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Abstract

Neonatal vocalization is structurally altered in mouse models of autism spectrum disorder. Our 

published data showed that pup vocalization, under conditions of maternal separation, contains 

sequences whose alterations in a genetic mouse model of ASD impair social communication 

between pups and mothers (Takahashi et al., 2016). We describe details of a method which reveals 

the statistical structure of call sequences that are functionally critical for optimal maternal care. 

Entropy analysis determines the degree of non-random call sequencing. A Markov model 

determines the actual call sequences used by pups. Sparse partial least squares discriminant 

analysis (sPLS-DA) identifies call sequences that differentiate groups and reveals the degrees of 

individual variability in call sequences between groups. These three sets of analyses can be used to 

identify the otherwise hidden call structure that is altered in mouse models of developmental 

neuropsychiatric disorders, including not only autism, but also schizophrenia.
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INTRODUCTION

It is possible to diagnose autism spectrum disorder (ASD) by two years of age in humans. 

However, much earlier identification of signs of ASD is critical, because early intervention 
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is highly effective(Green et al., 2015; Green et al., 2017; Rogers et al., 2014; Wallace & 

Rogers, 2010; Wetherby et al., 2014). Decreased eye contact, decreased visual attention to 

social scenes, atypical preverbal vocalizations and atypical development of other neonatal 

behaviors are indicative of later development of ASD(Constantino et al., 2017; Esposito, 

Hiroi, & Scattoni, 2017; Jones & Klin, 2013; Ozonoff et al., 2010; Zwaigenbaum, Bryson, & 

Garon, 2013).

Neonatal vocalization is a very early, primary means of social communication with the 

mother in that its expression in newborns signals the need for care(Soltis, 2004; Zeifman, 

2001). Cries of infants with incipient ASD are characterized by higher-pitch, lower 

waveform modulation and rhythm and more dysphonation, compared to infants with 

intellectual disability or typically developing infants(Esposito et al., 2017; Esposito & 

Venuti, 2008, 2009).

It is, however, difficult to establish the functional role of atypical vocalizations as a 

component of social communication in humans, as many atypical features in the cognitive, 

motor, and social domains cannot be isolated to test functionality of each atypical feature in 

social communication and interaction. Moreover, it is difficult to study genetic and 

epigenetic mechanisms underlying the role of atypical neonatal social communication as an 

integral component of ASD. Such mechanisms cannot be easily assessed using human 

brains.

Although ASD is a human disorder and the symptomatology of ASD cannot be entirely 

recapitulated in mice, genetic mouse models satisfy construct validity in that they 

recapitulate ASD-associated human genetic variants in mice (N Hiroi, Hiramoto, Harper, 

Suzuki, & Boku, 2012; N. Hiroi et al., 2013; Silverman, Yang, Lord, & Crawley, 2010). 

Moreover, mouse models of such genetic variants exhibit ASD-related behaviors. Mouse call 

types have been assessed based on number, duration and proportions (Lai et al., 2014; 

Michetti, Ricceri, & Scattoni, 2012; Nishi & Hiroi, 2016), as well as call types and 

sequences(Burkett, Day, Penagarikano, Geschwind, & White, 2015; Chabout et al., 2016; Ey 

et al., 2013; Hiramoto et al., 2011; Scattoni, Gandhy, Ricceri, & Crawley, 2008; Van 

Segbroeck, Knoll, Levitt, & Narayanan, 2017) in genetic mouse models of ASD. Pup vocal 

calls clearly influence maternal care in mice (Okabe et al., 2013).

The scientific premise of our neonatal vocalization analytical methods is based on the 

demonstration that atypical call sequences of a genetic mouse model of ASD are less 

effective in inducing maternal care (Kikusui & Hiroi, 2017; Takahashi et al., 2016). Our 

analysis further revealed altered sequences and a lack of individual variability in call 

sequences among pups, as early as postnatal day 7–8, with a genetic variant implicated in 

ASD (Takahashi et al., 2016). There is no other standardized protocol to determine 

individual variability in sequence structure of various call types of genetic mouse models of 

ASD, in which sequence structures have been validated as functional in neonatal social 

communication.

Here we describe a set of computational methods to characterize pup call sequences. The 

techniques described here are designed to record calls (see Basic Protocol 1), identify 
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sequences (see Basic Protocol 2), determine the non-random nature of call sequences (see 

Basic Protocol 3), determine connections and directionality between call types in sequences 

(see Basic Protocol 4), and identify individual variability of call sequences among pups (see 

Basic Protocol 5). These analytical tools can be applied to any genetic mouse model of 

developmental neuropsychiatric disorders.

BASIC PROTOCOL 1

RECORDING OF PUP VOCALIZATION

Our protocol is based on an UltraSoundGate condenser microphone capsule (CM16, Avisoft, 

Germany) and its analytical software (Avisoft-Recorder software). Pup vocalization is 

recorded under a maternal separation condition.

Materials

Mouse pups at postnatal days (P) 4, 8, and 12 (±12 hr).

UltraSoundGate (Avisoft) microphone

Computer equipped with the Avisoft-RECORDER software

Plastic tray (Inner, 18 cm L × 15 cm W × 3 cm H)

Styrofoam box (Outer, 34cm L × 28cm W × 27cm H; Inner, 22cm L × 17.5cm W × 

16cm H)

A sound-attenuating box (Outer, 63.5cm L × 39cm W × 60cm H; Inner, 59cm L × 

35cm W × 56cm H)

1. Transport a mouse cage containing pups and their dam from the animal room to 

the laboratory at least 1 hr before the experiment.

2. Place each pup in the plastic tray within in the Styrofoam box. The room 

temperature is maintained at 26°C.

The microphone is positioned, through a hole, in the center of the 

Styrofoam box coverlid. The tip of the microphone is placed about 10 

cm above the plastic tray. The Styrofoam box is placed in a sound-

attenuating box.

3. Record the pup vocalization for 5 minutes.

Conduct recording at a sampling rate of 300 kHz with 16-bit format. 

The resulting frequency resolution should be 300000/256 FFT 

=1172Hz. A lower cutoff frequency of 15 kHz should be used to reduce 

background noise outside the relevant frequency band. The frequency 

window for analysis ranges from 20 kHz to 200 kHz. Call detection is 

provided by an automatic threshold-based algorithm and a hold time 

mechanism.

The Nyquist Sampling Theorem dictates that sampling frequencies are a 
minimum of twice the maximal frequency of the signal of interest. 
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Therefore, considering that vocalizations can occur at fundamental 
frequencies of approximately 100 kHz, a minimum recording rate of 
200 kS/s is required (Zeskind et al., 2011).

4. Return the pup to the mouse cage with the dam. Mark each pup with tattoo ink 

after the first recording to differentiate them in the litter.

Collect tail samples for genotyping from each pup after completing 

vocal recording for all neonatal ages.

5. Save an audio (.wav) file, using the “save as” command: use the commands 

“Analyze > Create Spectrogram” to create a spectrogram for viewing the audio 

file.

6. Create an automated measurement report showing calculated timestamps and 

durations of individual vocal calls.

The Avisoftware generates a report (REPORT) of detected sound 

signals which are defined by a series of parametric criteria, including 

maximum change, minimum duration and hold time.

“Max change” is the maximum difference in frequency between two 

waves one pixel apart that can still be considered a continuous call. It is 

the tolerated maximum change of the peak frequency between two 

consecutive time bins on the spectrogram, expressed as the number of 

pixels on the spectrogram (frequency bins).

"Minimum duration" is the time duration below which a signal is 

rejected as a short single pulse.

“Hold time” is the time duration for which no new call is recognized 

even if the amplitude of the spectrogram goes below the threshold. A 

short pause within a hold time is ignored and any sound before and after 

the silence is considered one call.

We applied a wide range of max change/minimum duration/hold time 

values to generate a REPORT and found that minimum duration at 1 

msec and hold time 2.5 msec generates the smallest numbers of false 

negative cases. In a standard setting, max change 10 pixels (11718 Hz) 

is recommended. In some mouse lines, some calls (e.g., frequency steps 

and two syllable; see Basic Protocol 2, Step 7 for call type definitions) 

might contain a frequency change, within a call, of as high as 40kHz 

without any temporal gap (as defined by the hold time). However, we 

found that a higher max change level increased to 20kHz or 40kHz 

doubled the number of false positive cases at each step, making the file 

unmanageably large; the number of false negatives, in which one call is 

erroneously counted as more than one call, was reduced by ~20% at 

each step, but the number of simple false negative cases, in which a call 

is not detected, was not changed. Thus, we recommend using max 

change 10 pixels and correcting false negative calls manually.
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7. Save the audio records and all reports using a cloud-based service (e.g., 

DropBox) and an external hard drive as a back-up.

BASIC PROTOCOL 2

GENERATION OF DATA FILE

Pup calls are not emitted evenly along the time scale; calls are often uttered in a cluster, 

creating bursts of calls separated by pauses (see Fig. 1). A challenge is how to objectively 

judge a series of calls as a sequence and a pause as a functional pause. We used a Poisson 

model to separate calls into different clusters.

Materials

Computer equipped with the Avisoft-RECORDER software

Audacity software (http://www.audacityteam.org/download/)

Excel

1. Use Audacity (http://www.audacityteam.org/download/) software to open the 

audio file.

We do not recommend reliance solely on a sonogram printout for 

classification of call types, as printouts are not sufficiently sensitive 

enough for visualization of low amplitude calls.

2. Click on the filename in the audio file window with the little black triangle 

pointing down.

3. Select “Spectrogram” to view the file in spectrogram view.

4. Click on the black triangle again and select “Spectrogram settings”.

5. Set minimum frequency to 0 Hz and Maximum frequency to 150000 Hz.

For improved visualization of calls, select the box that says “Show the 

spectrum using grayscale colors”.

6. Use the magnifying glass icon with the + sign to zoom in until calls are visible in 

the view screen.

The REPORT automatically generated by Avisoft-RECORDER 

software might include false positive cases in which noise is detected as 

calls and false negative cases in which genuine calls are not detected. 

These cases should be corrected when comparing the REPORT and 

images on Audacity.

7. Manually determine call types using images viewed on the Audacity screen.

Use the classifications by Scattoni (Scattoni et al., 2008) which include 
complex, harmonics, two syllable, upward, downward, flat, hump, short, 
composite and frequency steps. We used a correlation plot of PLS-DA 
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analysis to validate classification of calls into ten call types in our 
genetic mouse model of ASD (Takahashi et al., 2016).

Complex: one continuous sound wave with two or more directional 

pitch changes, each equal to or more than 6.25 kHz.

Harmonics: one main sound wave with additional waves at different 

frequencies surrounding the main wave.

Two syllable: two sound waves sequentially emitted with a sudden shift 

to a higher frequency without a temporal gap.

Upward: a sound wave with a continuous increase in pitch that is equal 

to or larger than 12.5 kHz, with a terminal dominant frequency at least 

6.25 kHz higher than the beginning of the sound wave.

Downward: a sound wave with a continuous decrease in pitch that is 

equal to or larger than 12.5 kHz, with a terminal dominant frequency at 

least 6.25 kHz lower than the beginning of the sound wave.

Flat: a sound wave that does not fluctuate in frequency more than 3 

kHz.

Hump (Chevron): an inverted-U shaped sound wave, composed of a 

continuous frequency increase equal to or larger than 12.5 kHz, 

followed by a decrease equal to or larger than 6.25 kHz.

Short: a sound wave that lasts for less than 5 ms.

Composite: two sound waves emitted simultaneously at different 

frequencies.

Frequency steps: a call that changes into two separate waves 

simultaneously emitted at different frequencies in the middle with no 

interruption in time.

Atypical: call types that cannot be categorized as any of the above.

The method by which differences are detected between mutant and 
wild-type mice should be empirically determined. There are many 
classification schemes based on acoustic parameters, including 
frequencies at the start, end, and peak of calls and frequency modulation 
and duration. Various schemes categorize calls into three(Young, 

Schenk, Yang, Jan, & Jan, 2010), five (Branchi, Santucci, Vitale, & 

Alleva, 1998; Panksepp et al., 2007), nine (Portfors, 2007; Sugimoto et 

al., 2011), or ten or more distinct call types (Grimsley, Monaghan, & 

Wenstrup, 2011; Scattoni et al., 2008). We use the call classification 
scheme developed by Scattoni and colleagues, (Scattoni et al., 2008) for 
three reasons. First, grouping of different call types potentially masks 
otherwise detectable differences; the more call types that are 
categorized, the more sensitive the classification becomes in detecting 
subtle, type-specific differences. Second, our partial least-square 
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discriminant analysis validated that the ten call types in this scheme are 
well separated (Takahashi et al., 2016). Third, this call classification and 
its variations reliably detect call type-dependent atypicalities in pups of 
genetic models of ASD (Burkett et al., 2015; Ey et al., 2013; Fraley et 

al., 2016; Hiramoto et al., 2011; Scattoni et al., 2008; Yang, Mahrt, et 

al., 2015); other classification schemes have not been widely used to 
detect atypical pup vocalization in genetic mouse models of ASD.

Annotation of call types should be performed by at least two raters 

independently; an initial inter-rater agreement of >97% is desirable. 

Cases in which the initial annotations are different for the two raters 

should be re-evaluated by both raters to reach consensus.

8. Construct the theoretically expected distribution of inter-call intervals with a 

given number of calls within the 5-min recording time for each experimental 

group (see Fig. 2).

The Avisoftware defines an inter-call interval as the distance from the 

beginning of one call to the beginning of the next. We define an inter-

call interval as the distance from the end of one call to the beginning of 

the next. We add one column in Excel that lists so-defined inter-call 

intervals. This can be automatically done on Excel using the start and 

end addresses of each call that are generated by Avisoftware.

9. Construct the observed distribution of inter-call intervals based on the average of 

each experimental group.

10. Compare the theoretical curve to the observed distribution and determine the 

cross point between the two curves.

11. Define sequences within which calls are emitted with inter-call intervals below 

the cross point value. Tally sequences in an Excel table (see Table 1).

As the precise length of a functional unit of call sequences is not 

known, we do not consider our method to be final or definitive. Instead, 

we see this method as a tentative way to reduce instances in which the 

last call of a sequence is erroneously considered to be connected with 

the first call of the next sequence. This data set is the basis of analyses, 

described in Protocols 3–5 below.

BASIC PROTOCOL 3

ENTROPY ANALYSIS

This protocol determines the presence of any structure inherent in the call sequences as well 

as the entropy level to be used as the basis for supervised classification. We assume that the 

continuous vocal calls are separated into discrete call sequences (see Table 1). Entropy 

measures are calculated based on a Markov model of call sequences.
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In the zero-order model, entropy is based only on m, the number of call types used out of the 

ten call types, and is calculated as log2 (m). In the first-order model, each call-type is 

assumed to be independent and entropy is calculated based on individual call probabilities 

according to the following equation: Σ pi(log2(pi)), in which pi is the probability of 

observing call-type i. By extending this equation to higher-order Markov models, we can 

determine if different length combinations of call-type might be used to discriminate 

between genotypes.

In the second part of the protocol, we determine the most informative entropy level at which 

to perform the classification analysis (see BASIC PROTOCOL 5) - this will be the level at 

which the largest statistical difference is observed in entropy scores between our two 

genotypes. Here, we use a linear mixed model approach in the R statistical programming 

environment via the 'lmer' function from the 'lmerTest' package. It is also possible to perform 

this step using a two-way repeated measures ANOVA with the 'aov' function from the base 

'stats' package in R.

Materials

Perl (version ≥ 5.20)

Author-supplied Perl script (‘entropy.pl’)

R (version ≥ 3.0.0) with installed packages: ‘ggplot2’ and ‘lmerTest’

Calculate entropy scores

1. Open a terminal window in the folder containing both of your data files and the 

entropy.pl script, then type:

perl entropy.pl file.csv

This script expects as input, one comma-separated value (csv) file 
per mouse, in which each line is a call sequence emitted by that 
mouse (see example file provided in Table1. The script’s default 
outputs are the input file name and entropy scores from entropy 
levels zero to four. Note that this script can easily be applied to 
each call sequence (csv) file in the folder by using a bash for-loop:

for f in *.csv; do perl entropy.pl $f; done

2. Click on the R logo to launch the application, or, from a terminal window, type 

'R'.

3. Read in the data.

mydata <- read.csv("entropy_scores.csv", sep=",", header=T)

Here we assume a csv input file, although it is also possible to read 
in Microsoft Excel files in .xlsx format using the 'xlsx' package 
from R. Note that the data from Step 1 has been re-shaped so that 
the columns now contain: mouse ID, entropy level, genotype, and 
entropy score respectively (see example provided in Table2). The 
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exact details of this file will depend on the number of samples of 
each type in your experimental design.

4. Create entropy plot (see Fig. 3).

library(ggplot2)

ggplot(mydata, aes(x=level, y=entropy, fill=genotype)) + geom_boxplot()

Make sure that the column names in the ‘entropy_scores.csv’ file 

match the arguments provided to the ggplot command.

5. Fit a linear model to determine statistically significant differences in entropy 

scores at different levels.

library(lmerTest)

mod1 <- lmer (entropy ~ genotype*level + (1|mouse), data=mydata)

summary(mod1)

Here, we treat genotype and entropy level as fixed effects and 

assume that each mouse has a different baseline entropy. The 

summary command displays information on the fitted model, 

including the statistical significance associated with differences in 

entropy scores between mice from different genotypes at each 

entropy level; choose the most significant in terms of p-value and 

effect size as the basis for the classification analysis.

BASIC PROTOCOL 4

IDENTIFICATION OF CALL CONNECTIONS

Markov model analysis—We use Markov chains (Takahashi et al., 2016) to identify the 

actual call types used in sequences (see Fig. 4). We assume that a pup's emitted call type is 

in an explicit state (i.e., S1). The probability that a mouse will transition to another state (S2) 

is calculated. An additional assumption is that the probability of choosing S2 depends solely 

on the call type of S1. We use custom-written Matlab routines (Mathworks) to calculate the 

probability for each transition (ST). The number of occurrences of each ST is tallied and 

divided by the total number of times the S1 call type is made. Connections and directions 

between call types are identified.

Materials—Download MatLab at https://www.mathworks.com/programs/trials/

trial_request.html?prodcode=ML to install a free trial. See if your institution already has a 

MatLab campus-wide license.

Prepare MatLab

1. Install MatLab.

2. Download “call_probability.m” (see Script 1 in Supporting Information) and 

“call_probability_averaging.m” scripts (see Script 2 in Supporting Information).
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3. Make sure “call_probability.m” (Script 1 in Supporting Information) and 

“call_probability_averaging.m” (Script 2 in Supporting Information) are 

somewhere in your paths. To test this, open MatLab and try “edit 

call_probability”.

If it does not open in editor, navigate to the folder it is located in and 

add it using: addpath(‘C:\path\to\script’)

Calculate the Markov Probabilities

4. Create a new folder containing all of your vocalization spreadsheets. For ease of 

use make sure nothing else is in this folder.

5. Open MatLab.

6. Set your working directory as the folder containing the spreadsheets:

e.g. cd(‘C:\ yourfoldername \’)

7. Run the “call probability” program by executing (see Script 1):

[call_prob] = call probability(200);

The input variable is the inter-call interval (ms) which defines the 

call string; change this value as needed.

8. Save work using: save(‘markovprobs’).

Determine the relative frequencies and directions of call connections

9. Run “call_probability_averaging” (see Script 2) and select the saved data file 

from step 8

[markovprobabilities] = call_probability_averaging;

This will automatically run the calculation for all genotypes.

This is your final output. Each cell is a genotype. Rows in the 

matrix are the first call and columns are the second for each pair.

10. Save your work and figures.

BASIC PROTOCOL 5

CLASSIFICATION ANALYSIS OF CALL SEQUENCES

Supervised classification refers to the process of building a statistical model which uses a 

matrix, X, of predictor variables (call-type frequencies) to predict a vector Y, of class labels 

(genotypes). Each row in the n x m matrix, X, corresponds to a single sample (mouse), 

whereas each column corresponds to an individual call-type. There are many possible 

approaches to this problem, drawn primarily from the fields of statistics and machine 

learning; popular techniques include: Linear Discriminant Analysis (LDA), Decision Trees, 

Random Forest (RF), and Support Vector Machines (SVM). Here, we use sparse Partial 

Least Squares-Discriminant Analysis (sPLS-DA) approach (Le Cao, Boitard, & Besse, 

2011) as implemented in the R 'mixOmics' package. This approach has the additional 
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advantage of including variable selection during classification analysis so that only a subset 

of call-types are used to predict a class label (genotype) for each sample.

Materials

R (version ≥ 3.0.0) with installed package ‘mixOmics 6.3.0’

Load the data

1. Open R and load the 'mixomics' library. Click on the R logo to launch the 

application, or from a terminal window, type: 'R'.

library(mixOmics)

2. Read in the data and create a class vector specifying the label (genotype) for each 

sample.

data <- read.csv("call_frequencies.csv", sep=",", header=T)

data.mat<-as.matrix(data[,−1])

clvec <- c(rep(“HT”,20), rep(“WT”,8))

Here, we assume a csv file, consisting of a matrix of call-type 
frequencies (see example provided in Table 3). Each row in the 
matrix is an individual mouse and each column is a specific call-
type combination. The call-type combinations are based on the 
entropy level selected as part of BASIC PROTOCOL 3. Note that, 
with some minor modification, call frequency matrices can be 
automatically generated as part of the ‘normalize’ function within 
the Perl script provided. In this example, we conduct the 
classification on a matrix of bigram (two-call) frequencies (with 
100 possible call-type combinations based on our alphabet size of 
ten). The clvec vector specifies the class labels (genotype) 
associated with each sample (row) in the call frequency matrix. In 
this example, we have 20 mice in our HT sample group and 8 mice 
in our WT sample group.

3. Choose the number of variables and components using cross validation.

keepX <- c(1:10, seq(20, 50, 10))

tuned.model <- tune.splsda(data.mat, clvec, ncomp = 6, validation = 'Mfold', 

folds = 5, progressBar = TRUE, dist = 'max.dist', measure = "BER", 

test.keepX = keepX, nrepeat = 50, cpus = 2)

In order to construct the final sPLS-DA model, two key parameters 

must first be tuned: ncomp, the number of components in the 

model, and keepX, the number of variables (call frequencies) to 

choose from the matrix X in order to perform the classification. 

The optimal combination of these parameters (measured by the 

balanced error rate, BER) is chosen through cross validation (either 
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Mfold of leave-one-out). We recommend choosing from three to 

ten components for the model and (for small datasets with less than 

100 predictor variables) up to 50% of the call-type combinations. 

Note that depending on the size of the dataset, these choices may 

significantly affect the time taken for the algorithm to complete. 

For further information on the various parameter choices, see either 

the help documentation in R, or visit mixomics.org. Final values 

for the tuned parameters can then be accessed via tuned.model

$choice.ncomp$ncomp and tuned.model$choice.keepX.

4. Build final model and plot results (Figs. 5 and 6).

final <- splsda(data.mat, clvec, ncomp = 2, keepX = c(40,4))

plotIndiv(final, comp = c(1,2), group = clvec, ind.names = FALSE, ellipse = 

TRUE, legend = TRUE, title="sPLS-DA Scores Plot Comp 1&2")

plotLoadings(final, comp = 1, title = 'Loadings on Comp 1', contrib = 'max', 

method = 'mean')

Alternative visualizations of the sPLS-DA results including 

stability plots, arrow plots, correlation circles, and clustered image 

maps are also available (see the mixOmics package documentation 

or website for further details).

COMMENTARY

Background Information

There are several other published software packages to analyze mouse vocal call types 

(Burkett et al., 2015; Chabout et al., 2016; Van Segbroeck et al., 2017). We recommend that 

interested investigators compare results obtained from this and other methods to evaluate 

relative power to detect structural differences between mutant and wild-type littermates. The 

optimal analytical software might depend on the type of gene mutations and the level of 

noise and false positive and false negative cases.

Critical Parameters and Troubleshooting

Sex—Both sexes should be included in analysis.

Age—Pup vocal calls generally emerge at P4, peak at P8 and decline at P12 (Michetti et al., 

2012). These time points should be analyzed because male and female mice reach 

developmental milestones at different ages (Bronson, Dagg, & Snell, 2007), and the age at 

which calls peak might vary in mutant mice (Lai et al., 2014; Michetti et al., 2012; Scattoni, 

Crawley, & Ricceri, 2009; Sungur, Schwarting, & Wohr, 2016). Recording of pups at P4 

might be too stressful for some mutant mouse lines and result in high mortality afterwards. 

If this is the case, such a recording time point should be avoided.

Genetic background—Any genetic mouse model can be used for this analysis, but one 

technical aspect requires close attention (N Hiroi, 2018). Inbred mouse lines widely differ in 
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ultrasonic vocalization (Faure et al., 2017; Scattoni et al., 2008; Scattoni, Ricceri, & 

Crawley, 2011). Mouse models are maintained using various breeding methods. In many 

cases, mutations are generated using embryonic stem (ES) cells of one inbred mouse (e.g., 

129sv). A developed mouse is then crossed with a mouse line with high fecundity (e.g., 

C57BL/6J). Offspring carry the genetic backgrounds of alleles of ES cells and alleles of a 

breeder strain. Chromosomal regions linked to the target gene are expected to contain more 

genomic materials from ES cells in mutant mice. In contrast, t chromosomal regions linked 

to the gene are expected to contain more genomic materials of a breeder line in wild-type 

littermates. The systematic bias in genetic backgrounds between mutant and wild-type 

littermates poses an interpretation difficulty for behavioral phenotypes (Crusio, 2004; 

Flaherty & Bolivar, 2007; Gerlai, 2001; N Hiroi, 2018; Kelly et al., 1998; Wolfer, Crusio, & 

Lipp, 2002). The best strategies to circumvent this interpretative obstacle are to use congenic 

mice, co-isogenic mice or F1 inbred hybrid mouse lines. In these mouse lines, the genetic 

background is identical between mutant and wild-type littermates (i.e., co-isogenic or F1 

hybrid) or the genetic background is maximally saturated with the breeder’s genetic 

background (i.e., congenic) in both mutant and wild-type littermates. The phenotypic 

difference between non-congenic wild-type and mutant littermates cannot be unambiguously 

ascribed to the gene mutation in question. Data derived from non-congenic mice should not 

be viewed as valid evidence to conclude the impact of gene mutation on ultrasonic 

vocalization or any behavioral or neuronal phenotype(N Hiroi, 2018).

Breeder—To control for the impact of male breeders on dams, male partners should be 

removed from the breeder cage immediately after a vaginal plug is noted. One critical 

parameter is the sex of a mutant breeder. Male and female heterozygous mice need to be 

paired as breeders if homozygous mice are to be examined. If an over-expressing transgenic 

mouse or hemizygous mouse is to be examined, breeders are a mouse with one mutant copy 

and a wild-type mouse. The issue is whether the mutant breeder should be a mother or a 

father. The maternal behaviors of mutant and wild-type mothers might differ, depending on 

the gene mutated. Ideally, this too should be examined, but if it is beyond the aim of the 

project, we recommended that a wild-type mother be used to minimize the impact of 

atypical maternal behaviors of mutant mothers.

Housing—Many phenotypic differences are noted in an experiment in which mice are 

housed in a litter with the same genotype or a different genotype (Kalbassi, Bachmann, 

Cross, Roberton, & Baudouin, 2017; Yang, Lewis, Foley, & Crawley, 2015). The manner in 

which pups are maintained in a litter is an important determinant for many ASD-related 

phenotypes. This should be analyzed as a factor or a co-variant. Variations in maternal care 

among strains and those induced by maternal separation/deprivation, cross-fostering, and 

communal nesting affect the behavioral profiles of offspring and the epigenetic profiles of 

many genes involved in the hypothalamic pituitary adrenal (HPA) axis (Cierpial, Murphy, & 

McCarty, 1990; Curley et al., 2010; Kember et al., 2012; Kundakovic & Champagne, 2015; 

Kundakovic, Lim, Gudsnuk, & Champagne, 2013; Ressler, 1963, 1966; Umemura, Imai, 

Mimura, Fujiwara, & Ebihara, 2015; Weller et al., 2003). Thus, we do not recommend 

culling a litter to the same size and genotype composition, because a reduction of the litter 
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size and introduction of a pup from another litter might impact maternal behaviors toward 

pups. However, the litter size should be recorded as a co-variant.

Changing of cage bedding should be avoided once recording starts at P4; also avoid a brief 

separation of the dam and pups other than the time of testing (Own & Patel, 2013; Tsuda & 

Ogawa, 2012).

Number of recordings—Neonatal maternal separation and brief handling of pups 

influences a wide range of ASD-related behaviors in mice(Kikusui, Isaka, & Mori, 2005; 

Macri & Laviola, 2004; Tsuda & Ogawa, 2012; Tsuda, Yamaguchi, & Ogawa, 2011; 

Venerosi, Cirulli, Capone, & Alleva, 2003), although their effects depend on the strain, 

behavior, and experimental parameter(s) (Cirulli, Berry, & Alleva, 2003; Cirulli et al., 2009; 

Millstein & Holmes, 2007). Thus, recording at more than three postnatal ages in the same 

pup is not recommended. Recording a second session on the same day is not recommended 

for two reasons. First, we noticed the number of calls is drastically reduced for a second 

session. Second, the mortality rate of pups increases when they are repeatedly tested on the 

same day.

Anticipated Results and Interpretations

Basic Protocols 1 and 2 are preparatory steps. Data are obtained in Basic Protocols 3–5.

Basic Protocol 3. The outcome of this protocol shows the non-random nature of call 

selection for sequences of two, three, and four calls and the difference in the degree of non-

random call sequences between the genotypes. The zero-order level (H[0]) reflects how 

many call types each genotype uses. The lower the entropy scores at H[0], the narrower the 

call type repertoire. H[1] indicates how variably the call types are used within their call 

repertoires; the lower the score, the more skewed the use of specific call types is within the 

repertoire. H[2] to H[4] levels indicate the degree of non-random sequencing of various call 

types within two, three, and four successive calls; the lower the score, the more selective the 

call types in forming call sequences.

Basic Protocol 4. The outcome of this protocol shows the relative frequencies of call 

connections and directions (see Fig. 4). Data are interpreted in terms of differences in the 

most frequently used call connections between groups.

Basic Protocol 5. The outcome of this protocol shows the extent to which individual pups 

differ in formation of call sequencing (see Fig. 5). The more scattered the data points are, the 

more variable call sequences are among individual pups.

Time Considerations

Basic Protocol 1: For each pup, we estimate the following times. Steps 1, 1.5 hrs; Steps 2–4, 

7 min; Step 5, 3 min; Step 6, 2 min; Step 7, 5 min.

Basic Protocol 2: For each pup we estimate the following times. Steps 1–6, 1 min; Step 7, ~ 

1–2 hrs per 100 calls; Steps 8–11, ~1 hr per 100 call data.
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Basic Protocol 3: Steps 1 to 5, a few minutes to an hour depending on user.

Basic Protocol 4: Step 1, minutes to hours, depending on computer speed and number of 

toolboxes to be installed with MatLab. Step 2– 3, a few minutes. Step 4, 5 minutes to run 

through all following steps. Step 5–11, a few minutes, depending on computer speed

Basic Protocol 5: Step 1 to 3, minutes to hours to tune the classification model; highly 

dependent on tuning parameters and data size; step 4 to 5, varies, as above.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Significance Statement

Although the number of neonatal ultrasonic vocal calls and different vocal call types and 

their sequences have been used as indexes of neonatal social communication in mice, our 

analytical protocol provides a computational means to determine the call sequence of 

various call types, the degree of non-randomness of various call types used in sequences, 

and individual variability of call sequences that have been demonstrated to functionally 

affect maternal behaviors.
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Figure 1. 
A representative spectrogram. Taken from Takahashi et al., (2016).
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Figure 2. 
An example to determine the cut-off interval beyond which to judge two calls which are not 

parts of a sequence. Blue solid and broken arrows indicate the cross points of wild-type and 

heterozygous groups, respectively (Takahashi et al., 2016).
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Figure 3. 
Entropy plot. Red boxplots show an example of the range of entropy scores for Tbx1 
heterozygous (HT) mice at each level in the entropy analysis; blue boxplots show the 

corresponding scores for wild-type (WT) mice.
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Figure 4. 
Connections and their directions between two calls identified using the Markov model. 

Thickness of arrows and size of call circles represent the relative proportion of a connection 

and call numbers (Takahashi et al., 2016).
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Figure 5. 
Scores plot. The scores plot depicts the samples, colored according to class (genotype), 

projected into the space defined by the first two sPLS-DA model components. Axis labels 

show the level of variance explained (expl. var) by each component. sPLS-DA, sparse partial 

least squares discriminant analysis.
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Figure 6. 
Loading plot. The loading plot shows the strength of the association for each of the selected 

variables on a particular component (Comp) with the class labels (genotypes).
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Table 2

Entropy scores

mouse level genotype entropy

1 H0 HT 2.807355

2 H0 HT 3.321928

3 H0 HT 3

4 H0 HT 2.321928

5 H0 HT 2

6 H0 HT 2.807355

7 H0 HT 2.584963

8 H0 HT 2.584963

9 H0 HT 2

10 H0 HT 3.169925

1 H1 HT 1.89364

2 H1 HT 2.449691

3 H1 HT 2.235275

4 H1 HT 1.603024

5 H1 HT 0.843866

6 H1 HT 2.011808

7 H1 HT 1.504393

8 H1 HT 1.899953

9 H1 HT 1.509969

10 H1 HT 2.381264

Entries from an example entropy scores file. Each row contains information on the entropy analysis for an individual mouse at a specific entropy 
level. The columns show mouse ID, entropy level, genotype, and entropy score, respectively. Only a portion of the entire file is shown; subsequent 
entries would contain information from additional entropy levels and wild-type mice. HT, heterozygous.
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