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Abstract

A method to assess global land surface water (fw) inundation dynamics was developed by 

exploiting the enhanced fw sensitivity of L-band (1.4 GHz) passive microwave observations from 

the Soil Moisture Active Passive (SMAP) mission. The L-band fw (fwLBand) retrievals were 

derived using SMAP H-polarization brightness temperature (Tb) observations and predefined L-

band reference microwave emissivities for water and land endmembers. Potential soil moisture and 

vegetation contributions to the microwave signal were represented from overlapping higher 

frequency Tb observations from AMSR2. The resulting fwLBand global record has high temporal 

sampling (1–3 days) and 36-km spatial resolution. The fwLBand annual averages corresponded 

favourably (R=0.85, p-value<0.001) with a 250-m resolution static global water map (MOD44W) 

aggregated at the same spatial scale, while capturing significant inundation variations worldwide. 

The monthly fwLBand averages also showed seasonal inundation changes consistent with river 

discharge records within six major US river basins. An uncertainty analysis indicated generally 

reliable fwLBand performance for major land cover areas and under low to moderate vegetation 

cover, but with lower accuracy for detecting water bodies covered by dense vegetation. Finer 

resolution (30-m) fwLBand results were obtained for three sub-regions in North America using an 

empirical downscaling approach and ancillary global Water Occurrence Dataset (WOD) derived 

from the historical Landsat record. The resulting 30-m fwLBand retrievals showed favourable 

spatial accuracy for water (commission error 31.46%, omission error 30.20%) and land 

(commission error 0.87%, omission error 0.96%) classifications and seasonal wet and dry periods 

when compared to independent water maps derived from Landsat-8 imagery. The new fwLBand 

algorithms and continuing SMAP and AMSR2 operations provide for near real-time, multi-scale 

monitoring of global surface water inundation dynamics and potential flood risk.
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1. INTRODUCTION

The fractional cover of land surface water (fw) inundation is a key component of the global 

water budget and a controlling factor in hydrology, climate and ecosystem modelling (Pham-

Duc et al., 2017; Melton et al., 2013; Watts et al., 2014). The fw dynamics reflect spatial and 

temporal changes in a number of environmental factors including anomalous rainfall-driven 

flood events (Sun et al., 2011), seasonal thawing and snowmelt in spring (Watts et al., 2012), 

and longer-term environmental changes (Lin et al., 2011). Characterizing fw variations has 

become a prerequisite for improved understanding of hydrological and ecological processes 

(Alsdorf et al., 2007; Fu et al., 2009), while providing essential support for a broad range of 

applications including water resources management (Sánchez-Carrillo et al., 2004), wetland 

monitoring (Melton et al., 2013), vector borne disease control (Chuang et al., 2012), and 

flood and drought risk assessment (Komi et al., 2017). Dynamic fw mapping has also been 

used as a prerequisite for the retrievals of higher-order land surface parameters from 

microwave remote sensing (Jones et al., 2010; Ye et al., 2015).

Previous approaches for satellite remote sensing of global fw dynamics have involved 

relatively low-temporal frequency but fine spatial resolution (10–100 m) fw mapping from 

optical and/or infrared (IR) imagery (Brakenridge and Anderson, 2006; Carroll et al., 2009; 

Verpoorter et al., 2014) or radar backscatter data (Bourgeau-Chavez et al., 2001; Bartsch et 

al., 2012; Kim et al., 2016). Passive microwave radiometry has also been used for fw 
mapping with relatively high temporal frequency (daily to 10-day) but at coarser (5 km to 25 

km) spatial scales (Prigent et al., 2007; Schroeder et al., 2014; Du et al., 2016). Passive 

microwave sensors used for fw mapping include the Advanced Microwave Scanning 

Radiometer for the Earth Observing System (AMSR-E) (Kawanishi et al., 2003), Advanced 

Microwave Scanning Radiometer 2 (AMSR2) (Imaoka et al., 2012) and the Special Sensor 

Microwave/Imager (SSM/I) (Ferraro et al., 1996), which provide relatively high-frequency 

(18 GHz to 89 GHz) brightness temperature (Tb) observations.

Passive microwave remote sensing allows for global daily fw monitoring due to global 

coverage of current operational sensors, combined with strong microwave sensitivity to 

surface water and relative insensitivity to weather constraints. However, the resulting fw 
retrievals tend to underestimate surface water inundation extent in closed canopy areas due 

to the attenuation of surface microwave emissions by vegetation, with generally greater 

vegetation constraints for higher microwave frequencies (Du et al., 2016). Alternatively, the 

ESA Soil Moisture and Ocean Salinity (SMOS) (Kerr et al., 2001; Parrens et al., 2017) and 

NASA Soil Moisture Active Passive (SMAP) radiometers (Entekhabi et al., 2010) provide 

global coverage and frequent (mean 3-day) sampling, with potentially enhanced sensitivity 

to water signals underlying vegetation due to relatively greater canopy transmission of low 

frequency (L-band) microwave emissions (Entekhabi et al., 2010).
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Better capabilities are needed for near real-time assessment of surface water inundation 

dynamics at finer spatial scales commensurate with local landscape heterogeneity for 

monitoring extreme hydrological events (e.g. flood and droughts) and environmental 

changes (Fu et al., 2009; Fluet-Chouinard et al., 2015). Planned next generation satellite 

missions propose both high spatial and temporal resolution mapping of global surface water 

inundation dynamics designed for landscape assessments, including the NASA-ISRO 

Synthetic Aperture Radar (NISAR) and Surface Water Ocean Topography (SWOT) radar 

altimetry mission (Alvarez-Salazar et al., 2014; Fu and Ubelmann, 2014; Chapman et al., 

2015; Prigent et al., 2016). However, other approaches have been developed for spatial 

downscaling of coarser resolution fw estimates from current operational passive microwave 

sensors (Galantowicz, 2002; Fluet-Chouinard et al., 2015; AER, 2017; Aires et al., 2017). 

The spatial downscaling process generally relies on the use of finer scale ancillary 

information, including flood potential maps derived from hydrologic analyses, to inform 

empirical spatial interpolation and downscaling of coarser resolution fw retrievals (Wu and 

Liu, 2015). Suitable downscaling methods applied to fw retrievals from available satellite 

passive microwave sensors allow for both near real-time and long-term global inundation 

mapping with high spatio-temporal resolutions.

In this investigation, we developed and tested an approach for estimating global fw 
dynamics using SMAP radiometer data that exploit enhanced L-band (1.4 GHz) microwave 

sensitivity to surface water; SMAP also provides observations at constant incidence angle 

and high Tb calibration accuracy (radiometric uncertainty ~1K) (Piepmeier et al., 2017) for 

potentially robust fw retrievals. Our algorithm approach also uses other land parameter 

information derived from overlapping AMSR2 higher frequency Tb observations to 

represent the influence of soil moisture and vegetation on the surface water signal. The 

resulting fw retrievals (hereby denoted as fwLBand) provide global coverage with 1–3 day 

temporal sampling and 36-km resolution, and extend over the 19-month period from June 

2015 to December 2016. Here the fwLBand parameter defines the areal proportion of 

standing water within a 36-km SMAP grid cell. Furthermore, an empirical approach using 

ancillary surface water persistence information from the historical Landsat record (Pekel et 

al., 2016) was used to downscale the 36-km fwLBand retrievals to 30-m resolution to evaluate 

the potential for finer landscape level monitoring of fw inundation dynamics from SMAP.

The paper continues with a presentation of the data and methods (section 2). The fwLBand 

results were evaluated against alternative global fw maps derived from other available 

satellite records, while relative differences in fw cover from these products were evaluated 

over the global gradient in vegetation optical depth (VOD) derived from SMOS L-band Tb 

observations (section 3.1). The fwLBand seasonal variations were evaluated against monthly 

river discharge measurements for selected large basins (section 3.2). The spatially 

downscaled fwLBand results were also evaluated over other selected sub-regions in relation to 

independent surface water maps representing seasonal wet and dry periods obtained from 

Landsat-8 observations (section 3.3). Inundation dynamics derived from SMAP were 

compared with MODIS and Landsat results (section 3.4). A sensitivity analysis was also 

conducted to document expected fwLBand performance for major global land cover types 

based on uncertainty in the underlying model assumptions and parameterizations (section 

3.5). Finally, further discussion (section 4) and conclusions (section 5) were presented.
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2. METHODS

2.1. Algorithm Development

The fwLBand algorithm was developed from a retrieval scheme originally used with AMSR-

E W-band (89 GHz) Tb observations for detecting pan-Arctic inundation dynamics (Du et 

al., 2016). In the W-band fw (hereby denoted as fwWBand) algorithm, a look-up table (LUT) 

was first established to provide reference microwave emissivities at 89 GHz for pure land 

and water endmembers under a range of global land and atmosphere conditions 

characterized by other AMSR-E land parameter retrievals and Tb frequency ratios (Du et al., 

2016). The fwWBand retrievals were then obtained on a per pixel basis by computing H-

polarization (pol) difference ratio (DR) or combined H-pol and V-pol double difference ratio 

(DDR) Tb or emissivity deviations from reference conditions established for pure land and 

water endmember grid cells. A detailed description of the DR and DDR methods used for 

the AMSR-E fwWBand retrievals are provided elsewhere (Du et al., 2016). In this study, a 

similar DR algorithm is used with SMAP L-band Tb observations for estimating fwLBand. 

Here, the DR algorithm was established using a two-step procedure similar to the previous 

AMSR-E W-band algorithm application, but adapted for use with SMAP L-band Tb 

observations.

2.1.1 Algorithm Theoretical Basis

The satellite observed L-band emissivity of the land surface (e ) under non-frozen and snow-

free conditions can be described by the Tau-Omega model (Eq. 1) with negligible 

atmosphere effects considered (Mo et al., 1982; Jones et al., 2010):

Tbp = f w ⋅ epw ⋅ Tw + (1 − f w) ⋅ epl ⋅ T l

epl = [1 − ωp][1 − γp][1 + Rp
s γp] + (1 − Rp

s )γp

γp = exp[ − VODp]
epw = f (εw, Sr)

(1)

Where subscript p denotes microwave polarization and subscripts w and l denote water and 

land variables, respectively; Tb is satellite observed brightness temperature; T is the effective 

surface temperature within the SMAP L-band penetration depth of pure land or water; fw is 

the fraction of open water within the sensor footprint; ω is the effective scattering albedo 

(Kurum, 2013); γ is the one-way microwave transmissivity of the canopy, which decreases 

exponentially with VOD; Rs is the effective microwave reflectivity of bare soil with surface 

roughness effects considered; ɛw denotes pure water permittivity, and Sr is the water surface 

roughness parameter. According to Eq. (1), L-band ep is determined by microwave 

absorption and scattering properties of vegetation, surface soil and standing water, which are 

primarily represented by respective VOD, soil moisture and surface temperature conditions 

(Du et al., 2016).

An algorithm lookup table (LUT) of reference microwave emissivities for pure land and 

water endmember conditions at L-band was constructed a priori over a global range of 
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vegetation and soil conditions defined by daily VOD and volumetric soil moisture (mv) 

retrievals from an existing AMSR (AMSR-E and AMSR2) global land parameter data 

record (LPDR; Du et al., 2017) (Table 1). Considering the dependence of land feature 

permittivity on temperature, the Tl and Tw derived from surface temperature (Ts) records of 

the NASA Goddard Earth Observing System Model version 5 (GEOS-5) land model 

(Lucchesi 2013; Chan et al., 2016a) were also used to represent the daily surface 

temperature influence on the fwLBand estimates (Table 1). Other ancillary data were used to 

define suitable conditions for the fwLBand retrieval, including fw derived from K-band (18.7 

GHz and 23.8 GHz) AMSR2 Tb observations (hereby denoted as fwKBand) (Du et al., 2017) 

and a MODIS IGBP land cover classification (Friedl et al., 2002). A pure land endmember 

condition was identified if no water presence was indicated for a 36-km SMAP grid cell by 

the ancillary MODIS land cover map and where minimum fractional water (<0.01) was 

detected by the corresponding fwKBand record. A conservative 0.01 threshold was set by 

considering the AMSR LPDR retrieval uncertainties and fwKBand positive retrieval biases 

(0.01 to 0.02) (Du et al., 2017). The L-band emissivity of the identified land endmembers 

was calculated as the ratio of SMAP 36-km Tb observations and Tl (or Tw). A collection of 

pure land and water endmembers was assembled from a one year (June 2015 to May 2016) 

record of SMAP Tb observations and Tl and Tw records; the averaged emissivity of the land 

endmembers for each surface condition defined in LUT was assigned as the final reference 

emissivity for land (epl
re f ). The reference open water emissivity endmember (epw

re f ) in the LUT 

was theoretically calculated for fresh water using the Fresnel Equations and Double-Debye 

dielectric model (Ulaby et al., 2014).

In this study, SMAP L-band H-polarization is used for inundation retrievals due to its larger 

emissivity range and higher sensitivity to water signals relative to V-polarization (Du et al., 

2016). The fwLBand of a given 36-km grid cell under the soil and vegetation conditions 

defined by the AMSR LPDR can be inferred from the SMAP observed emissivity at H-

polarization and the corresponding LUT reference emissivities under the same conditions. 

Based on Eq. (1) and the 188 available literature (Du et al., 2016), the fwLBand is determined 

using a Difference Ratio (DR):

f wLBond =
(Tbhl

re f − Tbh
obs)

(Tbhl
re f − Tbhw

re f )

Tbhl
re f = ehl

re f ⋅ T l

Tbhw
re f = ehw

re f ⋅ Tw

(2)

Here Tw is assumed to be approximately equivalent to Tl (Tw ≈ Tl; section 2.2.2). An 

alternative Double Difference Ratio (DDR) method utilizing V-pol and H-pol Tb differences 

Tbv –Tbh for deriving fw (Du et al., 2016) was not used in the current study. The DDR shows 

higher retrieval uncertainties than the DR method in sparsely vegetated and barren land 

regions where relatively large V and H polarization differences resemble the characteristics 

of open water emissions (Du et al., 2016). Compared with higher microwave frequencies, 

the SMAP L-band Tb observations tend to have larger polarization differences due to more 
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dielectrically transparent vegetation cover and smoother soil surface (Entekhabi et al., 2010; 

Huang et al., 2010). Higher noise level is expected in the Tbv –Tbh observations relative to 

the single-channel 199 Tbh measurements.

2.1.2 Downscaling of fwLBand Retrievals

An empirical approach is demonstrated in this study for spatial downscaling of 36-km 

resolution SMAP fw time series using the ancillary 30-m resolution Landsat Water 

Occurrence Dataset (WOD) (Pekel et al., 2016). The WOD maps represent an estimate of 

the inundation frequency of 30-m pixels over the globe determined from a 32-year Landsat 

image collection. For a given 36-km SMAP grid cell, the inundation occurrence defined 

from all WOD 30-m pixels within the cell is extracted and sorted in descending order. 

Inundation areas estimated by the 36-km fwLBand retrieval are allocated sequentially, first to 

pixels with higher occurrence frequency, or most likely to be inundated, followed by 

allocations to pixels with lower occurrence frequency. The allocation stops when the area 

represented by 30-m open water pixels is equivalent to the fwLBand coverage of the 

overlying SMAP grid cell or only 30-m pixels with zero water occurrences remain. This 

approach allows for potential 30-m resolution binary (flooded or non-flooded) inundation 

area maps to be defined globally at a near daily time step consistent with SMAP 

observations and WOD spatial coverage. However, for this study we only conducted the fw 
spatial downscaling and assessments for selected sub-regions and paired seasonal wet and 

dry snapshots.

2.2. Study Domain and Data Utilized

2.2.1 Study domain

This study focuses on SMAP fwLband retrieval over the global terrestrial domain, excluding 

permanent ice and snow covered areas. Six major river basins within the continental US 

(CONUS) were also selected for comparing the fwLBand results against basin river discharge 

(Q) measurements (Section 2.2.3). The selections include the Sacramento, Rio Grande, Des 

Moines, Cumberland, Apalachicola and Minnesota basins (Fig. 1); these basins are defined 

by U.S. Geological Survey (USGS) hydrologic units (Seaber et al., 1987), delineated using 

the USGS Watershed Boundary Database (Berelson et al., 2004; WBD, 2004). For the Rio 

Grande, four smaller hydrologic catchments (Headwaters, Elephant Butte, Mimbres and 

Amistad) were examined within the larger basin, corresponding to drainage areas 

represented by the available river discharge measurement stations (Fig. 1). The six large 

river basins cover a diversity of climate, hydrologic and ecological conditions. The 

Apalachicola basin contains significant areas of forests with high biological diversity (White 

et al., 1998), while large portions of the Sacramento and Des Moines basins are dominated 

by croplands and intensive agriculture (Georgakakos et al., 1998). The Minnesota basin is 

affected by significant winter snow cover and seasonal freeze-thaw events (Cherkauer and 

Lettenmaier, 1999), while the Rio Grande basin is characterized by a semi-arid climate and 

strong vertical gradients in precipitation and vegetation (Klein and Barnett, 2003). Flow 

regulations by major dams across the Rio Grande (Graf, 1999), Sacramento (Singer, 2007) 

and Des Moines (Georgakakos et al., 1998) rivers strongly influence the observed seasonal 

river discharge in these basins relative to natural flow conditions.
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Three other sub-regions were used for quantitative comparisons between the 30-m 

downscaled fwLBand data and independent water cover maps derived from Landsat-8 

imagery. The three sub-regions (region 1 centered at −143.79°, 66.91°; region 2 centered at 

−93.88°, 38.89°; region 3 centered at −91.28°, 31.73°) are distributed across a North 

American latitudinal gradient extending from the Alaskan arctic to the US southern coastal 

plain (Fig. 1). Each sub-region represented a ~31,450 km2 area consistent with the size of a 

single Landsat scene. The selected sub-regions included portions of the lower Mississippi 

River Valley that experienced major flooding during the 2015/2016 winter season (Emerton 

et al., 2017). A smaller area (0.1°× 0.1° rectangle centered at −91.55°, 31.27°) within region 

3 was selected for evaluating the finer scale inundation patterns.

2.2.2 Datasets used for Algorithm Development

The fwLBand algorithm approach developed in this study uses synergistic inputs from several 

different satellite data records, including SMAP, AMSR2, MODIS and Landsat. Satellite L-

band (1.4 GHz), H-pol microwave Tb observations from the NASA SMAP mission provide 

primary information for delineating fw cover in the algorithm. Surface soil moisture 

conditions potentially influencing the SMAP Tb and fw retrievals were defined from the 

AMSR LPDR (version 2; Du et al., 2017). Daily Ts potentially influencing the SMAP Tb 

and fw retrievals were defined from the GEOS-5 forward processing system (De Lannoy et 

al., 2013; Chan et al., 2016a). A Boston University MOD12Q1 V004 MODIS 1 km IGBP 

land cover classification (Friedl et al., 2002) was used to identify permanent water bodies 

and associated surface water dominant grid cells for establishing the LUT used for the 

coarser SMAP fw retrievals (section 2.1.1). The global WOD is derived from a 32-year 

Landsat historical image archive (Pekel et al., 2016) and was used for spatial downscaling of 

the SMAP 36-km resolution fwLBand retrievals to 30-m resolution over the selected sub-

regions.

The NASA SMAP satellite provides global vertically (V) and horizontally (H) polarized 

microwave Tb observations over land and ocean with descending/ascending orbital 

equatorial crossings at 6:00 AM/PM local time extending from 31 March 2015 to the present 

(Entekhabi et al., 2010). The SMAP observations have enhanced microwave L-band 

sensitivity to surface and soil moisture conditions under low to moderate vegetation cover 

within approximately 5 kg/m2 of above-ground vegetation biomass water content, relative to 

optical-IR and higher frequency microwave sensors (Chan et al., 2016a). For this study, we 

used the 19-month (June 2015 to December 2016) SMAP Level-1C half-orbit ascending and 

descending Tb record (SPL1CTB version 3) for mapping global fw dynamics. The 

SPL1CTB Tb data are provided in a 36 km resolution global EASE-Grid v2 projection 

similar to the native sensor footprint (Chan et al., 2016a), while the resulting fwLBand record 

was derived in the same resolution and projection format.

The AMSR2 portion of the LPDR is temporally overlapping with SMAP observations and 

was used to define other environmental factors potentially affecting the SMAP fw retrievals. 

The LPDR exploits calibrated AMSR multi-frequency Tb observations for global daily 

mapping of multiple synergistic atmosphere and land parameters (Du et al., 2017). No 

LPDR daily retrievals are available for days with active precipitation or areas with identified 
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X-band Radio Frequency Interference (RFI); the LPDR also excludes snow and frozen 

surface conditions, and large water bodies covering more than half of a 25-km grid cell (Du 

et al., 2017). Since the atmosphere is almost transparent to SMAP L-band observations 

(O’Neill et al., 2016), only LPDR VOD and mv data, which account for the influence of 

dynamic surface water (fwKBand) variations on the microwave signal, were used to represent 

vegetation and soil moisture conditions in the SMAP fwLBand retrievals; here, the AMSR2 

X-band VOD and mv retrievals are used as a proxy for similar conditions influencing the 

SMAP L-band Tb observations.

The Tl processed for SMAP from GEOS-5 Ts represents the effective soil temperature 

within the L-band penetration depth (Holmes et al., 2012; Chan et al., 2016a) and is 

provided with the NASA SMAP L3 Radiometer Global Daily 36 km EASE-Grid Soil 

Moisture product Version 4 (SPL3SMP) (O’Neill et al., 2016). To evaluate the uncertainty 

associated with the assumption of Tw ≈ Tl, alternative surface water temperature (Twater) 

inputs were tested for the fwLBand retrieval. Here Twater was calculated using the GEOS-5 

hourly surface temperature analysis (Tsurf) averaged over each entire grid cell; surface 

temperature for land tiles only (Tland); and a static data set describing fractions of land 

(FRland), permanent water (FRwater) and permanent ice (https://opendap.nccs.nasa.gov/dods/

GEOS-5/fp/0.25_deg/assim).

The WOD is derived from Landsat imagery extending from 1984 to 2015 (Pekel et al., 

2016). The WOD provides a consistent characterization of Landsat derived surface water 

inundation persistence over the historical sensor record, while open water occurrence is 

expressed as a percentage of the available Landsat observations over time identified as water 

covered (Pekel et al., 2016). The WOD data used for this study were obtained in a native 

0.00025 degree resolution geographic projection format, representing approximately 30-m 

spatial resolution.

2.2.3 Datasets used for global fwLBand validation

The fwLBand results were compared with monthly Q observations for six major North 

American basins (Section 2.2.1), and detailed observations for selected sub-regions, 

including 30-m open water maps defined from Landsat-8 imagery. A global comparison of 

the SMAP fwLBand results was conducted against other global fw, land cover and vegetation 

maps from the MODIS-SRTM (MOD44W) static open water database (Carroll et al., 2009), 

the LPDR fwKBand retrievals derived from AMSR2 (Du et al., 2017), and an estimated L-

band nadir VOD record included with the SMOS Level 3 (CLF31) soil moisture product (Al 

Bitar et al., 2017).

Monthly Q measurements (June 2015 to December 2016) were obtained from downstream 

stations within the six US river basins (USGS, 2001) (Fig. 1) for evaluating fwLBand 

seasonal dynamics; here, we assume that seasonal variations in surface water storage defined 

from the SMAP fw record are proportional to river discharge from the major basins 

(Yamazaki et al., 2011; Du et al., 2016).

For validating the downscaled fwLBand results and inundation dynamics, a 30-m resolution 

land and water mask was derived from selected Landsat-7 Enhanced Thematic Mapper Plus 
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(ETM+), Landsat-8 Optical Land Imager (OLI) and Thermal Infrared Sensor (TIRS) scenes 

for each sub-region using Fmask software (version 3.3) (Zhu et al., 2015). The Fmask 

algorithm shows high accuracy in classifying land, water, cloud, and cloud shadow with a 

documented 2% omission error and 14% commission error (Zhu and Woodcock, 2014). The 

paired Landsat scenes acquired for each sub-region represent seasonal wet and dry 

conditions depicted by the Fmask classification results, and meet requirements for having 

less than 10% cloud coverage and best image quality as indicated in the Landsat-8 metadata 

files.

The SMAP derived inundation dynamics were evaluated over the lower Mississippi River 

Valley sub-region (region 3) by comparing the fwLBand results against independent 14-day, 

250-m resolution water occurrence maps (14×3D3OT; version 6.2) from the NASA MODIS 

near real-time global flood mapping product (https://floodmap.modaps.eosdis.nasa.gov) 

(Brakenridge and Anderson, 2006; Nigro et al., 2014). The 14-day MODIS flood product is 

derived from multiple 3-day products and has less cloud cover impacts than a single 3-day 

product (Nigro et al., 2014). A prior assessment of the MODIS dynamic flood record 

indicates that the 3-day product was successful in capturing flooded areas, with 44% of 

flood events classified with good, excellent or almost perfect accuracy, 23% of events 

classified as poor or fair, and 33% of events undetermined due to cloud contamination 

(Nigro et al., 2014).

The 250-m resolution MOD44W product is derived from a compilation of the SRTM 

(Shuttle Radar Topography Mission) Water Body dataset (SWBD) and the MODIS 

(MOD44C) Collection 5 (2000–2002) open water classification product (Carroll et al., 

2009). The static global water body map derived from MOD44C data has a reported 2% 

commission error in the region between 60° and 90° N in North America relative to the 

National Land Cover Dataset (NLCD) (Carroll et al., 2009).

The AMSR LPDR fwKBand record is capable of monitoring global water inundation 

dynamics (Du et al., 2017), but is expected to have different sensitivity to surface water than 

the SMAP fwLBand retrievals owing to different sensor view geometries and frequency 

dependent sensitivity to surface conditions and vegetation cover. The annual mean (June 

2015 – May 2016) of the descending SMOS Level 3 nadir VOD record (6:00 PM equatorial 

crossing time) was used in evaluating the SMAP ascending orbit fwLBand record and relative 

differences with other fw records over the global domain. The microwave VOD parameter is 

a measure of the attenuation of microwave radiation by the vegetation canopy (Fernandez-

Moran et al., 2017), which is a frequency-dependent function of vegetation water content 

(VWC) (Jackson and Schmugge, 1991; Jones et al., 2013). The Level 3 SMOS daily VOD 
record was derived simultaneously with soil moisture from dual polarization (H, V) and 

multi-angular SMOS measurements (Wigneron et al., 2007; Kerr et al., 2012), and optimized 

using a multi-orbit approach considering temporal auto-correlation of vegetation optical 

depth (Al Bitar et al., 2017).

2.2.4 Data processing

For generating the fwLBand estimates, the SMAP Tb data were averaged from SPL1CTB 

fore-looking and aft-looking Tb observations, which were not corrected for open water 
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effects as those processed for the SPL3SMP soil moisture retrievals. The SMAP SPL1CTB 

half-orbit files for each day were composited to a global 36-km EASE-Grid v2 format. For a 

given grid cell having multiple SPL1CTB data points represented, the data point with local 

solar time nearest to the SMAP orbital equatorial crossing time was selected for the daily 

composite, similar to the process used to derive the SMAP SPL3SMP product (Chan et al., 

2016a). The above processing was carried out separately for SMAP ascending and 

descending orbit data. The AMSR2 LPDR VOD and mv record was reprocessed from the 

original 25-km EASE-Grid v1 projection format (Armstrong and Brodzik, 1995; Ashcroft 

and Wentz, 1999) to the SMAP 36-km EASE-Grid v2 format (Brodzik et al., 2012; Brodzik 

et al., 2014) using Nearest Neighbor resampling. In addition, a temporal linear interpolation 

approach was used to gap-fill missing daily AMSR2 LPDR grid cell observations using 

temporally adjacent LPDR retrievals (Kim et al., 2012). The LPDR interpolation enables the 

utilization of all available SMAP observations for global fwLBand mapping despite possible 

mismatch between SMAP and AMSR2 swath coverages, though the underlying assumption 

of temporally linear changes of VOD and mv may lead to additional retrieval uncertainties. 

Due to overlapping SMAP polar orbital swaths, there is greater fwLBand temporal coverage 

(~ 1 to 2 days) at higher latitudes (>45°) relative to the equatorial zones (~3 days).

Similar to the AMSR LPDR, the SMOS VOD and GEOS-5 Twater records were re-sampled 

to a 36-km EASE-Grid v2 format using the Nearest Neighbor method. The 1-km MODIS 

land cover and 250-m MOD44W data were also re-projected to the same 36 km EASE-Grid 

v2 format consistent with the fwLBand results.

2.3. Evaluation of the fwLBand Retrievals

A global fw comparison was conducted using the MOD44W static water map and one-year 

(June 2015 to May 2016) averages of SMAP fwLBand and AMSR2 fwKBand results. 

Quantitative metrics used to evaluate the relationships included correlation coefficient (R), 

root mean square difference (RMSD) and mean difference. The global inundation areas 

derived from MOD44W, fwLBand, and fwKBand annual averages were also compared under 

different vegetation biomass levels indicated by the SMOS VOD map.

In addition, the fwLBand dynamics were examined using fwLBand monthly mean values and 

corresponding monthly Q records for the six CONUS river basins over the 1.5-year study 

period (June 2015 to December 2016). To ensure consistent basin coverage in space and 

time, the fwLBand monthly composites were generated from daily fwLBand retrievals 

covering over 75% of a given basin area at least six times per month. Correlations between 

monthly Q and basin-averaged fwLBand were then evaluated for each basin.

The downscaled 30-m fwLBand results were validated against corresponding Landsat-8 (OLI 

and TIRS) based land and water classifications for the three selected sub-regions. For each 

sub-region, the fwLBand accuracy relative to Landsat-8 in discriminating water and land 

pixels at 30-m resolution was summarized for two Landsat acquisition dates with contrasting 

dry and wet surface conditions. The metrics for accuracy assessment include commission 

error, omission error and overall accuracy. Considering Nji represents the number of the 

pixels belonging to feature j but classified as feature i, the commission error for feature j is 
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Nij/(Njj+Nij), the omission error for feature j is Nji/(Njj+Nji), and overall accuracy is (Nii

+Njj)/(Nii +Njj+Nij+Nji). No comparisons were made for pixels identified as cloud covered 

or cloud shadowed by the Landsat Fmask algorithm.

The downscaled results over the lower Mississippi River Valley (region 3 in Fig.1) obtained 

from 14-day fwLBand averages from June 1, 2015 to May 31, 2016 were compared with 

MODIS 14-day water occurrence maps generated from the NASA near real-time flood 

mapping system, Landsat 8 OLI and Landsat 7 ETM+ land and water classifications derived 

from the Fmask algorithm. The striped data degradation areas in the ETM+ images were 

excluded from the analysis.

2.4. Estimation of fwLBand Uncertainty

The assumption of Tw ≈ Tl (section 2.1.1) was evaluated by comparing differences between 

15-day fwLBand retrievals over July 1–15, 2015 derived using Tw ≈ Tl and those estimated 

using Tw ≈ Twater. The GEOS-5 Twater is calculated for grid cells without permanent snow 

and ice as:

Twater = (Tsur f − FRland ⋅ T land / FRwater) (3)

The 36-km fwLBand algorithm uncertainties strongly depend on the accuracy of the LUT 

reference emissivities and AMSR2 LPDR temporal interpolation. These uncertainties were 

quantified by considering the standard deviation (SD) of each LUT reference emissivity and 

comparing fwLBand results derived with and without LPDR interpolation. The emissivity 

SDs for pure land endmembers were acquired while assembling the global LUT (section 

2.2.2). An additional process was performed for identifying water endmembers and their 

corresponding SDs. Pure water endmembers were assigned if the 36-km SMAP grid cells 

over land were designated as open water bodies in the ancillary MODIS IGBP land cover 

map and if the fwKBand value of the nearest AMSR2 25-km grid cell was over 75%. The 

associated SDs derived from the water endmembers are assumed representative of the 

uncertainty associated with variations in water salinity and surface roughness, which are not 

accounted for in the theoretically calculated LUT reference values.

We assumed that the fwLBand retrievals are impacted by random errors associated with the 

reference emissivity SDs and follow a normal distribution; we also assumed that the 

retrievals are affected by LPDR interpolation uncertainties. The estimated “true” fwLBand 

retrievals were then derived using the same LUT approach, but with reference emissivity 

random errors subtracted and using un-interpolated LPDR inputs. The resulting algorithm 

uncertainties were then represented by the differences between one-year (June 2015 to May 

2016) composites of the estimated “true” and baseline fwLBand retrievals for the major 

MODIS IGBP land cover classes over the global domain. Other uncertainties associated with 

fwLBand retrievals obscured by overlying vegetation (VOD) and the fwLBand downscaling 

process are discussed separately (Section 4).
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3. RESULTS

3.1. Comparisons of fwLBand, fwKBand and MOD44W

The annual mean SMAP fwLBand results (Fig. 2a) show similar global inundation patterns 

relative to the AMSR2 fwKBand retrievals (Fig. 2b) and MOD44W global water map (Fig. 

2c). All three products show extensive wetland complexes in northern Canada and Eurasia, 

and along major river systems such as the Amazon, Yangtze and Lena. The SMAP fwLBand 

mean annual composite corresponds favorably with the MOD44W open water map (R=0.85, 

RMSD=0.064, p<0.001), while the SMAP retrievals are wetter, with a mean difference of 

0.032. The above results are based on SMAP ascending orbit fwLBand estimates while 

alternative estimates derived from descending orbit observations show similar, but slightly 

lower correspondence with MOD44W (R=0.80). Therefore, the following analysis is based 

on ascending results only. For temporal consistency, fwKBand results derived from AMSR2 

ascending orbit (equator crossing time 1:30 PM) observations were used in this study. The 

AMSR2 fwKBand results show similar strong correspondence (R=0.81, RMSD=0.058) and a 

smaller mean wet difference (0.010) relative to the MOD44W record. In contrast to the static 

MOD44W map (Fig. 2c), significant inundation presence was detected by both the fwLBand 

and fwKBand observations in areas associated with more recent flooding during the 2015–

2016 observation period, including the Mississippi river valley, South American Pampas, 

Ganges river delta, and lower Yangtze river valley (Fig. 2a and 2b). The high inundation 

levels observed by SMAP in southeastern South America and central Asia (Fig. 2a) were 

consistent with documented climate patterns of 2015–2016 including severer flooding in 

South America and abnormally wet conditions observed for central Asia (Blunden et al., 

2016; Blunden et al., 2017). Comparisons were also made between SMAP fwLBand and 

MOD44W data for five latitude zones as summarized in the Supplementary material.

The fwLBand record shows large seasonal inundation variability along major river corridors, 

including the Amazon, Darling, Euphrates, Mekong and Yenisei (Fig. 2d). Large fwLBand 

seasonal variations were also found over the Missouri and Mississippi basins, northern 

Venezuela, eastern Europe, west-central Asia, central and eastern China, the Indian sub-

continent, Sahel region and southeastern Australia (Fig. 2d). The large fwLBand variations in 

these areas are consistent with characteristic seasonal wet and dry cycles, and anomalous 

flooding associated with 2015–2016 El Niño–Southern Oscillation (ENSO) activity 

(Emerton et al., 2017).

Comparisons were also made between the fwLband, fwKband and MOD44W records for 36-

km grid cells with low water fraction (MOD44W fw < 0.1). The correlation (R) between 

SMAP fwLBand and MOD44W under these low water conditions is reduced to 0.38, while a 

relatively strong correlation (R=0.62) still exists between the two dynamic products fwLBand 

and fwKband. Small water bodies may have large intra-annual and inter-annual variations 

(Song et al., 2014), which may contribute to the lower correspondence between dynamic and 

static inundation products. The retrieval errors translated from the uncertainties of reference 

land emissivity are proportional to the land fractional cover and larger retrieval uncertainties 

are also expected in regions with little water presence.
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The fwLBand, fwKBand and MOD44W results are expected to be less able to detect standing 

water under increasing vegetation cover due to the obstruction of satellite observations by 

intervening vegetation biomass. The sensitivity of the fwLBand retrievals to vegetation cover 

is also expected to be less than the fwKBand or optical-IR observations due to the greater 

vegetation transparency of L-band microwave emissions. The estimated global surface water 

inundation results were compared under different vegetation biomass conditions represented 

by the SMOS VOD map (Fig. 3). The fwLBand results show greater surface water cover than 

fwKBand and MOD44W under low to moderate vegetation levels, while the product 

differences are smaller for more densely vegetated areas (e.g. VOD ≥0.9), which are mainly 

covered by evergreen broadleaf forests (Fig. 3b, 3c). All three surface water products show a 

general inundation increase with VOD in sparsely vegetated areas (VOD<0.2), followed by a 

decline in inundation under higher VOD levels. The global fw and VOD pattern is consistent 

with generally sparse vegetation cover and lower inundation levels in arid climate zones, 

whereas the declining fw trend at higher VOD levels may reflect increasing limitations of 

the satellite observations to detect surface inundation in more densely vegetated areas. While 

the fwLBand results indicate potentially enhanced L-band sensitivity to standing water under 

low to moderate vegetation cover, similar fwLBand, fwKBand and MOD44W results at higher 

VOD levels indicate minimal added value of the fwLBand retrievals in more densely 

vegetated areas, including forests. These results may explain lower-than-expected inundation 

levels in wet tropical forest areas, including Amazonia, central Africa and Southeast Asia 

(e.g. Fig. 2).

3.2. Comparisons Between fwLBand and River Discharge Data

River discharge (Q) and surface water inundation are integral components of the 

hydrological cycle and are closely connected with each other. Both Q and fw are sensitive to 

seasonal and inter-annual climate variations, and are affected by precipitation, evaporation 

and seasonal freeze/thaw transitions within a basin (McClelland et al., 2004; Watts et al., 

2012). The basin-average fwLBand results were compared with associated Q observations at 

the outlets of the six CONUS river basins examined (Fig. 1). The monthly fwLBand results 

were significantly and positively correlated with the monthly Q observations (mean R=0.70 

across the six basins) (Fig. 4). The Apalachicola river basin showed the strongest correlation 

(R=0.86) (Fig. 4a) among all basins examined, due to temporal consistency between river 

flow peaks and maximum inundation areas for this basin. Relatively low correlation 

(R=0.56) was found for the Des Moines river basin, where a temporal phase shift of fwLBand 

relative to Q occurred in the summer seasons (Fig. 4c). Missing monthly fwLBand estimates 

for the Des Moines and Minnesota basins (Fig. 4c and 4d) reflect predominantly frozen 

conditions in the winter months for these areas, since no fwLBand retrievals were made under 

frozen conditions. In addition, comparisons between SMAP fwLBand and river discharge data 

were made for Amazon river basin as described in the Supplementary material.

3.3. Comparisons between 30-m fwLBand downscaled retrievals and Landsat-8 results

The downscaled fwLBand retrievals exhibit spatial details of inundation patterns consistent 

with 30-m Landsat-8 (OLI, TIRS) observations representing seasonal dry and wet conditions 

within the three sub-regions (Fig. 5–7). In particular, major winter flooding events 

associated with 2015–2016 ENSO activity (Section 3.1; Fig.2a) in the lower Mississippi 
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River Valley were captured by both datasets as widespread inundation was shown in the 

region for Jan. 16, 2016 (Fig. 7c and 7d) in contrast to the dry conditions illustrated in the 

Jul. 24, 2015 images (Fig. 7a and 7b). The inundation details for the selected focus area in 

region 3 confirm similar seasonal surface water patterns between the downscaled 30-m 

SMAP fwLBand results and corresponding surface water maps from Landsat-8 (Fig. 8). 

Quantitative assessment of the fwLBand downscaled data shows overall favorable agreement 

with the Landsat-8 results, with respective 30-m fwLBand mean spatial classification 

accuracies of 70.71% for water and 98.99% for land pixels (Table 2). For all regions, the 30-

m fwLBand classification accuracy for water pixels was lower (mean accuracy 62.23%) under 

dry conditions than for flooded conditions (mean accuracy 79.19%). The average fw values 

detected by SMAP and Landsat-8 for the three regions are 3.07% and 2.92%, respectively. 

The fwLBand results show an overall 0.15% or relative 5.1% higher estimated inundation 

than Landsat-8, consistent with the previous analysis (Section 3.1 and Fig. 3); however, the 

river channel gaps shown in the SMAP downscaled results (Fig.6a and 7a) indicate possible 

uncertainties associated with the fwLBand retrieval and downscaling algorithms, which are 

discussed in Section 4.

3.4. Comparisons between Dynamic Inundation Products

To evaluate the ability of the SMAP retrievals to capture fw dynamics, comparisons were 

made between available Landsat water and land classifications, MODIS near real-time 

global flood mapping products and SMAP downscaled retrievals for the lower Mississippi 

River Valley sub-region. The resulting comparisons show overall similar inundation patterns 

and seasonal dynamics (Fig. 9) among the three products (R= 0.63 between MODIS and 

SMAP; 0.70 between OLI/ETM+ and SMAP; and 0.80 between MODIS and OLI/ETM+). 

The dry-down process from June to September 2015 as well as the Texas and Louisiana 

flooding event with losses exceeding one billion dollars in March 2016 (Blunden et al., 

2017) are captured in the SMAP results and also represented in the Landsat classifications. 

All three products respond to the winter flooding of the region from December 2015 to 

January 2016 (Holmes et al., 2016) and show peak inundation in January 2016. Considering 

the presence of vast woody wetland in the region (King and Keeland, 1999), the prolonged 

high inundation level observed by SMAP from December 2015 to January 2016 may reflect 

the higher sensitivity of SMAP L-band retrievals to water under the vegetation canopy. 

However, the relative wet bias from SMAP over the one-year period may also reflect the 

inability of the algorithm to distinguish standing water from saturated surface soil 

conditions, leading to possible fwLband overestimation.

3.5. Uncertainty of fwLBand Retrievals

The mean absolute difference between fwLBand 15-day (July 1–15, 2015) retrievals derived 

using the GEOS-5 water temperature inputs Tw ≈ Twater and alternative algorithm 

assumption Tw ≈ Ts was found to be negligible (0.001) over the globe. These results indicate 

that the fwLBand algorithm assumption for Tw ≈ Tl has a negligible impact on the global 

fwLBand performance.

The results of the fwLBand uncertainty analysis using error perturbation and un-interpolated 

LPDR inputs are summarized in Table 3. The overall fw estimation errors are within 
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± 0.82% over 89.45% of the global terrestrial domain, excluding permanent snow and ice. 

The lowest retrieval errors (<0.6%) are indicated for forests and wetlands, while the largest 

uncertainty is shown for urban areas (1.13%) followed by grasslands (1.00%), closed 

shrublands (0.99%) and croplands (0.96%). The estimated retrieval error for wetland areas is 

small (0.22%) in contrast to a previous investigation of AMSR-E 89 GHz fw retrievals over 

the northern high latitudes, where the largest retrieval uncertainty was found for wetlands 

(Du et al., 2016). Similar to the analysis for the global land domain, algorithm uncertainties 

were also estimated on a continental-basis. The corresponding fw estimation errors slightly 

fluctuate around the global mean level, with the smallest uncertainty (± 0.73%) for South 

America and the largest error (± 0.89%) for Oceania. The above uncertainty analysis 

assumes that open water bodies and other land features are spatially separated within a grid 

cell without overlapping each other. For densely vegetated areas where standing water is 

obscured by overlying vegetation, the fwLBand retrieval accuracy is likely degraded as 

implied from Fig. 3a and discussed in Section 4.

4. DISCUSSION

This investigation presents a new approach for satellite monitoring of global fw dynamics 

from SMAP, with enhanced L-band microwave sensitivity to surface water. This study also 

demonstrates potential downscaling of the SMAP fwLBand retrievals using synergistic 

information from the Landsat historical record for finer (30-m) landscape delineation of fw 
inundation dynamics. The fwLBand results show overall spatial consistency with MOD44W, 

but with major differences in regions where large seasonal variations (e.g. Sahel Belt) or 

flooding events (e.g. lower Mississippi River Valley) occurred that were not represented by 

the static water map. In particular, widespread inundation along the lower Mississippi river 

highlighted in the SMAP fwLBand results (Fig. 2a and 2d) and also detected to a lesser extent 

by the AMSR2 fwKBand retrievals (Fig. 2b) coincides with major 2015/2016 winter flooding 

events in the region from documented ENSO driven rainfall extremes (Emerton et al., 2017). 

The positive fwLBand seasonal anomalies occurring over the Indian sub-continent (Fig. 2d) 

are consistent with abundant precipitation brought by the summer monsoon in this region. 

Of the two dynamic surface water products examined in this study, the fwLBand results show 

generally higher inundation levels than the fwKBand results (Fig. 2a and 2b), which is 

consistent with expected enhanced SMAP L-band sensitivity to surface water signals 

underlying vegetation relative to higher frequency (K-band) retrievals from AMSR2. The 

differences in global inundation areas estimated from MOD44W, fwKBand and fwLBand 

datasets (Fig. 3) illustrate their different capabilities in capturing water signals under varying 

vegetation conditions.

Generally greater fwLBand inundation levels are consistent with the expected enhanced 

penetration ability of SMAP L-band observations relative to the AMSR2 K-band and 

MODIS optical-IR observations. Smaller differences among fwLBand, fwKBand and 

MOD44W in forested regions are consistent with reduced microwave sensitivity to surface 

water under dense vegetation. Similar to prior sensitivity studies using AMSR-E fwWBand 

retrievals (Du et al., 2016), the SMAP fwLBand accuracy may be degraded by overlying 

vegetation, especially in areas with higher canopy density (e.g. forests), though the lower 

frequency L-band observations indicate improved sampling under low to moderate VOD 

DU et al. Page 15

Remote Sens Environ. Author manuscript; available in PMC 2019 August 01.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



levels, complementing other fw products derived from satellite optical-IR and higher 

frequency microwave observations.

The fwLBand results show favorable temporal correspondence with monthly river discharge 

measurements and reflect consistent seasonal dry and wet cycles over the six basins 

examined. Though strongly correlated, differences in the dynamics of fw extent and 

downstream Q measurements are also expected because Q may vary independently from 

surface water storage fluctuations due to river regulation (Papa et al., 2008; Landerer et al., 

2010; Watts et al., 2012). The seasonal phase difference in fwLBand and Q monthly time 

series for the Des Moines river basin (Fig. 4c) is likely caused by reservoir operations for 

flood risk management (Georgakakos et al., 1998). In addition, the correlation between 

downstream Q measurements and basin-average fw also depends on basin size and relative 

homogeneity of basin climatic and physical conditions (Du et al., 2016).

The empirical downscaling of SMAP 36-km fwLBand retrievals using finer (30-m) scale 

surface water persistence maps from the historical Landsat record demonstrates a simple 

approach to incorporate coarser fw retrievals in delineating finer landscape level inundation. 

These results also demonstrate the potential added value of integrated satellite observations 

that leverage complementary information from different sensors; here, the downscaled 

fwLBand record combines enhanced L-band sensitivity and global 1–3 day repeat monitoring 

capabilities from SMAP with finer resolution water mapping capabilities from Landsat. The 

frequent temporal sampling and the favorable accuracy of the downscaled 30-m fwLBand 

results indicate the strong potential for SMAP data to contribute to more effective 

monitoring of surface inundation dynamics and flood risk.

Differences in fw patterns and associated classification accuracy between the fwLBand and 

Landsat-8 results are influenced by several factors, including uncertainties related to fwLBand 

and Fmask algorithms, potentially higher fw detection ability of SMAP over denser 

vegetated regions, and differences between Landsat-8 observed flooding during the 2015–

2016 study period and ancillary 30-m WOD inundation patterns defined by the historical 

Landsat record used for fwLBand downscaling. The overall positive difference of fwLBand 

relative to the Landsat-8 results (section 3.3) may be due to higher fwLBand sensitivity to 

surface water under low to moderate vegetation cover than the optical-IR retrievals from 

Landsat, and uncertainties associated with the Fmask algorithm (Zhu and Woodcock, 2014). 

The fwLBand algorithm may also under- or over-estimate inundation areas when the 

predefined LUT reference emissivities deviate from “true” pure pixel emissivities. For 

example, the discontinuity of river channels delineated by the 30-m fwLBand results (Fig. 6a 

and 7a) is caused by underestimated inundation within the overlying fwLBand 36-km grid 

cells. In addition to the quantified uncertainties in the 36-km fwLBand retrievals that may 

propagate into the downscaling process, additional errors may occur if a flooding event does 

not follow the same inundation likelihood of the recorded past, especially for regions having 

an extensive variety of surface inundation in both spatial and temporal dimensions. For 

example, the associated errors are expected to be larger in situations where an extreme 

flooding event exceeds the historical inundation record indicated from the Landsat WOD. 

Since the Landsat WOD generally records the occurrence of open water without overlying 

vegetation, potential under-canopy water detected by the fwLBand may be mis-located in the 
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downscaling process using WOD defined open water areas. The downscaling approach may 

be enhanced using a refined flood potential map which weights inundation by other 

topographic and hydrographic variables such as slope, distance from and elevation above the 

nearest water body, and other river network and basin boundary information (Galantowicz, 

2002; AER, 2017; Fluet-Chouinard et al., 2015); the remotely sensed fwLBand retrievals may 

also be integrated with more detailed information from hydraulic models to improve 

accuracy (Bates, 2012).

Inundation dynamics derived from MODIS, OLI/ETM+ and SMAP show similar temporal 

patterns and seasonal dynamics. The agreement between the optical and microwave remotely 

sensed inundations depends on the degree to which the microwave signal is affected by soil 

moisture, the amount of under-canopy flooding and the spatial and temporal distribution of 

flooded areas where scattered small water bodies or floods too short in duration may not be 

detected by optical sensors (Nigro et al., 2014).

The overall algorithm uncertainty estimates are within ± 0.82% (RMSD), indicating 

generally reliable 36-km fwLBand retrievals for discriminating global surface inundation 

dynamics. The fw retrieval uncertainties are mainly associated with LUT reference 

emissivity and temporal interpolation of the ancillary AMSR LPDR. Reference LUT 

emissivities were derived under soil and vegetation conditions defined by LPDR X-band 

VOD and mv retrievals. Different from available SMOS and SMAP global land products, the 

AMSR LPDR retrievals account for the influence of surface water dynamics (Du et al., 

2017). The LPDR mv retrievals show favorable accuracy as assessed by watershed soil 

moisture measurements (0.63 ≤ R ≤0.84), while the LPDR VOD record corresponds strongly 

(R ≥ 0.88) with optical-IR derived Normalized Difference Vegetation Index (Du et al., 

2017). However, the microwave soil penetration depth and VOD are frequency-dependent, 

and the inconsistency in orbital crossing time, observation geometry and frequency between 

AMSR2 and SMAP is expected to contribute uncertainty to the fwLBand estimates. In 

particular, larger estimated retrieval uncertainties (RMSE>0.91%) (Table 3) in croplands, 

closed shrublands and grasslands reflect lower correspondence between soil and vegetation 

conditions sensed by SMAP and AMSR2 under these land cover types; thus, enhanced 

SMAP sensitivity to soil moisture unaccounted for by AMSR2 may lead to fwLBand 

overestimation. The known RFI affecting both AMSR2 X-band and SMAP L-band Tb 

observations occurs mostly near densely populated locations and likely contributes to 

degraded fwLBand performance over urban areas (Njoku et al., 2005; Aksoy et al., 2016).

The gridded SPL1CTB Tb data and resulting fwLBand retrievals are assumed uniformly 

representative of the 36-km grid cells. However, the native SMAP radiometer retrievals are 

acquired within an approximate 36 km x 47 km elliptical footprint (Piepmeier et al., 2016) 

and contain Tb contributions from adjacent areas outside of the fixed Earth grid cell, which 

can contribute fwLBand retrieval uncertainty depending on the Tb heterogeneity of the 

observed scene. Accordingly, fwLBand temporal variations associated with sensor 

geolocation changes are expected for grid cells along coastlines and large lake bodies.

The algorithm uncertainty analysis in this study (section 2.4) is based on the assumption of 

exposed open water bodies surrounded by vegetation. Under this assumption, the lowest 
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retrieval errors (<0.6%) are expected in forested areas due to the large contrast between high 

emissivity forest and low emissivity water surfaces. In contrast, the fw accuracy is expected 

to decrease exponentially under higher VOD levels in situations where standing water is 

obscured by overlying vegetation cover (Du et al., 2016). The fw signal-to-noise is more 

sensitive to VOD for higher microwave frequency (e.g. 89 GHz) retrievals relative to lower 

frequency observations (Du et al., 2016), while the SMAP fwLBand results from this study 

show favorable performance under low to moderate VOD conditions (section 3.5). For open 

water under dense forests, strong microwave attenuation from the forest canopy may block 

the detection of underlying water signals from both L-band and higher microwave frequency 

observations (Fig. 3). These results are also consistent with a recent study for the Amazon 

basin, which shows SMOS Tb observations at lower incidence angles (e.g. 32°±5°) having 

shorter VOD slant paths that are more suitable to detect open water under dense forest than 

higher incidence angle observations (e.g. >47°±5°) (Parrens et al., 2017). The MODIS-

SRTM (MOD44W) derived fw retrievals indicate similar degradation at higher VOD levels, 

while satellite optical-IR sensors are expected to have less sensitivity to surface water under 

sparse to moderate vegetation cover than microwave sensors (Smith, 1997).

5. CONCLUSIONS

Satellite mapping of global surface water inundation at high spatio-temporal resolutions are 

urgently needed for improving understanding of climate and disturbance related impacts on 

surface water storage and associated effects on land-atmosphere water, energy and carbon 

exchange. In this study we present a new approach to estimate and downscale fw from 

SMAP L-band Tb observations, incorporating ancillary information from an existing 

AMSR2 land parameter record and ancillary fine scale (30-m) inundation patterns derived 

from Landsat historical image archives.

The resulting SMAP 36-km fwLBand retrievals show strong agreement (R=0.85) with a 

MODIS-SRTM derived static water map (MOD44W) over the global domain. The fwLBand 

results also capture characteristic patterns and seasonal variations in open water inundation 

enabled by 1–3 day global repeat observations from SMAP. The fwLBand retrievals also 

reveal anomalous regional inundation extremes consistent with documented ENSO-driven 

flooding that occurred during the 2015/2016 winter season. Compared to other available 

global fw records derived from optical-IR and higher-frequency microwave observations, the 

SMAP fwLBand retrievals show enhanced surface water detection by exploiting the greater 

L-band microwave sensitivity to surface water. While dynamic inundation products derived 

from optical and radar observations at moderate to high resolution are becoming 

increasingly available (Brakenridge and Anderson, 2006; Nigro et al., 2014; Twele et al., 

2016), the SMAP L-band observations provide consistent global coverage and frequent (3-

day) sampling needed for more effective monitoring. These capabilities are especially 

valuable in areas where finer resolution retrievals from optical and radar sensors may be 

constrained by satellite orbital swath gaps, vegetation and cloud cover, complex terrain, and 

low solar illumination.

The estimated 36-km fwLBand uncertainty contributed by the underlying algorithm is 

relatively small (within ± 0.82%) over the globe, while the actual fwLBand accuracy is more 
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strongly affected by and inversely proportional to overlying vegetation (VOD) cover. 

However, our results indicate that the SMAP fwLBand retrievals provide enhanced surface 

water detection and monitoring capabilities in most areas except under dense forest cover 

(VOD > 0.9). The empirically downscaled 30-m fwLBand results show favorable accuracy in 

discriminating land (commission error 31.46%, omission error 30.20%) and water 

(commission error 0.87%, omission error 0.96%) pixels relative to independent surface 

water classifications from Landsat-8 (OLI, TIRS) imagery, suggesting potential SMAP 

utility for finer landscape level flood risk assessments.

The global SMAP fwLBand record and the empirical downscaling approach described in this 

study provide science data support for a broad range of research and application 

communities, while providing baseline information for future NASA satellite missions 

addressing surface water monitoring, including NISAR and SWOT. In particular, the 

dynamic fwLBand record provides the potential for developing enhanced flood monitoring 

systems in conjunction with more detailed hydraulic modelling (Bates, 2012). The fwLBand 

retrievals also benefit the SMAP mission by providing a more direct measure of dynamic 

surface water cover variations that can strongly impact SMAP Tb and soil moisture 

observations.
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Refer to Web version on PubMed Central for supplementary material.
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Fig.1. 
Location of six river basins and three regions used in the evaluation of SMAP L-band 

fractional water inundation (fwLBand) dynamics and fwLBand downscaled results at 30-m 

resolution, respectively. The river basins include the Sacramento (dark purple), Des Moines 

(light purple), Cumberland (dark blue), Rio Grande (light blue), Minnesota (dark green) and 

Apalachicola (light green) basins, with river discharge stations indicated by red star 

symbols. The three regions (red rectangles) are defined by individual Landsat-8 image 

scenes, while a smaller (0.1°× 0.1°) area (blue dot) was used to highlight finer inundation 

details in region 3.
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Fig.2. 
Comparison of global fractional water products derived from: (a) SMAP L-band retrievals 

(fwLBand), (b) AMSR2 K-band retrievals (fwKBand), and (c) MOD44W surface water map. 

The SMAP fwLBand and AMSR2 fwKBand results represent June 2015 to May 2016 time 

averages, while the SMAP fwLBand seasonal variation (SD) is also shown (d). The SMAP 

fwLBand data are in a 36 km global EASE-Grid (v2) format, while the fwKBand and 

MOD44W products were spatially aggregated from their respective 25-km and 250-m native 

resolutions to the same 36 km EASE (v2) grid as the fwLBand results.
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Fig.3. 
Comparisons of annual mean (June 2015 to May 2016) global water inundation areas 

derived from MOD44W, AMSR2 fwKBand, and SMAP fwLBand records plotted against the 

global mean annual gradient in L-band vegetation optical depth (VOD) from SMOS (a). The 

SMOS VOD annual averages (b) were processed from the daily VOD record included in the 

official SMOS Level 3 soil moisture product. The VOD retrievals exclude ocean (blue), 

permanent snow and ice (white) and desert regions (dark grey). The MODIS IGBP global 

land cover map (c) is presented including regions with VOD ≥ 0.9 (hatch patterns) where 

there the SMAP fwLBand retrievals are degraded by dense vegetation and show no 

meaningful difference from the other surface water products. All products were converted to 

the same 36 km EASE-Grid (v2) format consistent with the fwLBand and VOD results.
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Fig.4. 
Monthly mean river discharge (Q, m3/s) and corresponding inundation areas (km2) derived 

from SMAP 36 km fwLBand monthly averages for the Apalachicola (a), Cumberland (b), Des 

Moines (c), Minnesota (d), Rio Grande (e), and Sacramento (f) river basins over the June 

2015 to December 2016 record. Temporal gaps in the time series denote either missing Q 

observations or frozen conditions when no fwLBand retrievals were made.
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Fig.5. 
SMAP downscaled results (a, c) and Landsat-8 (OLI, TIRS) (b, d) classifications of surface 

water (blue) and land (white) pixels for region 1 (Alaska) on Aug. 04, 2015 and Sep. 05, 

2015, representing relatively dry and wet conditions. Cloud pixels in the Landsat results are 

marked by grey shading. SMAP classifications were based on 30-m results downscaled from 

the 36-km fwLBand record using the climatological Landsat-based Water Occurrence 

Dataset. Landsat-8 classifications were derived using the Fmask algorithm (Zhu et al., 

2015).

DU et al. Page 29

Remote Sens Environ. Author manuscript; available in PMC 2019 August 01.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



Fig.6. 
SMAP downscaled results (a, c) and Landsat-8 (OLI, TIRS) (b, d) classifications of water 

(blue) and land (white) pixels for region 2 (western Missouri) on Oct. 01, 2015 and Dec. 04, 

2015, representing relatively dry and wet conditions. Cloud pixels in the Landsat results are 

marked by grey shading.
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Fig.7. 
SMAP downscaled results (a, c) and Landsat-8 (OLI, TIRS) (b, d) classifications of water 

(blue) and land (white) pixels for region 3 (lower Mississippi River Valley) on Jul. 24, 2015 

and Jan. 16, 2016, representing relatively dry and wet conditions. Cloud pixels in the 

Landsat results are marked by grey shading.
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Fig.8. 
SMAP downscaled results (a, c) and Landsat-8 (OLI, TIRS) (b, d) classifications of water 

(blue) pixels overlaid on Google Earth images (Google imagery date 12/07/2014) over a 

selected focus area (0.1°× 0.1° rectangle centered at −91.55°, 31.27°) within region 3 and 

representing respective seasonal dry and wet conditions for Jul. 24, 2015 and Jan. 16, 2016.
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Fig.9. 
Inundation dynamics derived from SMAP downscaled fw retrievals, the MODIS near real-

time global flood mapping product, Landsat 7/ETM+ and Landsat 8/OLI water and land 

classifications over the lower Mississippi River Valley sub-region from June 2015 to May 

2016, which encompasses a documented rainfall-driven extreme winter flood event.

DU et al. Page 33

Remote Sens Environ. Author manuscript; available in PMC 2019 August 01.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript

DU et al. Page 34

Table 1

Global land surface parameter ranges considered in the algorithm Look-up Table (LUT) used for the SMAP 

fwLBand retrievals.

From To Interval

Vegetation Optical Depth (VOD) 0.0 3.0 0.05

Volumetric Soil Moisture (Mv) 0.0 m3/m3 0.5 m3/m3 0.01 m3/m3

Effective soil and water surface temperature (Tl and Tw) 0 °C 42.5 °C 2.5°C
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Table 2

Water and land spatial classification accuracy of 30-m downscaled results relative to the corresponding 

classifications derived from Landsat-8 (OLI, TIRS) imagery.

Land Water Total

Location and Date Commission
Error

Omission
Error

Commission
Error

Omission
Error

Overall
Accuracy

Region 1, Aug. 04, 2015 0.67% 0.54% 29.89% 34.66% 98.82%

Region 1, Sep. 05, 2015 0.57% 0.75% 25.72% 20.83% 98.72%

Region 2, Oct. 01, 2015 0.65% 0.34% 28.78% 43.63% 99.02%

Region 2, Dec. 04, 2015 0.38% 1.02% 33.38% 15.53% 98.64%

Region 3, Jul. 24, 2015 0.98% 1.20% 44.37% 39.36% 97.88%

Region 3, Jan. 16, 2016 1.96% 1.91% 26.62% 27.17% 96.40%

     Overall 0.87% 0.96% 31.46% 30.20% 98.24%
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Table 3

Summary of estimated 36 km fwLBand retrieval uncertainties for major global IGBP land cover types. The 

uncertainties are associated with the L-band LUT reference emissivity and temporal interpolation of the 

AMSR LPDR parameters. The original un-interpolated LPDR and random emissivity errors following a 

standard Normal Distribution with zero mean and Standard Deviation adopted from the LUT emissivity 

database were considered.

 IGBP Land Cover Type MAE * RMSE* Proportion*

 Permanent wetlands 0.16% 0.22% 0.20%

 Deciduous needleleaf forest 0.36% 0.45% 0.63%

 Deciduous broadleaf forest 0.42% 0.50% 1.58%

 Mixed forests 0.41% 0.52% 4.73%

 Evergreen needleleaf forest 0.45% 0.58% 3.99%

 Evergreen broadleaf forest 0.51% 0.59% 10.09%

 Woody savannas 0.57% 0.67% 7.57%

 Barren or sparsely vegetated 0.67% 0.79% 13.75%

Cropland/natural vegetation mosaic 0.75% 0.88% 2.10%

  Open shrublands 0.75% 0.89% 18.42%

  Savannas 0.81% 0.91% 6.99%

  Croplands 0.77% 0.96% 9.03%

  Closed shrublands 0.90% 0.99% 0.52%

Grasslands 0.80% 1.00% 9.33%

 Urban and built-up 0.87% 1.13% 0.49%

   *Overall Performance 0.67% 0.82% 89.45%

*
MAE is the spatial mean absolute error; RMSE is the root mean square error; Proportion is the areal proportion of the land cover category relative 

to the global land domain. Overall Performance represents the statistics made for all the pixels of the listed land cover types.
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