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Abstract

It is understood that adversity during development has the power to alter behavioral trajectories, 

and the role of the epigenome in that relationship is currently under intense investigation. Several 

studies in both non-human animals and humans have established a link between early adversity 

and epigenetic regulation of genes heavily implicated in the stress response, plasticity and 

cognition, and psychiatric disorders such as depression and anxiety. Thus, the relatively recent 

surge of studies centering on the epigenetic outcomes of stress has great potential to inform 

treatments and interventions for psychiatric disorder precipitated by early adversity. Here we 

review what we know and what we do not know, and suggest approaches to help further elucidate 

the relationship between early adversity, epigenetics, and behavior.
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1. Introduction

In the following sections we discuss ongoing considerations in the field of neuroepigenetics. 

Discussion will begin with current knowledge of each topic, focusing on DNA methylation. 

We will then narrow the focus to where we are at with that knowledge at the intersection of 

early adversity, the epigenome, and behavior. Lastly, discussion will turn to what we do not 

know within these areas, the direction the literature suggests we go next, and some specific 

steps necessary to address outstanding issues.

1.1 Early Adversity, Epigenetics, & Psychiatric Disorder

Adversity in early life, particularly in relation to the caregiver, is a major predisposing factor 

in the development of psychiatric disorder.1–3 Investigation into the mechanisms of this 

relationship reveals epigenetic alterations as promising candidates. Exposure to early 

adversity elicits changes in the epigenome that can vary by gene, brain region, sex, and 

across time (see Table 1).4–11 In animal models, these changes are associated with 

behavioral alterations reflective of psychological dysfunction.7,9,12 In humans, they are 

present in individuals with a history of early adversity and in those with psychiatric disorder.
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4,13–17 Taken together, these data present a strong argument for the functional role of 

epigenetics in adverse psychiatric outcomes induced by disruption of the early environment.

1.2 DNA Methylation

Methylation of DNA is an epigenetic modification whereby methyl groups are added to 

cytosine bases in the DNA sequence. This is generally associated with repression of gene 

transcription (for review see 18) though it is known in some cases to give rise to enhanced 

transcriptional states.19 While traditionally discussed as occurring at cytosine-guanine (CG) 

dinucleotides, non-CG methylation is also known to occur and have considerable 

implications for gene expression.20–22 Methyl group addition is accomplished by DNA 

methyltransferases DNMT1, DNMT3a, or DNMT3b depending on whether the mark is new 

or being maintained during replication.23 DNA demethylation may occur through oxidation 

of methyl marks24 or via enzymes such as Gadd45b.25 The effects of methylation are partly 

accomplished via methyl-CpG binding protein 2 (MeCP2), which binds to methylated DNA 

and facilitates gene silencing or expression via recruitment of corepressors26 or coactivators 

(see Figure 1 for schematic of epigenetic enzymes and their roles).19 DNA methylation is 

the most heavily studied epigenetic alteration in the realm of early stress and psychiatric 

disorder, and is thus the focus of the ensuing discussion.

2. Specificity of Experience-induced Methylation Changes

2.1 Tissue Specificity

Though some post-mortem brain studies have been published, human studies of early-stress, 

psychiatric outcome, and the epigenome generally rely on peripheral measures such as saliva 

and blood. Use of these peripheral measures has greatly informed the literature on stress-

induced methylation statuses of genes critical to mental health such as brain-derived 

neurotrophic factor (BDNF),27,28 serotonin transporter (SLC6A4),16 and oxytocin receptor 

(OXTR).29 However, the question remains of whether the epigenetic state of these peripheral 

tissues accurately reflects what is going in the brain, the target of interest in the study of 

psychiatric disorder.

Examination of human samples of various tissue types (i.e. brain, blood, saliva) has revealed 

baseline levels of epigenetic variation between tissues, but has also revealed some promising 

correlations that prompt further investigation. A 2012 study examining methylated regions 

of the human genome in multiple brain regions and in whole blood reported high variation 

between tissues, especially at genes critical to developmental processes. However, a 

correlation between brain and blood was reported for some of the differences found between 

individual subjects.30 Importantly, this report shows tissue-specific differences in 

methylation to occur primarily in intragenic locations, with much less between-tissue 

variation occurring in promoter regions.30 Given that promoter and intragenic methylation 

have distinct effects on transcriptional activity (for review see 31), each of these findings 

bear important implications. Another study comparing methylation between brain and blood 

in humans found blood to be a poor predictor of brain, and in contrast to the previously 

mentioned study found that the majority of the few sites exhibiting correlation with brain 

tissue were located in gene bodies.32 A 2014 study revealed that though overall positively 
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correlated, methylation within CpG islands is highly dissimilar between saliva and blood in 

humans, with saliva being a closer match to methylation patterns found in the brain.33 Blood 

is also a poor predictor of human brain BDNF exon I methylation, though muscle tissue 

methylation at this locus exhibits a high correlation to brain.34 Interestingly, methylation in 

brain and blood have been found similar in an animal model. A study examining correlations 

between brain and blood in a mouse model of Cushing’s disease found the two to be 

positively correlated for methylation of Fkbp5, though methylation changes occurred at 

different regions in each tissue type.35 However, the disease variable must be taken into 

account when interpreting these results in terms of tissue specificity as disease could have 

multiple epigenetic effects between tissues that may not be seen in a normal state. The 

results of cross-tissue comparison studies in humans should also be interpreted with caution 

given that, due to complications typically associated with post-mortem tissue collection, it is 

not often possible to obtain central and peripheral samples from the same subjects (though 

some of the aforementioned studies were able to do so). Even so, they provide a valuable 

foundation for exploring the issue of intra-tissue epigenetic variation in relation to the study 

of psychiatric disorder.

Despite methodological complications, studies of the epigenome following early stress in 

humans report findings that are promising in terms of the predictive value of peripheral 

measures. For example, increased methylation of the glucocorticoid receptor (GR) gene 

following early life stress has been reported in both whole blood14 and saliva.28 This is 

consistent with a 2009 report of increased GR methylation in post-mortem brain tissue taken 

from suicide victims with a history of child abuse.4 In an interesting cross-species 

comparison, researchers examined white blood cell progenitor cells in human and nonhuman 

primate cord blood alongside brain tissue (prefrontal cortex) from rats, all following 

exposure to early adversity. They reported similar early stress-induced epigenetic patterns 

between these species and their respective tissue for a handful of genes, one of which is 

associated with major depressive disorder in humans.36

2.2 Cell-type Specificity

Specificity of methylation patterns also occurs between cell types. We know that in the 

central nervous system neurons and glia display distinct patterns of methylation. Compared 

to glia, neurons exhibit increased levels of both CG and non-CG methylation as well as 

enriched methylation at CG island shores, enhancers, and intergenic regions.37–40 

Methylation patterns also differ by neuron type41,42 in what appears to be a functionally 

significant manner, especially for developmental processes.20 These cells also exhibit more 

variability in their epigenetic state than non-neurons,43 suggesting that the neuronal 

epigenome responds dynamically to experience. This has proven true in response to early 

stress exposure: neurons in the rodent medial prefrontal cortex (mPFC) exhibit increased 

levels of Bdnf methylation in response to adverse caregiving when compared to non-

neurons.44

Beyond the importance of understanding precisely where in the genome epigenetic 

modifications are taking place in response to adversity, taking into account cell-type 

specificity in peripheral samples may be critical for drawing parallels to the brain. For 
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example, saliva samples containing a higher proportion of leukocytes are more positively 

correlated with blood methylation patterns whereas saliva samples containing a higher 

proportion of epithelial cells are more positively correlated with brain methylation patterns.
33

3. Beyond Methylation

3.1 DNA Hydroxymethylation

Once established, a methyl mark on a cytosine can be oxidized into a hydroxyl group, 

creating a hydroxymethylated cytosine. This is accomplished by the family of ten-eleven 

translocation (TET) proteins.45 This recently discovered mark may play multiple roles in the 

epigenome. Evidence supports a transient role critical to the process of active 

demethylation24 as well as a stable role in neuronal function46,47 and behavioral outcomes.48 

The relationship of this mark to gene expression appears to be quite dynamic49,50 and may 

interact with methylation, changing gene expression outcomes.51

3.2 Early Adversity and the Hydroxymethylome

Significantly different patterns of hydroxymethylation are seen in non-human primates 

exposed to early-life adversity (i.e. peer-reared) when compared to their maternally-reared 

counterparts.51 Our lab has also found significant changes in this mark using a rodent model 

of adverse caregiving. Specifically, male rats exposed to our model of early adversity (i.e. 

the scarcity-adversity model of low nesting resources) exhibit decreased levels of 

hydroxymethylation within amygdala tissue in adolescence.52

The recent discovery of this mark means there has been much less time to address it in 

studies of early adversity. In fact, methods most commonly used in the field up to this point 

are unable to distinguish between methylation and hydroxymethylation, though methods do 

now exist for this purpose53–55 and are certain to become more commonly used. For 

example, oxidative bisulfite sequencing (oxBS-seq) entails the oxidation of 

hydroxymethylcytosines followed by conversion to uracil in a bisulfite treatment, allowing 

for sole detection of methylated cytosines.54 Another option is Tet-assisted bisulfite 

sequencing (TAB-seq) wherein hydroxymethylcytosines are preserved via glucosylation and 

methylated cytosines are oxidized to carboxylcytosines via Tet1. The carboxylcytosines are 

then converted to thymine in a bisulfite treatment, allowing for sole detection of 

hydroxymethylated cytosines.55

To our knowledge, no studies yet exist that examine hydroxymethylation at any time point 

following developmental stress exposure in humans. However, this modification has been 

studied in both the developing and adult human brain56–58 as well as in human peripheral 

samples (i.e. blood and saliva),59 and we know it is responsive to environmental conditions.
60 These factors comprise the necessary foundation to move forward with examination of 

this mark within the realm of early adversity in humans.
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4. Sex Differences

4.1 Animal Models

The epigenome and its many mechanisms are unarguably sexually dimorphic in 

development and throughout the lifespan. Sex differences have been reported in MeCP2, 

Gadd45b, and DNMT3a expression in the developing rat amygdala,61–63 in MeCP2 

expression in the developing rat ventromedial hypothalamus and preoptic area,62 and in 

methylation patterns of steroid receptors (e.g. estrogen receptor α) in sexually dimorphic 

regions of the brain (e.g. mediobasal hypothalamus, preoptic area).64,65 Post development, 

sex-specific histone modifications have been reported for the bed nucleus of the stria 

terminalis and preoptic area in adult mice66 and again, in methylation patterns of steroid 

receptors in sexually dimorphic brain regions.64,65 In humans, baseline (i.e. in non-stress/

disease samples) sex differences in methylation have been reported.67,68 Bear in mind that as 

the axis of this review spins on early adversity, these lists of baseline epigenetic differences 

are for illustration and thus are not exhaustive.

Though foundational studies of the epigenome in the early stress literature were conducted 

only in males, a large amount of data have since been produced to support the sex-specific 

nature of epigenetic modifications following early adversity. One of these foundational 

studies found that natural variations in maternal care (i.e. high versus low licking and 

grooming by a dam) resulted in altered methylation patterns and anxiety-like behavior in 

adult male offspring.7 A study published approximately a decade later examined outcomes 

in female offspring and found interesting differences (i.e. different in many respects from the 

male data) in both epigenetic and behavioral responses.69 Though methodological 

differences between these studies restrict a direct comparison, the collective results 

nevertheless point to the need for sex-specific examination.

Using a version of the scarcity-adversity model of low nesting resources, wherein pups 

experience daily exposure to adverse conditions outside the home cage during the first week 

of life, our lab has observed sex-specific alterations in epigenetic regulators in the mPFC as 

late as postnatal day 90.70 We have also reported numerous sex differences in adversity-

induced Bdnf methylation patterns. We find that females exhibit changes in Bdnf 
methylation that very rarely match male patterns.5,6,52 We also observe significant, brain-

region specific differences in genome-wide DNA methylation and hydroxymethylation in 

adversity-exposed adolescent males, an effect not observed in females.52 These alterations 

are accompanied by sex-specific deficits in select behavioral tasks,71 data which support the 

hypothesis that altered epigenetic patterns are behaviorally functional. Exposure to maternal 

separation, another commonly used model of early adversity, results in similar sex-specific 

outcomes. For example, in a mouse model of maternal separation, altered Nr3c1 (GR) 

methylation is seen in the adolescent male but not female hippocampus of C57BL/6J mice, a 

change accompanied by various male-specific behavioral alterations.72

4.2 Humans

Interestingly, methylation of NR3C1 in humans exposed to early adversity is not reported to 

differ between males and females in adulthood.15 The same appears to be true for early 
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stress-induced methylation changes in genes whose methylation status significantly predicts 

depression.13 However, sex differences in methylation have been reported in children8 and 

adolescents73 exposed to early stress. Many variables could account for these opposing 

results. Tissue types less representative of the brain (e.g. blood) may not pick up sex 

differences that would normally be seen in the brain. Differing types, intensities, and timing 

of adversity may have more or less of a sex effect. Lastly, gene-specific studies not reporting 

a sex difference may simply be examining a gene that does not exhibit sex differences in 

methylation in response to adversity.

5. Methylation across the lifespan

We now know that methylation across the genome is tied to age in both non-human 

animals9,74 and humans.68,75,76 In addition, data suggest that the effect of early 

environmental alterations on health at a later age is of an epigenetic nature. For example, 

prenatal exposure to famine is related to altered methylation of growth- and metabolic-

related genes more than half a century after exposure.77,78 Adversity in the context of 

caregiving in humans and non-humans is known to leave its epigenetic mark early on14,79,80 

and/or in adulthood.4,9,79 That is, in some cases these marks are seen persistently across 

development and into adulthood while in other cases they are dynamic across the lifespan, 

appearing in some life stages and not in others. These stress-induced changes in methylation 

have even been reported to override changes typically seen in the aging methylome.9

In non-human primates, serotonin transporter methylation appears to be elevated in both 

infancy80 and adulthood81 following early stress, though it is important to note that different 

types of early stress were employed in these two studies. In a mouse model of early stress, 

Avp hypomethylation was detected at 6 weeks of age and persisted up to the last 

measurement at 1 year of age.9 In a similar model, Pomc hypomethylation is maintained 

within the same time frame.79 In contrast to these sustained marks, our lab has found 

developmental changes in methylation of the Bdnf gene in our adversity-exposed rats. In 

infancy, we find that adversity-exposed females exhibit a brain region-specific decrease in 

methylation of Bdnf exon I alongside increased methylation of exon IV, the reverse of which 

is then found in adulthood.6 In males, the only developmental change detected in Bdnf 
methylation is at exon I in adolescence.5 Not only is that mark found to be reversed (i.e. 

opposite direction in methylation) in adulthood, six additional alterations in Bdnf 
methylation emerge at this time point.5,6 Additionally we find several significant, 

maltreatment-specific alterations in epigenetic regulators in the mPFC of our adult animals 

that are not detected in infancy.70 Taken together, these data underline the importance of 

longitudinal studies of environmental effects upon the epigenome, a type of study that is 

somewhat lacking in the field at present.

6. What we do not know and how we get there

6.1 Tissue- and Cell-type Specificity

Currently, one of the largest issues in studying epigenetic signatures following adversity in 

humans is the lack of understanding of the relationship between central and peripheral 

epigenetic marks. Though we may not necessarily expect similar marks between central and 
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peripheral measures, thorough investigation and comparison of the epigenome between 

tissue types will aid in understanding if there is a relationship between them, and if there is, 

how we can use that relationship to understand what is happening in the brain when only 

peripheral measures are available. An example of the utility of this approach can be seen in 

work by Walton and colleagues.32 Following initial examination of tissue-specific 

methylation in samples obtained from epileptic patients during neurosurgery, these 

researchers isolated a small number of sites in which significant correlations existed between 

methylation in blood and brain. Using these sites they examined methylation in blood 

samples of schizophrenia subjects, an approach that led them to discover an association 

between schizophrenia and methylation of a gene (AVP) and its receptor (AVPR1A) 

previously associated with this disorder.32

Collection of more biosamples in rodent studies will be incredibly useful in this endeavor. 

Previous reports of correlation of tissue-specific methylation between-species (i.e. mouse 

and human)41,82 support the examination of peripheral tissues in animal models to draw 

parallels in humans, though more studies are needed to know if correlations also exist for 

adversity-induced methylation patterns. Peripheral and central tissue collection in rodent 

studies can be easily accomplished within subjects and will greatly contribute to the quest of 

understanding the peripheral-central relationship of the psychiatric epigenome. However, 

there are important caveats to consider in making cross-species comparisons. For example, 

the previously discussed correlation between methylation patterns in mouse and human 

brain is more highly conserved in inhibitory than excitatory neurons.41

When possible, collecting multiple types of peripheral samples within human subjects will 

help us better understand intra-tissue epigenetic variation in humans. Given that methylation 

patterns exhibit brain region-specific changes in response to adversity, it will also be 

necessary to examine multiple regions individually to understand which of them exhibit a 

relationship to peripheral measures and what each relationship looks like. Though access to 

human brain tissue is difficult to obtain (especially when specific conditions, like adversity, 

are required), the collection of more brain regions from the same subject is warranted.

Currently there are few studies on cell-type specific methylation following early stress. 

However, existing literature clearly demonstrates stress-induced epigenetic responses and 

the field would greatly benefit from expanding these studies to understand more precisely 

where these changes are occurring. Given the known mental health outcomes of 

developmental stress exposure, this understanding is critical to the intersection of 

epigenetics and psychopathology.

6.2 Hydroxymethylation and non-CG methylation

Another necessary step in the field will be increased utilization of the techniques referenced 

in section 3.2 in order to distinguish between methylated and hydroxymethylated cytosines. 

Considering what is known at this point about the distinct effects of these two modifications 

on gene expression, it will be critical to parse them apart if we wish to understand epigenetic 

regulation of behavior following early adversity. Additionally, investigation of 

hydroxymethylation in human early adversity studies will be essential in moving the field 

forward.
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Another component of the epigenome requiring more attention is non-CG methylation. 

Examining methylation at CG sites is the dominant practice at present. However, non-CG 

methylation is not only known to occur (as referenced in section 1.2) but is reportedly the 

preeminent form of methylation in neurons.38 Furthermore, when occurring in the gene 

body, it has been reported to be more predictive of neuronal gene expression than both CG 

methylation and measures of chromatin accessibility.20 Given this powerful relationship to 

functional outcome, examination of non-CG methylation is paramount to understanding how 

epigenetic alterations subserve the relationship between early adversity and psychiatric 

dysfunction.

6.3 Sex Differences

In terms of understanding sex differences in the epigenome following early life stress, 

female offspring need to be included more consistently in animal research, something that is 

already occurring based on recently introduced NIH policies on balancing sex in cell and 

animal studies. Something else to consider is that studies in post-mortem brains suffer from 

a lack of female tissue, making it difficult to verify sex differences in human studies using 

peripheral samples. Sex differences are prevalent in psychiatric disorders,83,84 particularly in 

disorders for which stress is a precipitating factor.85 Given these facts alongside our 

knowledge of a sexually dimorphic epigenome in individuals exposed to early adversity and 

in those with psychiatric disorder, it is highly plausible that epigenetic mechanisms are a 

causal factor in these sex-specific outcomes. Failing to consistently study sex differences 

will greatly undermine our understanding of and ability to treat psychiatric dysfunction.

6.4 Lifespan Methylation

Concerning aging, we know the human epigenome bears the marks of early stress at 

individual time points (e.g. adolescence, adulthood) but we have very little information on 

how methylation changes across the lifespan in these individuals. The literature would 

greatly benefit from longitudinal studies in early-stress cohorts (in both animal models and 

humans) that report epigenetic states at various age points following the initial exposure. 

Understanding the state of the epigenome at a given point in time has great potential to 

inform the medical community based on the age a given treatment or intervention might be 

administered.

7. Concluding Remarks

For a young field, great strides have certainly been made. The foundation that exists in the 

current literature gives us every opportunity to address these challenges and others that will 

surely arise. Given the nature of these studies, some obstacles will be more difficult to 

address than others. For example, obtaining post-mortem brain tissue under specific 

conditions (i.e. from subjects with known histories of early stress) is difficult, as is obtaining 

peripheral samples from the same subjects due to timing (of death and of the research) as 

well as the conditions of death. Longitudinal studies also present unique challenges due to 

issues such as subject attrition. However, the potential of this work to improve the human 

condition definitively outweighs the cost. The implications are far-reaching, with the 
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potential to shape both policy and medicine in a manner that will meaningfully affect the 

lives of many in terms of development and/or in the prevention and treatment of disease.
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Figure 1. 
Schematic of DNA wrapped around four core histones. Zoom-in of DNA strand 

demonstrates the addition of methyl groups (M) to cytosines by DNMT enzymes, 

association of MeCP2 with methyl groups, oxidation of methyl groups by TET enzymes to 

create hydroxymethylcytosines (hM), and demethylation activity of GADD45b.
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