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Abstract

As data-rich medical datasets are becoming routinely collected, there is a growing demand for 

regression methodology that facilitates variable selection over a large number of predictors. 

Bayesian variable selection algorithms offer an attractive solution, whereby a sparsity inducing 

prior allows inclusion of sets of predictors simultaneously, leading to adjusted effect estimates and 

inference of which covariates are most important. We present a new implementation of Bayesian 

variable selection, based on a Reversible Jump MCMC algorithm, for survival analysis under the 

Weibull regression model. A realistic simulation study is presented comparing against an 

alternative LASSO-based variable selection strategy in datasets of up to 20,000 covariates. Across 

half the scenarios, our new method achieved identical sensitivity and specificity to the LASSO 

strategy, and a marginal improvement otherwise. Runtimes were comparable for both approaches, 

taking approximately a day for 20,000 covariates. Subsequently, we present a real data application 

in which 119 protein-based markers are explored for association with breast cancer survival in a 

case cohort of 2287 patients with oestrogen receptor-positive disease. Evidence was found for 

three independent prognostic tumour markers of survival, one of which is novel. Our new 

approach demonstrated the best specificity.
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1 Introduction

As large data-rich studies are becoming routinely collected in medical research, there is a 

growing need for regression techniques designed to cope with many predictors. While the 

simplest approach is to analyse each variable one at a time, the results are difficult to 

interpret since confounding from between-predictor associations can cloud the location of 

true signals leading to elevated false-positive rates. Ideally, when predictors are correlated, 

multivariate regression should be performed to account for the association structure and 

enable accurate inference on the subset of variables most likely to represent true effects. 

However, when the number of covariates is high, traditional Ordinary Least Squares 

methods suffer from over-fitting – the limited information available is spread too thinly 

among the covariates leading to unstable parameter estimates with high standard errors.

This inspired the development of LASSO penalised regression by Tibshirani1 in 1996 

whereby a penalty term is included in the likelihood to encourage sparsity. The penalty term 

modifies the likelihood of the regression coefficients, with a large penalty leading to the 

exclusion of many variables. Typically, the penalty is tuned through cross-validation such 

that covariates with negligible predictive effects are removed. The over-fitting problem is 

thus avoided and prediction improved. Over the years, there have been a number of 

extensions to the original method, including SCAD,2 Elastic Net,3 Adaptive LASSO4 and 

Fused LASSO,5 each generating a class of penalties to address specific predictive aims. 

Some of these methods have been applied in the genomic context to explore multi-SNP 

models of disease6,7 or to search for master predictors.8 Bayesian versions of the LASSO 

have been described9,10 and used for efficient variable selection in genetics. In particular, 

see Tachmazidou et al.11 for a survival modelling implementation. Extensions of the 

LASSO framework to model structured sparsity via the group LASSO12 or to impose 

additional hierarchical constraints, e.g. when searching for interactions13 have also been 

proposed. Furthermore, techniques have been developed to obtain significance measures for 

covariates under LASSO regression, including resampling procedures14,15 and, recently, a 

formal significance test,16,17 as well as a modified bootstrap procedure that provides a valid 

approximation to the LASSO distribution thereby enabling construction of uncertainty 

intervals.18

An alternative to penalised regression is Bayesian sparse regression, in which posterior 

inference is made on the predictors, and subsets of predictors, most likely associated with 

outcome. Attractive features of Bayesian sparse regression include inference of posterior 

probabilities for each predictor, posterior inference on the model space and, perhaps most 

importantly, the possibility of natural incorporation of prior information into the analysis. A 

variety of formulations and methods for implementing Bayesian variable selection have been 

developed. George and McCulloch19 first proposed inducing sparsity via two-component 

‘spike and slab’ mixture priors on the effect of each covariate, consisting of a ‘spike’ either 

exactly at or around zero, corresponding to exclusion from the model, and a flat ‘slab’ 

elsewhere. Binary indicator variables are used to denote which component each covariate 

belongs to; the posterior expectation of which provides marginal posterior probabilities of 

effect. Sparsity is encouraged by placing priors on these indicators which favour the ‘spike’. 
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Such models are typically fitted using MCMC and a number of algorithms have been 

developed, varying in how the spike and slab components are formulated.19–21 Notably, an 

adaptive shrinkage approach proposed by Hoti and Sillanpaa eases the computational 

challenge through use of single component normal priors, with a hyperprior on the precision 

that leads to an approximate spike and slab shape, thereby avoiding the use of indicator 

variables and mixture component switching. A cut-off on the magnitude of effect is used to 

define whether or not a covariate is included in the model.22

Whereas these models implement variable selection through priors on each covariate, an 

alternative approach is to consider the model space as a whole and place priors on the 

number of included covariates. In 1995, Green23 demonstrated how classical MCMC 

methodology can be extended to explore models of differing dimensions using a ‘Reversible 

Jump’ algorithm in which the Metropolis-Hastings acceptance ratio is modified to account 

for addition and deletion of covariates during model updates. The level of sparsity is 

controlled through a prior on the number of included covariates. Reversible Jump has been 

applied to model selection problems in many areas, including genomics and in particular 

genetic association analysis,24 meta-analysis25,26 and predictive model building27,28 in 

which the ability to incorporate prior information has been exploited in various ways.

A drawback of Reversible Jump, however, is that the dimension switching leads to a 

substantial increase in algorithmic complexity. In the case of linear regression, conjugate 

closed form expressions under the normal likelihood can be exploited to avoid MCMC 

sampling of covariate effects, allowing the stochastic search algorithm to focus exclusively 

on the model space, dramatically simplifying the mixing of the algorithm.29 The ‘Stochastic 

Shotgun Search’ (SSS) algorithm utilises this principle and, in addition, proposes a modified 

search algorithm that parallelises the exploration of potentially vast model spaces while 

focusing on areas of high posterior mass.30 This allows rapid identification of models with 

high posterior mass, at the cost of ‘formal’ posterior inference since the model search space 

is deliberately restricted. Alternatively, the ‘Evolutionary Stochastic Search’ (ESS) 

algorithm, developed by Bottolo and Richardson,31 similarly utilises conjugate normality to 

integrate over covariate effects but allows exploration of the entire model space resulting in 

formal posterior inference on covariate and model probabilities. Sophisticated and efficient 

implementations of ESS now exist for the analysis of continuous univariate and multivariate 

outcomes.32,33 These procedures are very fast and are capable of analysing thousands of 

predictors simultaneously. Superior power and specificity in comparison to penalised 

regression style approaches has been shown, which has facilitated the identification of novel 

genomic associations.33,34 For a more detailed overview of approaches to Bayesian 

variable selection, we refer readers to the excellent review by O’Hara and Sillanpaa.35

The Cox semi-parametric proportional hazards model is the most widely used approach for 

the analysis of right-censored survival data. Cox regression is semi-parametric in that the 

baseline hazard is ascribed no particular form and is estimated non-parametrically. Working 

in the Bayesian framework, however, it was natural to choose a fully parametric survival 

model for the analysis we present in this paper. Whereas a proportional hazards model 

assumes that covariates multiply the hazard by some constant, so-called ‘accelerated failure 

time’ models are a class of (typically fully parametric) survival models in which the 
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covariates are assumed to multiply the expected survival time. Consequently, regression 

parameter estimates from accelerated failure time models are more robust to omitted 

covariates.36 The Weibull distribution is an appealing choice for fully parametric survival 

modelling since, uniquely, it has both the accelerated failure time and the proportional 

hazards property; there is a direct correspondence between the parameters under the two 

models.37 Therefore, hazard ratios can be inferred as in Cox regression, but while benefiting 

from the accelerated failure time property. In comparison to Cox regression, when the 

baseline hazard function describes the data well, the Weibull model offers greater precision 

in the estimation of hazard ratios. Conversely, however, the non-parametric nature of the 

baseline hazard under a Cox model affords robustness over a wider range of survival 

trajectories.

Unfortunately, in the context of Weibull regression for survival analysis, there are no 

conjugate results to exploit and so we resort to Reversible Jump MCMC, sampling both 

regression parameters and models. This is, to our knowledge, the first application of a 

Reversible Jump algorithm to the Weibull model for survival analysis. After exploring 

performance in comparison to an alternative frequentist variable selection strategy (penalised 

Cox regression with stability selection), we present a real data application to explore tumour 

markers of breast cancer survival in a prospective case cohort. Further details of this study 

and dataset are given below.

2 Data

Breast cancer remains a significant public health problem with more than 45,000 cases 

diagnosed in the UK in 2012 and, despite significant improvements over the past 30 years,

38,39 continues to be a major cause of mortality amongst women in the western world. 

Treatment currently consists of surgical excision of the tumour and adjuvant therapies which 

may include radiotherapy, endocrine therapy, cytotoxic chemotherapy and targeted 

biological therapies depending on tumour characteristics and patient preference. However, 

there is substantial heterogeneity in patient response to these therapies, all of which are 

associated with significant toxicity. There is now a well-established set of pathological 

prognostic factors for breast cancer including tumour size and grade, lymph node status, 

oestrogen receptor (ER) status and Human Epithermal growth factor Receptor 2 (HER2) 

status40,41 which are widely used in clinical practice to guide treatment decisions. For 

example, a patient with excellent prognosis may want to avoid exposing themselves to 

highly toxic therapies. However, our ability to reliably identify patients who can safely forgo 

adjuvant chemotherapy is limited, impairing optimal clinical decision making. Breast cancer 

is now known to consist of a variety of molecular subtypes,42 and while these tools are of 

profound clinical utility, there is much scope to expand on this set of prognostic risk factors 

which do not currently reflect the whole variety of breast cancer leading to suboptimal 

clinical decisions, particularly the over-prescription of adjuvant chemotherapy.43

We explore a large collection of predominantly protein-based markers related to cancer 

biology including markers of cancer stem cells and the tumour microenvironment, which 

may underpin the molecular diversity of tumours.42,44,45 Our analysis is performed using 

cases from the ongoing population-based breast cancer cohort of the SEARCH (studies of 
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epidemiology and risk factors in cancer heredity) study; a genetic epidemiology study with a 

molecular pathology component recruiting individuals resident in the east of England. 

Ascertainment of breast cancer cases was conducted by the East Anglia Cancer Registry. 

The study includes both prevalent and incident cases. Prevalent cases are those who were 

already diagnosed with breast cancer at the time of study commencement. Specifically, these 

included women diagnosed with invasive breast cancer under the age of 55 between 1991 

and mid-1996 and still alive in 1996. Incident cases are those individuals diagnosed after 

study commencement. These were women under the age of 70 at the time of breast cancer 

diagnosis after mid-1996. The two different ER subtypes of breast cancer (positive and 

negative) are recognised as markedly different diseases biologically and pathologically with 

demonstrated differences in baseline hazard over time.46 Therefore, it is sensible to stratify 

on this characteristic in survival analyses of breast cancer, rather than pool the two 

conditions, since prognostic markers and effects are expected to differ. In this work, we 

restrict our analysis to the 2287 ER-positive cases, the larger of the two strata. Follow up 

work is planned to analyse the ER-negative cases. The SEARCH study is approved by the 

Cambridgeshire 4 Research Ethics Committee; all participants provided written informed 

consent.

All analyses modelled breast cancer specific mortality, with survival times left truncated at 

10 years. This period was chosen since decisions relating to adjuvant therapy are often taken 

according to a time horizon of 10 years. Eleven per cent of women suffered breast cancer-

specific mortality during this follow-up, among whom the median survival time from 

baseline was five years. Forty-four per cent of women whose survival times were censored 

have not yet been followed up for 10 years – the median follow-up time among these women 

is seven and a half years. Data were available for the following known prognostic risk 

factors: tumour size and grade, number of positive lymph nodes, HER2 status, use of 

chemotherapy and hormone therapy, and whether the patient was screen detected 

(suggesting the cancer was caught at an early stage though screening status is associated 

with improved outcome independent of stage47). These covariates were adjusted for in all 

analyses. Metastasis is clearly also important for breast cancer prognosis; however, since 

very few women in SEARCH had metastatic breast cancer at baseline (18/2287), we 

excluded it from the models to avoid convergence issues. A sensitivity analysis including 

metastasis showed no change to the results presented in this paper.

2.1 Tumour markers

Expression of a particular protein will naturally vary between people, and at different 

locations in the body, including within tumours. In this experiment, we sought to ascertain 

expression levels of 73 pre-selected proteins in tumour samples taken at diagnosis (i.e. 

baseline) using a technique known as immunohistochemistry. Tumour samples were stained 

with commercially available antibodies which produce a coloration, observable under a 

microscope, on contact with the protein of interest. Experts scored the stained tumour 

samples for the proportion of coloured cells in the biopsy (i.e. expressing the protein) on a 

four-point scale, and for the average intensity of that colour on a six-point scale. In total, 

intensity scores were taken for 51 proteins, and proportion scores for 45, and both were 

available for the three CSC markers. In addition, expression of various markers of immune 

Newcombe et al. Page 5

Stat Methods Med Res. Author manuscript; available in PMC 2018 July 23.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



infiltration, including CD8 and FOXP3, were measured in tumour-associated lymphocytes. 

In situ hybridisation methods for the detection of micro RNAs were implemented as 

previously described.48 In total, 119 tumour markers were available for exploration for 

association with breast cancer survival. Correlations among the various tumour markers are 

shown in Figure 1(a) and (b). Unsurprisingly, the two types of scoring (intensities and 

proportions of expression) are generally strongly correlated when measured for the same 

protein (Figure 1(c)). Unfortunately, there was substantial missingness among the tumour 

markers – see Figure 1(d) – with most missing for more than half the patients. There are two 

main reasons for missingness; by design and technical. Since the amount of biological 

material available for evaluation of novel tumour markers is limited, it was important to 

prioritise. Proteins were initially evaluated in a pilot study using only a subset of the 

available material. Based on preliminary analyses, a judgment was taken whether to proceed 

to include all available material; hence, in some instances only the data generated as part of 

the pilot study are available (the tumour markers with >70% missingness). The technical 

causes of missing data include biological variability, e.g. differences in tumour size, and 

dropout of samples during processing. This is a well-known unavoidable problem when 

tissue-microarrays (TMAs)49 are used to evaluate large numbers of tumours. Fortunately, 

the correlation among the tumour markers (Figure 1(a)–(c)) enabled imputation of missing 

values – a description of how this was conducted, and how the multiply imputed datasets 

were analysed is given below in the methods.

3 Methods

3.1 The Weibull regression model

As noted above, we utilise the Weibull model to develop our sparse Bayesian regression 

framework for survival analysis. It is instructive to start with a description of the simpler 

exponential survival model, which the Weibull model extends. Under the exponential model, 

a patient i’s hazard at time t is modelled as dependent on some P covariate values, denoted 

by vector xi, through an exponential link which ensures positivity of the hazard

λi(t) = e
α + xi β

= λi (1)

where β is a P-length vector of covariate effects, and α denotes an intercept term. Note the 

lack of dependency on time in equation (1) – under the exponential model, the hazard is 

assumed constant over time. The corresponding survival function, is straight forward to 

derive as

S(t) = e
(−∫ 0

t λidx)
= e

−tλi

The assumption that hazard does not depend on time is likely to be overly simplistic for 

most real world scenarios. The Weibull model extends the exponential model by modifying 

the survival function with a parameter k as follows:
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S(t) = e
( − tλi)

k

k > 0, known as the Weibull ‘shape’ parameter, induces a dependency between the hazard 

and time:

λ(t) = − d
dt log(S(t)) = λik(λit)

k − 1

If k > 1 the baseline hazard function increases as time progresses, but if k < 1 the hazard 

decreases.

3.1.1 Likelihood—Let vector t contain the observed survival times of n patients. 

Typically, a study will not run long enough to observe whether the event occurs for each and 

every patient, resulting in so-called ‘right-censored’ data. That is, for some patients, we only 

know their minimum survival time. Therefore, we also introduce an n-length vector of 

binary indicators d to capture, for each patient i, whether the event was observed during their 

follow up (in which case di = 1), or they were censored, in which case di = 0. If the event 

was observed for patient i (and di = 1), then ti denotes their time to event. Otherwise, ti 
denotes their length of follow up. The log-likelihood for parameters α, β and k can be 

derived as

log(L(α, β , k t, X)) = ∑
i = 1

n
di log(k) + k log(λi) + (k − 1)log(ti) + ( − tiλi)

k (2)

where λi is defined in equation (1).

3.2 Sparse Bayesian Weilbull regression

We present a full Reversible Jump MCMC algorithm for fitting Weibull survival models, in 

order to perform variable selection among the tumour markers. Henceforth, we will refer to 

this framework, described below, as SBWR (Sparse Bayesian Weibull Regression).

We start by noting that baseline variables age, whether the patient was detected via a 

screening programme, chemotherapy treatment, hormone therapy, the number of positive 

lymph nodes and tumour size were excluded from the model selection framework and fixed 

to be included in the model at all times. Let vector δ denote the log-hazard ratios associated 

with these ‘fixed effects’, and vector zi denote the corresponding covariate values for patient 

i. Going forward, vector xi will be used to denote patient i’s tumour marker covariates only, 

and vector β the tumour marker log hazard ratios. P, the length of β therefore now denotes 

the number of tumour markers we wish to perform variable selection over. Under Reversible 

Jump, variable selection is facilitated by placing a prior density on β which depends on a 

latent binary vector γ = (γ1, … , γP) of indices indicating whether each covariate is included 

in the model. For covariate p, γp = 1 indicates inclusion in the model and therefore that βp ≠ 
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0. Conditional on the latent variable γ, i.e. that a specific selection of tumour markers are 

included in the model, patient i’s hazard may now be written as

λi γ = e
α + zi δ + xi, γ βγ

where vector βγ contains only the non-zero elements of β, and vector xi,γ contains patient 

i’s corresponding subset of covariate values. The non-zero coefficients are assigned 

independent normal priors centred on 0, with a common variance σβ
2

p(βp γp = 1, σβ) = N(0, σβ
2) for p = 1, …, P (3)

Rather than fixing σβ, which controls the magnitude of included effects and therefore can 

have an important impact on the efficiency of the algorithm, we use a flexible hyper-prior to 

allow adaption to the data at hand. We start by noting that all tumour marker covariates were 

normalised prior to analysis, so that (during modelling) all hazard ratios correspond to a 

standard deviation increase in the underlying variable. We chose a relatively informative 

Uniform(0,2) prior for σβ. This has an expectation/median at 1, which would correspond to 

a prior with a 95% credible interval supporting hazard ratios between 0.14 and 7.12. 

However, this choice equally supports much smaller values of σβ, (which would result in 

more pessimistic priors) as well as values up to the maximum of 2, which corresponds to a 

prior with a 95% credible interval supporting hazard ratios between 0.02 and 50.9 – well 

outside the range we realistically expect to observe. The ‘fixed effects’ δ were ascribed 

weakly informative fixed N(0, 100) priors rather than the hierarchical priors in equation (3). 

Since these covariates have well-established associations with breast cancer survival, they 

clearly do not have exchangeable effects a priori with the tumour markers, and so should not 

contribute to estimation of σβ
2 .

The model selection framework is completed by choosing a prior for γ, the selection of 

tumour markers included in the model. We used a beta-binomial prior as described by Kohn 

et al.50

p( γ ) = ∫ p( γ ω)p(ω)dω =
B(pγ + aω, P − pγ + bω)

B(aω, bω) (4)

where B is the beta function and pγ is the number of non-zero elements in γ. Formally, pγ = 

γTIP where IP is the P × P identify matrix. Conceptually, ω denotes the underlying 

probability that each covariate has a non-zero effect, i.e. is included in γ. Conditional on ω, 

all models of the same dimension are assumed, under this setup, equally likely a priori. aω 
and bω parameterise a beta hyper-prior on ω. Since all tumour characteristics considered 

here were carefully selected for possible involvement in disease pathology, we set aω = 1 

and bω = 4 which results in a prior on the probability of a true effect centred at 20%. Note, 
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however, that this is only weakly informative due to the modest magnitudes of aω and bω 
relative to the number of tumour markers being analysed; ω should largely be learned from 

the data.

Finally, we must specify priors for the intercept α and the Weibull shape parameter k. In the 

spirit of Abrams et al.,51 who provide a detailed discussion of fitting Weibull models in the 

Bayesian framework, we place normal priors with very large variance on α and on log(k) 

(the log scale is used to ensure k > 0) which approximate ‘reference’ uniform priors over the 

entire real line;

p(α) = N(0, 106)

p(log(k)) = N(0, 106)

3.3 Model fitting

As noted above, we cannot calculate the posterior of such a model analytically and so use 

Reversible Jump MCMC to sample from the required posterior.23 The Reversible Jump 

sampling scheme starts at an initial model and corresponding set of parameter values, denote 

these γ(0) and θ(0), respectively. To sample the next model and set of parameters, which we 

denote γ(1) and θ(1), we propose moving from the current state to another model and/or set 

of parameter values, γ* and θ*, by using a proposal function q(γ*, θ*| γ, θ). We then 

accept these proposed values as the next sample with probability equal to the Metropolis-

Hastings ratio:

MHR = P(D γ* , θ* )p( θ* γ* )p( γ* )
P(D γ , θ )p( θ γ )p( γ ) × q( γ , θ γ* , θ* )

q( γ* , θ* γ , θ )

where D is the data, P(D|.) is the Weibull likelihood function described in equation (2), p(θ| 

γ) is the prior distribution of the parameters conditional on (that is, included in) the model 

and p(γ) is the model space prior defined in equation (4). Therefore, the proposed model and 

new parameter values are accepted with a probability proportional to their likelihood and 

prior. If this new set of values is accepted, the proposed set is accepted as γ(1) and θ(1); 

otherwise, the sample value remains equal to the current sample value, i.e. γ(1)= γ(0) and 

θ(1)= θ(0). It can be shown that this produces a sequence of parameter samples that 

converge to the required posterior distribution.23 The algorithm was implemented in Java; 

for technical details, for example, the proposal distributions, we refer readers to the 

supplementary methods (Available at http://smm.sagepub.com/).

3.4 Post processing

For all SBWR analyses of datasets with 119 covariates, i.e. the SEARCH data and the 

simulated datasets, the algorithm was run for 1 million iterations, after a burn-in of 1 million 

iterations, generating samples of all parameters. For the high-dimensional simulated datasets 

described below, the algorithm was run for 5 million iterations, after a burn-in of 5 million 

iterations for 10,000 covariates, and 10 million iterations after a burn-in of 10 million 

iterations for 20,000 covariates. These run lengths were deliberately longer than necessary 

for convergence, which was assessed using autocorrelation plots of the variable selections 
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(see Supplementary Figure S2), chain plots of parameter values over the RJMCMC 

iterations (Supplementary Figure S3) and comparison of posterior probabilities obtained 

using different RJMCMC chains (Supplementary Figure S5). For each tumour marker 

covariate, complementary output was produced: The marginal posterior probability of 

inclusion, and the posterior median hazard ratio (and 95% credible interval) conditional on 

inclusion in the model. Furthermore, we obtain the posterior probability of any particular 

model, i.e. combination of covariates.

3.5 Multiple imputation for missingness

As noted above, there is substantial missingness among the covariates in the SEARCH 

breast cancer dataset. Since our algorithm currently cannot handle missingness, we 

proceeded to impute the missing values prior to analysis using multiple imputation by 

chained equations (MICE),52,53 a well-established and popular method of imputing missing 

data.54 The MICE algorithm proceeds as follows. Initially, all missing values are filled in at 

random. Then, the first covariate with missing values, x1 say, is regressed on all other 

covariates (and outcome), restricted to individuals with x1 observed. The missing x1 values 

are then updated with posterior predictive simulations from the resulting fitted model. This 

process is repeated for each covariate in turn to complete the first ‘cycle’. Subsequently, for 

each imputed dataset, 10 more ‘cycles’ were run to stabilise results. The entire procedure is 

then repeated independently M times resulting in a collection of completed datasets, the 

differences between which reflect uncertainty in the imputed values. We generated 20 

imputed datasets in this manner using the STATA package ‘ICE’.55 The choice of 

imputation models fitted for each covariate depends on the nature of its distribution. For the 

tumour markers, which are measured on an ordered categorical scale, ordinal regression was 

used to generate their posterior predictive distributions within each ‘cycle’. Likewise, ordinal 

regression was used for tumour size and grade, and positive lymph nodes. For the binary 

variables chemotherapy and screen detection, logistic regression was used, and for 

morphology – an unordered categorical variable – multinomial logistic regression was used.

3.5.1 Bayesian analysis of multiply imputed datasets—To analyse multiply 

imputed datasets in a Bayesian framework, we follow the approach suggested by Gelman56 

which is to (i) simulate many draws from the posterior distribution in each imputed dataset 

and (ii) mix all resulting draws into a single posterior sample. This final ‘super’ posterior 

therefore reflects the imputation uncertainty due to the heterogeneity among the chain-

specific posteriors which have been pooled together.

3.6 Complementary pairs stability selection

In the following sections, we will compare our method against a stability selection strategy 

utilising penalised regression of the LASSO form.1 Stability selection was recently 

popularised by Meinshausen and Buhlmann14 and aims to improve the selection of variables 

provided by penalised regression methods by adding a resampling step which involves 

repeating the variable selection procedure (in our case, LASSO regression) in a large 

number of datasets randomly sampled from the original. For each subsample analysis, the 

covariates selected and rejected by LASSO are recorded. ‘Selection probabilities’ are then 

calculated across the results of all sub-sampled datasets. Intuitively this provides a measure 
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of significance for each covariate since the strongest signals should be more robust to 

perturbations of the data. Theoretical results have been derived which offer upper bounds on 

the number of ‘noise’ variables for various thresholds on these selection probabilities, 

allowing inference of statistically significant predictors.14 These results were recently 

improved upon by Shah and Samworth,15 who propose sub-sampling exactly half the data 

for each subset analysis and, each time this is done, analysing both halves (i.e. the two 

complementary pairs) of the partitioned dataset. They provide a novel set of theoretical 

results to estimate the rate of ‘noise’ variables selected at different thresholds on the 

resulting selection probabilities. Their method leads to less conservative selections of 

covariates – a known issue with stability selection.15

4 Simulation study

In this section, we used simulated data to investigate the performance of SBWR posterior 

probabilities in identifying true signal variables from noise variables. We compared 

performance against the selections provided by LASSO Cox regression with the penalty 

parameter set to the optimum under 10-fold cross-validation, and against the selection 

probabilities from Lasso Cox regression under Complementary Pairs Stability Selection 

(CPSS).

4.1 Generation of the simulated data

Initially, simulated datasets were designed to have the same number of patients and 

covariates as the SEARCH breast cancer dataset, and the same real-life correlation structure 

as amongst the tumour markers. Hence, the covariate matrix of 119 tumour markers among 

the 2287 ER-positive patients was used from the SEARCH dataset in each replicate 

simulated dataset. We chose to ignore the missingness in the real data for the simulation 

study, simply to avoid the computational burden that would have arisen if multiple 

imputation chains were analysed for each replicate simulated dataset. Missing covariate 

values were filled in, arbitrarily, from the first multiple imputation chain.

4.1.1 Generation of simulated survival outcomes—We simulated outcome data 

according to the Generalized gamma parametric survival model, a flexible framework 

encompassing four of the commonly used parametric survival models (exponential, Weibull, 

log-normal and gamma) as special cases.57,58 In comparison to the Weibull, the 

Generalized gamma uses an extra parameter to model the hazard function, thus enabling a 

wider range of survival trajectories to be captured. Using the parameterisation of Prentice,57 

in terms of three parameters µ, σ and q, the probability density function (PDF) is:

f (t) = q

σt Γ q−2exp q−2 qw − eqw (q−2)q
−2

when q ≠ 0 and where w = (log(t) − µ)/σ. When q = 0 the PDF is:

f (t) = 1
2πσt

exp − 1
2σ2 log t − μ 2
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When q = 1, the Generalised gamma reduces to the Weibull with k = 1/σ and λ = exp(−µ). 

For a more detailed description of the Generalized gamma and its relationship with other 

survival models, we recommend referring to Cox et al.58 and Jackson et al.59 To capture 

associations between predictors and outcome, the parameter µ may be substituted for the 

standard linear predictor. Therefore, to induce associations between the covariates and 

outcome in the simulated data, we drew survival times from a Generalised gamma 

distribution with

μ = α + β X

where the covariate matrix X is that of the real data from the first imputation chain, and β is 

a vector of 119 tumour marker effects on survival. Note that the effects in a Generalized 

gamma model do not correspond to hazard ratios since hazards are no longer proportional 

under the more complex likelihood. Since, however, the Generalized gamma model has the 

accelerated failure-time property, they do still correspond to differences in expected survival 

time. For the covariate effects, β, 12 were randomly selected (approximately 10%) to have 

‘true’, i.e. non-zero, effects. This random selection was only carried out once and used for 

all the simulation scenarios described below. We wished to use realistic effect magnitudes 

and so assigned these parameters the 12 largest coefficients from one-at-a-time Generalized 

gamma regressions of each tumour marker in the real data. That is, effect sizes observed in 

the real data were used, but arbitrarily re-assigned to different covariates. The absolute 

values of the 12 non-null elements of β ranged from 0.25 to 0.38 (note that all covariates 

were standardised to have unit variance). To determine realistic values for the remaining 

parameters α, σ and q, we fitted a Generalized gamma regression model including an 

intercept term only (i.e. the ‘null’ model) in the real data. The resulting estimates of α, σ and 

q (3.28, 0.80, and –2.19 respectively) were used in the subsequent simulations. As noted 

above, the Generalized gamma is equivalent to the Weibull when q = 1. Since we are using q 
= −2.19, the simulated survival times are not Weibull distributed. This was done on purpose 

so that the simulation setup does not give an unfair advantage to SBWR, the only of the 

three methods to use the parametric Weibull likelihood, rather than the semi-parametric Cox 

likelihood.

Survival times were drawn from a Generalized gamma distribution according to the resulting 

linear predictor and parameters described above, and truncated at 10 years to mimic the 

actual SEARCH data. Survival status was set to ‘survived’ where the survival time exceeded 

10 years (before truncation), and ‘died’ otherwise. Using the same parameters, survival 

outcomes were re-drawn 20 times to create 20 replicate simulated datasets of 2287 ‘patients’ 

each. This process was repeated to generate additional simulated datasets in which the 

covariate effect sizes used for the simulations were halved to create a harder problem for the 

regression models, and again setting all covariate effects to zero to examine performance 

under the null. Generalized gamma simulation draws and regression model fitting was 

carried out using the excellent R package ‘flexsurv’, developed by Jackson et al.59

4.1.2 High-dimensional data simulations—We also expanded the simulation setup 

to explore the performance of our method in much larger datasets, that is with more 
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covariates than samples. To this end, we duplicated the covariate matrix described above, X, 

multiple times column-wise (i.e. to add covariates). Each time a duplicate was added, the 

rows were randomised such that none of the newly added covariates would be co-linear with 

their counterparts in any other instance of X. This process was repeated until P = 10, 000 and 

P = 20, 000 covariates were present, resulting in two new high-dimensional covariate 

matrices with 2287 ‘patients’ each. For clarity, these consist of 119-covariate wide blocks 

within which the correlation structure is that among the SEARCH tumour markers. 

Covariates within each block, however, are independent of covariates in all other blocks.

To investigate performance in the so-called ‘needle in a haystack’ setting, outcomes were 

drawn exactly as above, with the same effects at the same 12 tumour markers (arbitrarily 

using the first instance of X). All other covariates were assigned null effects such that only 

12/10,000 and 12/20,000 covariates had effects in the resulting high-dimensional simulated 

datasets. As above, outcomes were drawn 20 times, and the process repeated for ‘full size’, 

‘half size’ and no effects.

4.2 Analysis of simulated datasets

All simulation analyses were carried out on Intel Xeon E5-2640 2.50 GHz processors.

4.2.1 LASSO penalised Cox regression—Each simulated dataset was analysed 

using LASSO penalised Cox regression as implemented in the excellent R package ‘glmnet’.

60 10-fold cross-validation was used to choose the penalisation coefficient, and the selection 

of variables at the resulting optimum was recorded. These analyses took less than a minute 

per replicate for 119 covariates, around 19 minutes for 10,000 covariates and around 28 

minutes for 20,000 covariates.

4.2.2 LASSO Penalised Cox Regression with CPSS—Each simulated data set was 

also analysed using LASSO penalised Cox regression under CPSS. In summary, 50 sets of 

complementary pairs were used as recommended by Shah and Samworth.15 For each of the 

resulting 100 sub-datasets, as above, the LASSO penalisation coefficient was optimised 

under 10-fold cross-validation. The resulting covariate selection probabilities were recorded. 

These took about 3 minutes per replicate for 119 covariates, around 18 hours for 10,000 

covariates and around 25 hours for 20,000 covariates.

4.2.3 Sparse Bayesian Weilbull regression—For the simulations, we assumed a 

complete lack of prior information and set a = 1 and b = 1 in the beta-binomial prior on 

model space. This corresponds to a naive, weakly informative, uniform prior on the 

probability for a covariate to be truly causal. For the analysis of datasets with 119 covariates, 

2 million RJMCMC iterations were run which took around 1 hour/replicate. For analyses of 

datasets with 10,000 covariates, 10 million iterations were run (about 9 hours/replicate), and 

for the datasets with 20,000 covariates, 20 million iterations were run (about 28 hours/

replicate).
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4.3 Receiver operator characteristic analysis for selection of true effects

We used receiver operator characteristic (ROC) analysis to assess the ability of each 

approach to discriminate the 12 true signal variables from the noise variables in the 

simulated datasets. The resulting ROC curves for the different scenarios are shown in Figure 

2 and the corresponding areas under the ROC curve (AUCs) in Table 1. When the number of 

covariates was equivalent to the SEARCH dataset (i.e. 119) and ‘full size’ effects were 

simulated, the CPSS and SBWR selection probabilities demonstrated excellent, and equal, 

performance, and both gave modest improvements over the simple LASSO. Both CPSS and 

SBWR achieved average AUCs of 0.99 for discriminating the 12 true signal variables from 

the noise variables, compared to 0.92 for the LASSO selections. Under the harder ‘half size’ 

log-HR scenario, the posterior probabilities from SBWR demonstrated marginally better 

discrimination than the CPSS selection probabilities (average ROC AUC 0.97 vs. 0.93). 

Again, both beat the LASSO selections – this time by a more substantial margin – which 

achieved an average ROC AUC of 0.86. Relative performance was similar in the high-

dimensional simulated datasets of 10,000 and 20,000 covariates. SBWR and CPSS selection 

probabilities consistently outperformed the LASSO selections for discriminating the 12 true 

effects, with equal performance for the ‘full size’ effect scenario, and a marginal 

improvement in SBWR performance for the‘half size’ effect scenario. Under ‘full size’ 

simulated effects, the ability of SBWR and CPSS to discriminate the 12 signal variables 

from noise remained excellent up to 20,000 covariates, with average ROC AUCs > 0.95, and 

LASSO also performed well (AUCs > 0.92). When ‘half size’ effects were used the 

performance of all methods remained strong up to 10,000 covariates, but deteriorated by 

20,000 covariates – SBWR and CPSS AUCs dropped to 0.82 and 0.78, respectively, while 

the mean LASSO AUC dropped to 0.72.

4.4 Performance under the null

Table 1 also includes median, and 2.5th to 97.5th percentile ranges, of the CPSS and SBWR 

selection probabilities, and mean selection probabilities from the LASSO analyses across 

covariates and simulation replicates under the null. There was no obvious cause for concern 

with any of the methods. When 119 covariates were analysed, SBWR demonstrated the 

smallest selection rates (mean 0.14 compared to 0.48 from Lasso under CPSS, and 0.60 

from Lasso), though it should be kept in mind these selection probabilities from Lasso and 

CPSS do not have the same interpretation as posterior probabilities. Performance of all 

methods under the null was superior in the high dimensional data, with mean rates all under 

1E – 3.

5 Tumour markers of breast cancer survival in SEARCH

In this section, we apply SBWR to explore a collection of tumour markers for association 

with breast cancer survival using data from 2287 ER-positive women collected as part of the 

SEARCH study. In the first instance, we restricted the analysis to the 75 tumour markers for 

which the majority of values were observed rather than imputed (i.e. those with missingness 

less than 50% – see Figure 1(d)). Analyses were also conducted using LASSO Cox 

regression with CPSS, and standard Weibull regressions including each tumour marker one-
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at-a-time, a straight forward strategy that might typically be used here, and all tumour 

markers at once in a ‘saturated’ model.

To account for data missingness, 20 multiply imputed datasets were analysed independently 

using SBWR, and posterior results pooled, as described in the methods. Similarly, LASSO 

regressions under CPSS were performed in each multiply imputed dataset, and the resulting 

selection probabilities were averaged. For the one-at-a-time and ‘saturated’ Weibull 

regressions, results from each imputation chain were combined using Rubin’s rules, as is 

standard practice.61 Known predictors number of positive lymph nodes, tumour size and 

grade, detection by screening, chemotherapy, hormone therapy and morphology were fixed 

to be adjusted for in the SBWR and LASSO models at all times, and adjusted for in the one-

at-a-time regressions, in addition to age of diagnosis and study entry delay as possible 

confounders. In all frameworks, the tumour markers were analysed as ordinal continuous, 

assuming additive relationships with log-Hazards across all levels of the scales used in their 

measurement. Number of positive lymph nodes, tumour size, tumour grade and diagnosis 

age were also modelled as ordinal continuous variables using the levels derived by Wishart 

et al.40 to provide the best fitting additive relationship with log-hazards using an 

independent collection of 5694 breast cancer patients (see Table 3 for the categorisations).

Evidence of association for each tumour marker under SBWR and CPSS are shown in 

Figure 3(a) and (b). Under SBWR, there was strong evidence of protective effects at PDCD4 

(HR: 0.75 (0.62, 0.89), MPPI = 84%) and the proportion score for PGR (HR: 0.86 (0.80, 

0.93), MPPI = 92%) and of a risk effect of AURKA (HR: 1.30 (1.11, 1.51), MPPI = 68%). 

These three tumour markers were selected simultaneously in most of the top 20 models, 

providing strong evidence they represent independent effects on survival (Table 2). The 

Bayesian false discovery rate among these three tumour markers was estimated to be 19% 

which, while larger than we might have hoped, is to be expected since none of their posterior 

probabilities are decisive (please see the supplementary methods for a formal definition of 

the Bayesian false discovery rate). There was another ‘band’ of tumour markers for which 

there was suggestive evidence of association: the intensity score for GATA3, the proportion 

score for BCL2 and the proportion score for CD8 had similar posterior probabilities between 

26% and 30%. However, the false discovery rate estimate increases to 45% when these 

tumour markers are included in the selection. Detailed results for these top six tumour 

markers under SBWR, in addition to the fixed effects and key model parameters, are 

presented in Table 3. The posterior distribution across the number of tumour markers 

included by SBWR had a large weight at 5 and above, the posterior probability of which was 

63% (Supplementary Figure S1). This suggests that while the model may not be able to 

clearly discriminate among the more weakly associated tumour markers, there is more signal 

here than that captured by the top three associations alone, and that a future predictive model 

may benefit from leniency in which tumour markers are included. Interestingly, key 

prognostic factors tumour grade and HER2 had weaker effects upon inclusion of the tumour 

markers, suggesting that part of their association with survival may be through the tumour 

markers measured in this study (Supplementary Table S1). Variable selection auto-

correlation plots (Supplementary Figure S2) and trace plots (Supplementary Figure S3) were 

consistent with convergence. Results were indistinguishable using more optimistic beta-

binomial prior parameter choices of aω = 1, bω = 3 (centring the prior proportion of signals 
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on 1/3) and a more pessimistic choice of aω = 1, bω = 9 (centring the prior proportion of 

signals on 0.1) – see Supplementary Figure S4 –, as well as between different chains and 

starting values (Supplementary Figure S5). Furthermore, the results for the top tumour 

markers were consistent between inclusion or exclusion of imputed data (Supplementary 

Figure S6).

Encouragingly, the CPSS analysis ascribed the strongest selection probabilities to the same 

top three tumour markers as SBWR. Furthermore, the estimated percentage of ‘noise’ 

variables among these proteins was similar to the Bayesian false discovery rate estimate at 

21%. There was somewhat less separation among the CPSS selection probabilities (Figure 

3(a)) such that other markers, which were assigned weaker evidence under SBWR, achieved 

similar selection probabilities to the top three signals. In the one-at-a-time regressions 

(Supplementary Figure S7a), as under SBWR, there was strong evidence for PDCD4 and the 

proportion score for PGR with p-values for association that easily surpassed a multiplicity 

adjusted Bonferroni threshold of 6:7 × 10−4 (p = 4:6 × 10−5 and 1:1 × 10−6, respectively; 

Figure 3(a)). However, the intensity score for PGR, which was ruled out under SBWR as 

confounded by its strong association with the proportion score, also reached significance (p 
= 1.9 × 10−4). AURKA, which obtained strong evidence of association under SBWR, was 

not significant falling short of the Bonferroni threshold (p = 1.05 × 10−3). As, in this 

application, the number of predictors is smaller than the number of subjects, we also 

estimated a saturated Weibull model which included all 75 tumour markers simultaneously. 

In the saturated regression (Supplementary Figure S7b), the proportion score for PGR also 

reached significance (p = 0.024). The only other marker to reach significance was an 

intensity score for GATA3 (p = 0.040); we expect this is a spurious result arising from 

overfitting due to use of the saturated model. The fact that AURKA and PDCD4 both 

received p-values greater than 0.05 is likely reflective of the increase in power using sparse 

models under SBWR and LASSO.

Finally, we repeated the SBWR and CPSS analyses of SEARCH, extending to the complete 

set of 119 tumour markers, i.e. including tumour markers for which more than 50% of 

values were imputed. Inference was unchanged for the previously analysed 75 tumour 

markers, and there was no compelling evidence for any of the newly included tumour 

markers (Supplementary Figure S8).

6 Discussion

As large data-rich studies become common place in medical research, there is a growing 

need for regression tools that can facilitate variable selection over many predictors. 

Attractive features of developing solutions in the Bayesian sparse regression framework 

include adequate reflection of uncertainty in the selection of covariates through inference of 

posterior probabilities for each predictor and possible model and, perhaps most importantly, 

that prior information can potentially be incorporated, for example through additional 

modelling of the causal probability, ω, in the spirit of Quintana and Conti62. We present, to 

our knowledge, the first implementation of a Bayesian variable selection algorithm for 

survival analysis under the Weibull model.
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Over a range of realistic simulation scenarios, our method generally demonstrated similar 

performance, and at times a marginal improvement in specificity, in comparison to an 

alternative frequentist variable selection strategy – penalised Cox regression with stability 

selection (specifically CPSS15). Our simulation study also shows that our method can cope 

with high-dimensional data up to 20,000 predictors, with computational times similar to the 

stability selection-based approach (approximately one day for n = 2287 on an Intel Xeon 

E5-2640 2.50GHz processor).

Subsequently, we conducted a real data application in which 119 prospectively measured 

immunohistochemical tumour markers were explored for their association with survival 

among 2287 ER-positive breast cancer cases. Three proteins stood out with evidence of 

independent effects: PDCD4, PGR and AURKA. Discrimination, i.e. separation between the 

top signals and other tumour markers, was clearer when using SBWR in comparison to 

CPSS, consistently with the specificity improvements observed in some of the simulation 

scenarios. We also compared our results with those from a univariate strategy that might 

typically be used to analyse such data, highlighting some of the benefits of multivariate 

modelling.

Of the top three proteins, two are becoming increasingly recognised as powerful prognostic 

factors in ER-positive breast cancer. Indeed most schemes for clinical classification of 

subgroups of breast tumours based on molecular profiles include PGR46,63,64 and, more 

recently, by using PGR expression at a higher threshold, it has been proposed that it ought to 

be used to identify indolent ER-positive ‘luminal A’ tumours in the clinical setting.65 

Following numerous high-resolution molecular profiling studies over the past decade, 

tumour cell proliferation has been confirmed as the most powerful predictor of outcome in 

ER-positive tumours.66,67 There are potentially dozens of methods for measuring tumour 

cell proliferation including assaying different molecular markers of cell cycle. We have 

previously conducted a systematic comparison of the relative prognostic power of a panel of 

six proteins associated with cell-cycle including AURKA.68 This study, based on the 

SEARCH dataset, identified AURKA as most strongly associated with outcome, 

outperforming the other investigated markers including marker combinations.68 Moreover, 

at the level of mRNA, AURKA has been identified as a prototypical marker of proliferation 

and selected for optimal classification of breast tumours into distinct molecular subgroups.

69 PDCD4 has not been investigated as a potential prognostic marker in breast cancer 

previously. However, studies in lung70 and salivary gland tumours71 have shown an 

association with outcome. It is a well-known tumour suppressor and thought to inhibit the 

translation of proteins by interacting with eukaryotic translation factor 4A (eIF4A).72 The 

strong independent association between PDCD4 and outcome revealed by this analysis is a 

novel finding which highlights PDCD4 as a potentially useful clinical marker of outcome 

requiring further evaluation. Interpretation of these results should, however, be mindful of 

the estimated false discovery rate, 19%, suggesting that up to one of the three proteins is 

expected to be a false positive.

A further caveat to our real data application is that our treatment of missing data may be 

sub-optimal. Missing data were imputed using the well-established technique of multiple 

imputation using chained equations,54 after which posteriors were pooled from individual 
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analyses of 20 chains as suggested by Gelman.56 However, after a simulation study on the 

practical performance of this approach, Zhou and Reiter73 concluded that 100 or more 

chains should be used to achieve adequate coverage of the target posterior. We did not do so 

here due to the computational time required to run our algorithm that many times, and since 

sensitivity analyses using less chains showed no substantive difference in estimates and 

inference. We also note that, while it was advisable for penalised regression, and our 

approach due to the prior framework, in general one should be very careful normalising 

predictors by their standard deviation.74 In our case, however, none of the top three markers 

had extreme standard deviations prior to normalisation (ranging from 0.85 to 1.72), so our 

key results should not be meaningfully impacted by this issue.

Although our algorithm was technically challenging to develop, since both models and 

parameters are sampled during Reversible Jump MCMC, the framework used for variable 

selection is relatively simplistic. First, we specified independent priors for all covariate 

effects. Ideally, a multivariate normal prior would be used to reflect that correlated 

covariates are likely to have correlated effects. Zellner75 proposed the use of ‘g-priors’ in 

which a multivariate normal is used as a prior for the regression coefficients with a 

correlation structure informed by that of the covariate matrix. In the context of linear 

regression, g-priors also preserve the ability to use conjugate results for coefficient effects 

and have been successfully implemented in the ESS sparse Bayesian regression framework.

31–33 It is worth noting, however, that the SSS algorithm also uses independent priors,30 

and the use of independent priors in the work we present here did not prove problematic. 

Nevertheless, we intend to incorporate a g-prior option in the future. Second, the parametric 

assumptions imposed on the hazard function under the Weibull model might be too 

restrictive for some problems. Haneuse et al.76 have proposed a flexible Bayesian approach 

for capturing much more complex hazard functions, including to account for potentially time 

varying predictor effects. Future work could also involve incorporating their ideas into our 

algorithm resulting in a considerably more flexible tool for survival analysis.

Although the runtimes of our algorithm when applied to high-dimensional datasets of 20,000 

covariates were similar to those from a state-of-the-art implementation of LASSO, there is 

certainly room for improvement. An alternative strategy might be to avoid Reversible Jump 

altogether and induce sparsity via independent double-exponential Laplacian priors on the 

Weibull covariate effects, a so-called Bayesian LASSO model due to demonstrated 

similarity of results with the LASSO.77 This would sacrifice the arguably more natural prior 

setup of the beta-binomial which, for example, allows direct specification of priors on the 

proportions of associated covariates. However, removing Reversible Jump from the MCMC 

algorithm could considerably improve efficiency. Another way we might improve efficiency 

would be to employ Evolutionary Monte Carlo scheme which has proved effective for 

exploring parameter spaces consisting of hundreds of thousands of predictors.31,33 We plan 

to investigate both strategies in future work.

Our method of variable selection is relevant both to breast cancer research and clinical 

practice. Cancer research has been transformed by the introduction of high-throughput 

technologies which enable scientists to interrogate all expressed genes in a tumour and, more 

recently, the sequence of the entire cancer genome at single nucleotide resolution in a single 
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experiment.78 This has led to a proliferation of large datasets comprising hundreds to tens of 

thousands of molecular features. The emergence of such abundant data poses a strategic 

problem for the cancer biologist: How best can a shortlist of molecules of probable 

importance be distilled from such a multitude? One approach has been to use a combination 

of biological knowledge and statistical inference.79 However, an alternative may be to use a 

legitimate endpoint such as disease-specific survival to infer which of a set of molecules 

influences the clinical behaviour of a tumour and is, therefore, likely to reflect its biological 

characteristics. Variable selection which accounts for the relative contribution of each of a 

large number of predictors represents a powerful method for identifying candidate molecules 

which warrant further biological investigation. Those molecules which are confirmed by 

such work to play a key role in tumour progression would represent lucrative targets for 

novel therapies.

Accurate risk prediction in breast cancer is important since many therapies have a modest 

effect on mortality and the absolute benefit of such toxic therapies is dependent on absolute 

risk of relapse or death.43 Therefore, even modest improvements in risk-prediction can 

influence treatment decisions. Current clinical methods heavily rely on conventional clinical 

parameters to estimate risk such as tumour size and grade, which are already measured 

rigorously and are not likely to be much improved.41 However, molecular characteristics of 

tumours are not much utilised and represent an important avenue for improving our 

approach. The impact of abundant molecular data on clinical practice has been facilitated by 

studies over the past decade which used frequentist approaches to compile risk-prediction 

signatures for certain clinical endpoints.80 These methods have had varying success and do 

not systematically account for the relative contribution of different variables. Through 

systematic consideration of multivariate models which account for the dependencies 

between covariates, our method of variable selection is likely to highlight not only molecules 

of biological importance but also to improve current risk-prediction methods. These benefits 

will extend to all common solid tumours in addition to breast cancer.

In summary, we present a new implementation of a Reversible Jump MCMC algorithm for 

Bayesian variable selection in survival analysis under the Weibull regression model. We 

demonstrate equal, or marginally superior, sensitivity and specificity to an alternative state-

of-the-art approach over a range of realistic simulation scenarios with up to 20,000 

covariates. In a real data application, in which our method demonstrated superior specificity 

over alternative approaches, we present evidence for three possible prognostic tumour 

markers of breast cancer survival. Despite the conceptual limitations listed above, in practice 

our software proved reliable, robust and efficient across the range of analyses presented here. 

Furthermore, our current implementation offers enormous flexibility for incorporation of 

prior information on effect magnitudes (individual priors can be specified for every 

covariate), and on relative probabilities of effect – the model space may be partitioned into 

as many components as required, each with an individual prior on the expected number of 

effects. This could, for example, be utilised to reflect that a subset of features lie in a known 

pathway for the disease being modelled. We have incorporated the algorithm, which was 

developed in java, into a freely available and easy to use R package called ‘R2BGLiMS’. 

For download and installation instructions, please look under ‘Other R packages’ on our 
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software page http://www.mrc-bsu.cam.ac.uk/software/, or, alternatively, direct download of 

‘R2BGLiMS’ is available via github https://github.com/pjnewcombe/R2BGLiMS.
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Figure 1. 
Tumour marker correlation structure and missingness. (a) A heatmap representing pairwise 

Pearson correlation statistics among the various immunohistochemistry (IHC) intensity 

score tumour markers. (b) A heatmap representing pairwise Pearson correlation statistics 

among the various IHC proportion score tumour markers. (c) Pearson correlation statistics 

between IHC intensity and proportion scores for those proteins where both were measured. 

(d) Proportion of missing values for each tumour marker in the analysis population.
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Figure 2. 
ROC analysis of simulation results. Performance of association measures from CPSS and 

SBWR, and the LASSO selections when the penalty parameter is set to the optimum under 

cross-validation, in distinguishing 12 signals from noise in datasets ranging from 119 to 

20,000 covariates. Panels (a), (c) and (e) show results from datasets simulated to have 12 

‘full-size’ effects, and panels (b), (d) and (f) when 12 ‘half-size’ effects were simulated. 

Each ROC curve is vertically averaged over the results from the analysis of 20 replicate 
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datasets. CPSS: Complementary Pairs Stability Selection; SBWR: Sparse Bayesian Weibull 

Regression.
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Figure 3. 
Association of tumour markers with breast cancer survival in the SEARCH dataset. In all 

panels, each tumour marker is coloured according to its strongest pairwise correlation with 

one of the three top hits – PDCD4, PGR and AURKA. (a) Selection probabilities from 

LASSO Cox regression with CPSS. (b) SBWR posterior probabilities. CPSS: 

Complementary Pairs Stability Selection; SBWR: Sparse Bayesian Weibull Regression.
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Table 1

Comparison of methods in simulated data.

LASSO    CPSS      SBWR

ROC AUCs

    119 covariates, ‘full size’ effects       0.92 (0.04)       0.99 (0.01)       0.99 (0.01)

    119 covariates, ‘half size’ effects       0.86 (0.06)       0.93 (0.05)       0.97 (0.03)

    10,000 covariates, ‘full size’ effects       0.99 (0.00)       1.00 (0.00)       1.00 (0.00)

    10,000 covariates, ‘half size’ effects       0.95 (0.05)       0.95 (0.03)       0.99 (0.01)

    20,000 covariates, ‘full size’ effects       0.92 (0.02)       0.95 (0.02)       0.96 (0.04)

    20,000 covariates, ‘half size’ effects       0.72 (0.05)       0.78 (0.03)       0.82 (0.15)

Selection rates under the null

    119 covariates       0.60 (0.49)       0.48 (0.32)       0.14 (0.25)

    10,000 covariates 9.2E – 4 (0.03)    6.9E – 4 (5.0E-3)      1.6E – 6 (2.1E – 5)

    20,000 covariates       0 (0)    1.8E – 4 (1.8E-3)       0 (0)

CPSS: Complementary Pairs Stability Selection; SBWR: Sparse Bayesian Weibull Regression

The top part of the table presents areas under the receiver operator characteristic curve (ROC AUCs) for detection of the 12 true effects among the 
variables analysed. Results are averaged over the analysis of 20 replicate datasets for each simulation scenario, with the standard deviation across 
replicates included in brackets. The bottom part of the table presents mean selection rates of each method under the null, over all covariates and all 
simulation replicates, with the standard deviation included in brackets.
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Table 2

Top 20 models from the SBWR analysis of the SEARCH dataset, inferred by SBWR.

AURKAP BCL2P CK56 GATA3I PDCD4O2 PGRP SMAD2I PTENI3 PTENP3 SLC7A5P CD8P Posterior probability

• • • 4.5%

• • 2.5%

• • • • 2.0%

• • • • 1.3%

• • • • 1.2%

• • • 1.2%

• • • • 0.7%

• • 0.6%

• • • 0.6%

• • • • 0.5%

• • • 0.5%

• • • 0.5%

• • • • 0.5%

• • 0.4%

• • 0.4%

• • • • 0.4%

• • • 0.4%

• • • 0.3%

• • • • 0.3%

• • • • 0.3%
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Table 3

SBWR results, for the fixed effects and top tumour markers associated breast cancer survival in SEARCH.

HR 95% CrIa MPPIb Imputed

Fixed parameters

    Intercept −7.32 (−8.07, −6.63)   –

    log(beta) Hyperprior SD (σβ)   0.24 (0.12, 0.71)   –

    Weibull scale   1.74 (1.54, 1.96)   –

    Number positive nodesc
    (0, 1, 2–4, 5–9, 10+)

  1.61 (1.45, 1.79)   8.4%

    Tumour size, mmc
    (<10, 10–19, 20–29, 30–49, 50+)

  1.26 (1.09, 1.45)   3.8%

    Tumour gradec
    (Low, Intermediate, High)

  1.47 (1.14, 1.89) 10.5%

    Morphology – Ductular – –   0%

    Morphology – Lobular   1.55 (1.10, 2.16)   –

    Morphology – Other   1.06 (0.64, 1.68)   –

    HER2   1.47 (0.97, 2.18) 10.8%

    Detection by screening   0.79 (0.55, 1.11)   6.1%

    Hormone therapy   2.20 (1.38, 3.86) <0.01%

    Study entry delay, years   0.88 (0.79, 0.98)   0%

‘Top’ tumour markers

    PGRP   0.86 (0.80, 0.93) 0.92   5.2%

    PDCD4O2   0.75 (0.62, 0.89) 0.84 43.2%

    AURKAP   1.30 (1.11, 1.51) 0.68 31.0%

    CD8P   0.92 (0.85, 0.98) 0.30 32.9%

    GATA3I   0.80 (0.68, 0.94) 0.30 41.6%

    BCL2P   0.94 (0.90, 0.98) 0.26   9.0%

a
Credible Intervals (CrI): For the tumour markers, these were calculated conditional on inclusion in the model.

b
Marginal Posterior Probabilitiy of Inclusion in the model – may be interpreted as the posterior probability an association exists with survival, 

adjusted for all other covariates in the model.

c
Modelled as ordinal continuous.
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