 

linear free energy relationships (LFER) that use a dictionary of chemical substructures (Lee 

et al., 2007), quantitative structure-property relationships (QSPR) (Jover et al., 2008; Palaz 

et al., 2012), and quantum chemical and ab initio methods (Bochevarov et al., 2013; Eckert 

and Klamt, 2006; Eckert et al., 2009; Klamt et al., 2010; Klamt et al., 2003; Vareková et al., 

2011). Semi-empirical models calculate descriptors for each ionizable chemical functional 

group, after which pKa values are predicted using machine learning or tree-based models 

(Jelfs et al., 2007; Xing et al., 2003). These semi-empirical models are limited by the 

number of chemicals used (Xing et al., 2003) and the usage of a proprietary, non-releasable 

training set (Jelfs et al., 2007).

Empirical methods employ substructure databases and use LFER to predict pKa values 

based on the prior assignments for the atomic groups stored in a database. As such, their 

prediction accuracy is limited to the substructures contained in their database. If additional 

training data are available, many of these tools can be recalibrated to apply to new chemical 

structures. Unfortunately, such data are not available for many environmental chemicals. The 

data limitations of these methods will improve with the addition of more pKa data and could 

be aided by efforts to contribute pKa data that are currently underway (https://

gist.github.com/egonw/5aa53abe480a8625fe81). Such is also the case with predictors using 

QSPR. These prediction methods have been developed using machine learning algorithms 

along with structural and chemical descriptors to make predictions of pKa values 

(Fraczkiewicz et al., 2014; Szegezdi and Csizmadia, 2007; Szegezdi and Czismadia, 2004).

Quantum chemical methods and ab initio methods offer great promise, but currently both are 

computationally intensive and generally do not perform as well as LFER and QSPR methods 

(Elyashberg et al., 2010). Due to their computational inefficiency, these methods are 

incompatible with high-throughput methodologies.

The majority of pKa prediction programs inspect a particular chemical, including the 

interplay between ionizable sites, to predict the pKa value. Calculating the interactions 

between sites, however, exponentially increases the computation time. In SPARC (Lee et al., 

2007), chemicals with complex atomic interactions can result in calculations that last weeks 

to months for a single chemical, for which SPARC will return an incomplete calculation 

error (Lee et al., 2007).
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Fig. 1. 
Neutral and ionized species of the same molecule can partition differently into 

environmental and biological media (C = cation, N = neutral, and A = anion). Ecologically 

only neutral species partition into air, while only ions partition onto water droplets (Franco 

and Trapp, 2008); all species can partition into dust, sediment, and soil (Doucette, 2003; 

Franco et al., 2009). Biologically both neutral and ionized forms can bind to proteins, while 

cations can partition into acidic phospholipids and neutral species can partition into neutral 

lipids (Peyret et al., 2010).
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Fig. 2. 
The scalar pKa characterizes the pH at which two chemical microspecies are in equilibrium, 

as a function of the concentration of hydrogen cations and hydroxide anions (panel a). The 

relative concentrations of ionized and neutral species depend not only on the pKa, but on the 

number of hydrogen donor groups (panel b), hydrogen acceptor groups (panel c), or a 

combination of both groups (panel d). Since multiple donor/acceptor groups can occur in a 

single molecule, the group(s) on the molecule becoming ionized must be identified.
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Fig. 3. 
Profile of the number of association and dissociation actions of predicted ionization sites 

with pKa values from ChemAxon versus the pH at which the ionization occurs. Note that 

pKa predictions are calculated at 25°C; at physiological temperatures, 37°C, will generally 

shift predictions slightly to the left (towards pH 0) (Perrin et al., 1981).
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Fig. 4. 
Average number of occurrences per chemical for a subset of IATs, normalized by the total 

number of chemicals in each class. IATs considered in this work are the non-terminally 

charged subset of IATs with more than 0.1 IAT per chemical.
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Fig. 5. 
Probability density of pKa for IATs predicted from the 32413 chemicals using ChemAxon 

pKa Plugin for selected IATs from Fig. 4.
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Fig. 6. 
Apparent Vdss calculated for each chemical based on 2000 samples with replacement from 

the IAT probability distributions shown in Fig 5. Non-ionizable chemicals are denoted with 

(N). Box and whiskers plot shows the predicted pKa values, with black dots indicating 

outliers beyond 1.5 x interquartile range. The assumption that no IATs are ionized is shown 

in blue, and the chemical apparent Vdss values using pKa plugin predictions are shown in 

red.
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Table 1

General framework of chemical classification determined by chemical exposure potential and expectation of 

biological activity.

Chemical Type Human Exposure Scenario

Pharmaceutical Compounds intended to be taken as a dose to cause bioactivity.

Near-field environmental Compounds with proximate sources of exposure that might lead to higher doses, but are not intended to cause 
bioactivity.

Far-field environmental Compounds with distal sources of exposure that should lead to lower doses, but bioactivity restrictions are less 
constrained.
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