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Abstract

Background

Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a complex condition

involving multiple organ systems and characterized by persistent/relapsing debilitating

fatigue, immune dysfunction, neurological problems, and other symptoms not curable for at

least 6 months. Disruption of DNA methylation patterns has been tied to various immune

and neurological diseases; however, its status in ME/CFS remains uncertain. Our study

aimed at identifying changes in the DNA methylation patterns that associate with ME/CFS.

Methods

We extracted genomic DNA from peripheral blood mononuclear cells from 13 ME/CFS

study subjects and 12 healthy controls and measured global DNA methylation by ELISA-like

method and site-specific methylation status using Illumina MethylationEPIC microarrays.

Pyrosequencing validation included 33 ME/CFS cases and 31 controls from two geographi-

cally distant cohorts.

Results

Global DNA methylation levels of ME/CFS cases were similar to those of controls. However,

microarray-based approach allowed detection of 17,296 differentially methylated CpG sites

in 6,368 genes across regulatory elements and within coding regions of genes. Analysis of

DNA methylation in promoter regions revealed 307 differentially methylated promoters.

Ingenuity pathway analysis indicated that genes associated with differentially methylated

promoters participated in at least 15 different pathways mostly related to cell signaling with a

strong immune component.

PLOS ONE | https://doi.org/10.1371/journal.pone.0201066 July 23, 2018 1 / 19

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Trivedi MS, Oltra E, Sarria L, Rose N,

Beljanski V, Fletcher MA, et al. (2018) Identification

of Myalgic Encephalomyelitis/Chronic Fatigue

Syndrome-associated DNA methylation patterns.

PLoS ONE 13(7): e0201066. https://doi.org/

10.1371/journal.pone.0201066

Editor: Dajun Deng, Beijing Cancer Hospital, CHINA

Received: March 23, 2018

Accepted: July 7, 2018

Published: July 23, 2018

Copyright: © 2018 Trivedi et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files. All raw data are available from the Gene

Expression Omnibus (GEO) database under the

accession number GSE111183.

Funding: This study was supported by the grant

R15NS087604-01A1 from the National Institute of

Neurological Disorders and Stroke of the National

Institutes of Health and by Presidential Faculty

Research and Development Grant from Nova

Southeastern University (both awarded to LN). The

funders had no role in study design, data collection

https://doi.org/10.1371/journal.pone.0201066
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0201066&domain=pdf&date_stamp=2018-07-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0201066&domain=pdf&date_stamp=2018-07-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0201066&domain=pdf&date_stamp=2018-07-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0201066&domain=pdf&date_stamp=2018-07-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0201066&domain=pdf&date_stamp=2018-07-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0201066&domain=pdf&date_stamp=2018-07-23
https://doi.org/10.1371/journal.pone.0201066
https://doi.org/10.1371/journal.pone.0201066
http://creativecommons.org/licenses/by/4.0/


Conclusions

This is the first study that has explored genome-wide epigenetic changes associated with

ME/CFS using the advanced Illumina MethylationEPIC microarrays covering about 850,000

CpG sites in two geographically distant cohorts of ME/CFS cases and matched controls.

Our results are aligned with previous studies that indicate a dysregulation of the immune

system in ME/CFS. They also suggest a potential role of epigenetic de-regulation in the

pathobiology of ME/CFS. We propose screening of larger cohorts of ME/CFS cases to

determine the external validity of these epigenetic changes in order to implement them as

possible diagnostic markers in clinical setting.

1. Introduction

Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a condition that is charac-

terized by an abrupt or delayed onset of persistent/relapsing symptomatology including mem-

ory and other neurological problems, muscle and joint pain, gastrointestinal issues, hormonal

imbalance, immune dysfunction and debilitating fatigue. Moreover, such symptoms are usu-

ally unresolved with bed rest and are severe enough to impair average daily activity below 50

percent of usual activity level, lasting for a period of at least six months [1].

While the mechanism of ME/CFS remains unclear and diagnostic methods exclusively rely

on symptomatology presentation and exclusion of laboratory findings, research efforts have

demonstrated that ME/CFS impacts the endocrine, neurological, immune and metabolic pro-

cesses resulting in impaired physiological homeostasis [2–4].

Statistical studies estimate the prevalence of ME/CFS at 0.23 to 0.41 percent [5, 6] of the

general population, with a female to male ratio of 6:1 [7]. With this prevalence, annual costs to

the United States economy have been estimated at $9 billion in lost productivity and up to $24

billion in health care expenditures [8–10]. Therefore, it seems that ME/CFS not only impacts

an individual’s overall well-being and quality of life, but it also has far reaching effects on the

society and economy and constitutes a significant public health concern.

Currently, treatment of ME/CFS relies only on the management of symptomatology [11]

and improvement in quality of life due to a lack of understanding of the mechanisms under-

pinning disease onset and progression, limiting treatment options to partial and/or temporary

relief of symptoms [11]. While some advances have been made in identifying molecular

changes associated with ME/CFS, its complexity and the involvement of multiple organ sys-

tems have hindered the exact causes of the disease [12]. An improved understanding of the key

molecular mechanisms of ME/CFS and dysfunction within regulatory systems will translate

into appropriate diagnostic methods and management of cases, providing more targeted

approaches to treatment.

Disruption of epigenetic mechanisms is linked to various immune, neurological and endo-

crine diseases [13–15]. Furthermore, DNA methylation patterns were found to be altered in

several diseases often reported as comorbid to ME/CFS such as fibromyalgia (FM) and irritable

bowel syndrome (IBS) [16, 17]. With respect to ME/CFS, we are aware of only a few studies,

which examined differences in DNA methylation patterns between ME/CFS cases and controls

[18–20]. These studies used Illumina Human Methylation450 BeadChip microarrays, which

allow to analyze over 450,000 methylation sites per sample at single-nucleotide resolution.

Other two additional studies limited the analysis to specific gene promoter regions using a
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site-specific approach for measuring DNA methylation in ME/CFS cases [21, 22]. The recently

released Illumina MethylationEPIC microarrays allow analysis of DNA methylation changes

on over 850,000 CpG sites [23]. This additional coverage should facilitate uncovering addi-

tional changes in transcription regulation present in ME/CFS subjects. In addition, by validat-

ing DNA methylation patterns associating with ME/CFS in 64 participants from two

geographically distant independent cohorts using pyrosequencing, we identified consensus

CpG hypomethylated sites which could be used in future screenings of associations of these

epigenetic changes in ME/CFS. Therefore, this study intended to validate and build upon the

previous analysis of genome-wide DNA methylation changes in ME/CFS and extend such

findings by utilizing larger coverage of CpG sites. Future validation studies in larger cohorts of

ME/CFS cases are warranted to provide reliable epigenetic markers in ME/CFS.

2. Materials and methods

2.1. Sample collection and processing

2.1.1. Cohort recruitment. ME/CFS cases and controls were recruited from two loca-

tions: the Miami/Fort Lauderdale (Florida) area and Valencia, Spain as part of larger bio-

marker-oriented studies. All subjects had comparable age and body mass index (BMI)

(Table 1). Because females are affected by ME/CFS more than males (6:1 ratio) [7], we

recruited only female participants to reduce potential confounding effects. For inclusion we

utilized the Fukuda [24] and Canadian [25] case definitions. Fukuda requiring fatigue of

greater than 6 months duration and 4 of 8 symptom criteria including exercise induced

relapse, myalgia, arthralgia, headache of a new and different type, non-restorative sleep, cogni-

tive complaints, sore throat and tender lymph nodes [24], and Canadian requiring exercise

induced relapse and symptoms form at least of 3 categories (immune, autonomic, endocrine)

[25].

All ME/CFS study subjects had the Medical Outcomes Study 36-item short-form survey

(SF-36) summary physical score below the 50th percentile, based on population norms. All

subjects were between 30 and 60 years old when samples were collected.

Exclusion criteria: all ME/CFS subjects, selected by their medical history and physical

examination, had no history of malignancy or other systemic disorders including the listed

psychiatric exclusions required for a diagnosis of ME/CFS, as clarified by Reeves [26], using

Table 1. Demographic information and SF-36 results for all ME/CFS cases (n = 33) and controls (n = 31) that par-

ticipated in DNA methylation analysis and validation. �—p<0.05, Student’s t-test, ME/CFS cases versus controls

subjects. Data are shown as mean ± standard error of mean.

ME/CFS Cases Healthy Controls

Age (years) 49.9 ± 1.56 47.9 ± 1.63

BMI (kg/m2) 25.8 ± 0.90 25.6 ± 0.80

Physical Health

Physical Functioning 39.3 ± 4.69� 96.8 ± 0.91

Role Physical 18.5 ± 7.01� 91.7 ± 4.69

Bodily Pain 32.6 ± 4.86� 89.1 ± 3.12

General Health 26.9 ± 3.74� 76.2 ± 3.55

Mental Health

Vitality 22.4 ± 4.40� 71.2 ± 3.94

Social Functioning 34.5 ± 5.52� 92.2 ± 2.56

Role Emotional 49.4 ± 8.42� 87.8 ± 5.42

Mental Health 60.7 ± 4.83� 79.6 ± 3.52

https://doi.org/10.1371/journal.pone.0201066.t001
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the Composite International Diagnostic Instrument (a computerized interview format assess-

ment of comorbid or exclusionary psychiatric diagnoses) [27]. Additional exclusion criteria

included: active smoking or alcohol history, taking medications that could potentially impact

immune function (e.g. steroids, immune-suppressors, etc.), taking diuretics, beta blockers, cal-

cium channel blockers, ACE inhibitors, as well as subjects with a BMI> 35. Controls were

self-defined as healthy, sedentary (no regular exercise program, sedentary employment), and

matched to ME/CFS cases by age (+/- 5 years), race/ethnicity and BMI (+/- 5). All subjects

were asked to complete the Gynecologic Questionnaire to assess routine gynecologic parame-

ters and were asked to come for the assessment and collection of blood during the first two

weeks of their menstrual cycle if premenopausal.

All subjects signed an informed consent approved by the Institutional Review Board of the

Nova Southeastern University. Ethics review and approval for the subjects from Valencia was

obtained from Hospital de La Plana (Villarreal, Spain) Ethics Committee. All subjects from

Valencia (Spain) signed an informed consent before they could be included in the study.

The following questionnaires were completed for all enrolled subjects (cases and controls):

the Multidimensional Fatigue Inventory (MFI) [28] to measure fatigue, the SF-36 [29] to assess

health-related quality of life, the Krupp Fatigue Severity Inventory (Krupp FSI) [30] to measure

perception of fatigue severity, the Sickness Impact Profile [31] to measure the impact of symp-

toms on the activities of daily life.

Student t-test was used to assess statistical difference between ME/CFS cases and controls

in SF-36 scores for physical and mental health.

2.1.3. Isolation of PBMCs and DNA extractions. Blood samples (8 ml) collected and kept

at room temperature in K2EDTA (Becton Dickinson) were processed within 2 h by dilution at

1:1 (v/v) ratio in phosphate-buffered saline solution (PBS), layering on top of 1 volume of Ficoll-

Paque Premium (GE Healthcare) and separation by density centrifugation at 20˚C at 500 g for 30

min (brakes off). The PBMC layer was isolated and washed with PBS. The isolated PBMC pellets

were resuspended in 1 volume of red blood cell lysis buffer (155 mM NH4Cl, 10 mM NaHCO3,

pH 7.4, and 0.1 mM EDTA), kept on ice for 5 min, and centrifuged (20˚C, 500 g, 10 min). The

washed pellets were resuspended in freezing medium (90% FBS, 10% DMSO) adjusting their

concentration to 107 cells/ml, aliquoted and frozen at -150˚C or liquid nitrogen until use. Geno-

mic DNA was extracted from rapidly thawed PBMCs using DNeasy Blood & Tissue Kit (Qiagen),

according to manufacturer´s instructions. In brief, pelleted PBMCs were resuspended in 200 μl

of PBS supplemented with proteinase K and RNase A and genomic DNA was obtained from

treated lysates using the kit binding columns and binding/wash/elution standard conditions.

DNA quality and concentration were assessed by Agilent TapeStation 4200 (Agilent Technolo-

gies). All DNA samples had DNA Integrity Number (DIN) above 8 (data not shown).

2.2. Genomic DNA methylation profiling

For global epigenetic measurements MethylFlash Methylated DNA 5-mC Quantification Kit

(EpiGentek) and MethylFlash Methylated DNA 5-hmC Quantification Kit (EpiGentek) have

been used with 100 ng of genomic DNA from each sample. DNA methylation and DNA

hydroxy-methylation were quantified using 5-methylcytosine and 5-hydroxymetylcytosine

respectively by an enzyme-linked immunosorbent assay-like reaction as previously described

[32, 33]. The levels of methylated DNA were calculated using the absorbance on a microplate

reader at 450 nm. Results were normalized against a standard curve prepared according the

manufacturer’s protocol using reference 0–100% methylated standards.

For genome-wide DNA methylation assessment 500 ng of genomic DNA from each sample

was submitted to the Center of Genome Technology of the John P. Hussman Institute for
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Human Genomics in the Miller School of Medicine University of Miami. Genomic DNA was

bisulfite converted using the EZ DNA Methylation Kit (Zymo Research), and after processing,

according to Illumina’s specifications, DNA was hybridized to Illumina MethylationEPIC

microarrays [34].

2.3. Analysis of genomic DNA methylation data

Signal intensity data (IDAT files) were imported into R/Bioconductor (v.3.3.1) package

RnBeads (v.1.2.0) [35]. Methylation values for each of the probes on the Illumina Methylatio-

nEPIC microarray were produced as beta-values, calculated as the ratio of methylated probe

intensity over total intensity (methylated and unmethylated) for each probe, which range from

0 to 1, roughly corresponding to the methylation percentage of the probe [35]. Low-quality

data (probes with detection p-value > 0.01) were removed from the analysis. Probes outside of

the context (non-CpG) and invariable through all sample probes were filtered out. Probes

overlapping SNPs were removed using RnBeads function “rnb.execute.snp.removal” with the

option “snp =“any””. The resulting data set (649,836 probes) was normalized using BMIQ nor-

malization of RnBeads package [36] and used for exploratory and differential methylation

analysis. Differential methylation analysis was performed by using two strategies: genomic

region-based and site-based. While the genomic region-based approach looks for the average

methylation level of the genomic region (CpG islands, promoters, genes, and genome-wide til-

ing regions) and then compares the methylation status of the regions across samples, site-

based approach analyses the CpG loci are analyzed one at a time. To detect regions or loci that

are differentially methylated in ME/CFS cases compared to controls we used R/Bioconductor

limma package [37] incorporated into RnBeads analysis. CpG sites were considered to be dif-

ferentially methylated if they met the following selection criteria: the absolute beta-value differ-

ence between the mean beta-values of cases and controls was greater than 0.05, and false

discovery rate (FDR)� 0.05 using the Benjamini-Hochberg procedure [38] for microarray-

based analysis and p� 0.05 according to the Student t-test for pyrosequencing-based analysis.

Promoter regions (1500 bp upstream of the transcription start site (TSS) and 500 bp down-

stream of TSS) were considered to be differentially methylated if they met the following crite-

ria: FDR� 0.1 according to Benjamini-Hochberg procedure [38] and the absolute beta-value

difference between the mean beta-values of cases and controls was greater than 0.05. RnBeads

calculates the combined rank score for differential DNA methylation to each genomic region.

This combined rank is defined as the maximum (worst) of three individual rankings of 1) by

absolute difference in mean DNA methylation levels in the genomic region, 2) by the relative

difference in mean DNA methylation levels, which is calculated as the absolute value of the

logarithm of the quotient of mean DNA methylation levels, and 3) by the CpG-based or geno-

mic region-based p-value that is combined from CpG-specific p-values of the region using an

extension of Fisher’s method. We present our data in the Supplementary Tables ordered by

the combined rank.

The raw microarray data have been deposited in Gene Expression Omnibus (GEO) at

NCBI (https://www.ncbi.nlm.nih.gov/geo/) under the accession number GSE111183.

2.4. Validation of differentially methylated promoters by pyrosequencing

For validation of the data obtained with the Illumina MethylationEPIC microarrays by pyrose-

quencing, genomic DNA was treated with EZ DNA Methylation-Gold Kit (Zymo Research)

according to the manufacturer’s protocol. Methylation of DNA was quantified with bisulfite

treatment of DNA and simultaneous PCR. A 50-μl PCR was performed in 25 μl of GoTaq

Green Master mix (Promega), with 1 pmol of biotinylated forward primer, 1 pmol of reverse
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primer and 50 ng of bisulfite treated genomic DNA. The primer sequences for TABPB were:

forward—5’- GTGGATTTTGGGTGGGGATTA-3’ and reverse—5’- AACTCCCACCAAAC
CATCCTTACC-3’; for ZBTB18 were: forward—5’- GAGTTTGAGGAGATGTATTTGATA
TT-3’ and reverse—5’- AACTTTTCAACCAATTTATAAATCTTTTCT-3’. The PCR was

followed by pyrosequencing, using conditions previously described [33]. Results were reported

as the percentage of the 5-methylated cytosines with respect to total, methylated and unmethy-

lated, cytosines. Additionally, non-CpG cytosine residues were used as internal controls to val-

idate bisulfite conversion.

2.5. Ingenuity pathway analysis

Ingenuity Pathway Analysis software (IPA, Qiagen) was used to annotate genes with differen-

tially methylated promoters (DMPs) and rank associated canonical pathways. Canonical path-

ways analysis identified the pathways from the IPA library of pathways that were most

significant to the set of genes with DMPs. The significance of the association between a gene

set and a canonical pathway was measured by determining the ratio between the number of

genes in our list that mapped to the canonical pathway divided by the total number of all

known genes that mapped to that pathway. Fisher’s exact test was used to calculate p-values

determining the probability that the association between the genes in the dataset and the

canonical pathway was explained by chance alone.

3. Results

3.1. Study design and participant demographics

Flow chart of the study design is depicted on Fig 1. In brief, genomic DNA from 13 ME/CFS

cases and 12 controls (“experimental cohort”) was hybridized to the Illumina MethylationEPIC

Fig 1. Study design flowchart. Genomic DNA was isolated from ME/CFS cases (N = 13) and controls (N = 12) and analyzed using Illumina

Infinium Human MethylationEPIC BeadChip microarrays and this was defined as “experimental cohort”. Following data analysis results

were validated on all the samples from the “experimental”, as well as from a secondary cohort that included samples from ME/CFS cases

(N = 8) and controls (N = 8) from Miami/Fort Lauderdale area, as well as ME/CFS cases (N = 12) and controls (N = 11) from Valencia

(Spain), using pyrosequencing analysis.

https://doi.org/10.1371/journal.pone.0201066.g001
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microarrays, as detailed in Methods. These arrays can assay over 850,000 CpG sites and cover

different regions across genes, including promoter, 5’ UTR, first exon, gene body, and 3’ UTR,

as well as and distant regions. Coverage includes 99% of RefSeq genes with multiple probes per

gene, 96% of CpG islands from the UCSC (University of California, Santa Cruz) database and

additional content imputed from whole-genome bisulfite sequencing data [23]. Following data

analysis, the obtained results were validated by pyrosequencing on the samples from the experi-

mental cohort, as well as on additional 8 ME/CFS cases and 8 controls from Miami/Fort Lau-

derdale area and 12 ME/CFS cases and 11 controls from Valencia (Spain), as described in

Methods.

It is worth noting that previous studies have had similar number of cases and controls using

different Illumina Human Methylation450 microarrays. For example, Brenu et al [20] included

25 ME/CFS cases with 18 controls and measured methylation in T-cells; whereas De Vega et al

[18] included 12 ME/CFS cases and 12 controls and measured methylation status in PBMCs.

Hence, our sample size is similar to these previous publications for statistical comparison.

Moreover, the major strength of the current findings is depicted in the validation of specific

CpG sites in an expanded cohort of ME/CFS cases and controls from a different geographical

location i.e. Valencia, Spain. However, additional validation in a larger cohort is warranted.

Table 1 shows age and BMI matching of all ME/CFS cases and controls in the experimental

cohort and in the 39 additional samples from two distant geographic locations (used for pyro-

sequencing validation). Vitality, social functioning, role emotional and mental health were sig-

nificantly lower in ME/CFS cases compared to controls. In addition, statistically significant

differences in physical health were found when cases were compared to controls, according to

SF-36 scores. S1 and S2 Tables show age, BMI and SF-36 scores for the two separate cohorts,

one from Florida, USA, and the other from Valencia, Spain, correspondingly.

3.2. Global methylation in ME/CFS

We did not find statistically significant differences in global DNA methylation levels using

ELISA-based assay methods to detect either 5-methylcytosine (5-mC) or 5-hydroxymethylcy-

tosine (5-hmC) modifications on DNA isolated from PBMCs of ME/CFS cases and controls

(S3 Table). This analysis, however, shows overall cytosine modifications but it is limited at

detecting specific fluctuations at particular locations in the genome.

Since former studies had shown site specific methylation differences in ME/CFS [18–21],

we proceeded to evaluate this possibility in our experimental cohort, however, we used an

upgraded version of the microarrays for human genome-wide methylation studies (Illumina

Infinium Human MethylationEPIC microarrays). This novel technology which has almost

twice coverage compared to that of previous Illumina HumanMethylation450 microarrays

[36] may allow for validation and additions to previous findings in independent, geographi-

cally distant, cohorts of ME/CFS cases.

3.3. Differentially methylated CpG sites in ME/CFS

Data from the microarray-based genome-wide methylation analysis of the experimental cohort

showed hypomethylation of the differentially methylated sites (DMS) (98%) in PBMCs from

ME/CFS cases compared to controls.

As many as 649,836 probes remained for normalization and further analysis upon filtering

and preprocessing of the raw genomic DNA methylation data with the R/Bioconductor v.3.3.1

RnBeads package v.1.2.0. Analysis of these probes led to the finding of 17,296 DMS located in

6,368 annotated genes indicating epigenetic differences between the ME/CFS cases and con-

trols in experimental cohort when we used FDR� 0.05 criteria. S4 Table shows the list of

DNA methylation in ME/CFS
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DMS along with their respective gene references. Furthermore, Principal Component Analysis

(PCA) of full methylomes clearly differentiated between ME/CFS cases and controls as shown

in Fig 2. In addition, unsupervised hierarchical clustering of the 500 most variable CpG sites

(according to RnBeads ranking, see Methods) shows clear segregation between ME/CFS cases

and controls (Fig 3) confirming that methylation DNA patterns of PBMCs in ME/CFS individ-

uals differ from those of controls.

Out of the 17,296 DMS, a total of 14,261 DMS (82%) were found within or proximal to

genes (i.e., genic locations) indicating that they may have a role in regulation of gene expres-

sion. About 98% of the DMS within the genic regions were hypomethylated and 2% were

hypermethylated overall (Fig 4A and S4 Table). These DMS were mostly equally distributed

between gene bodies (43.68%) and gene regulatory elements (combined TSS1500, TSS200, 5’

UTR and 3’ UTR) (43.84%). Hypomethylation of ME/CFS DNA was observed on about

21.87% of DMS located in TSS regions; 17.21% in 5’ UTRs; 3.08% in 1st exons and 4.25% in 3’

UTRs. Hypermethylation, on the other hand, appeared on 0.16% of DMS located in TSS

regions, 0.34% in 5 and 3’ UTRs, and 0.79% in gene bodies (Fig 4A). Regarding to the location

relation to CpG islands, out of 17,296 DMS, 46.8% were located in CpG islands, whereas

53.2% (8,089 DMS) belong to proximity of CpG islands and CpG islands. As shown in Fig 4B,

the mapping of 8,089 DMS with respect to their location in CpG islands shows that 99.3% of

these 8,089 DMS are hypomethylated and only 0.7% were hypermethylated. Fig 4B also shows

that out of these 8,089 DMS, approximately 25.25% were located within CpG islands, 61.9%

mapped 2 kb upstream and downstream of CpG islands (N, S Shores), and 12.8% of them

localized to regions 2 kb upstream and downstream of CpG shores (N, S Shelves). Within

these regions, 74.1% of shores and shelves were hypomethylated, while only 0.63% of CpG

island shores and shelves were hypermethylated, consistent with the general finding of hypo-

methylation being associated to ME/CFS. More relaxed criteria (FDR� 0.1 and mean beta

differences > 0.05) allowed to identify 27,129 DMS as listed in S5 Table.

Fig 2. Principal component analysis of whole DNA methylomes allows differentiating between ME/CFS cases

(N = 13, red circles) and matched controls (N = 12, blue circles).

https://doi.org/10.1371/journal.pone.0201066.g002
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3.4. Differentially methylated promoters in ME/CFS

Since methylation of promoter regions directly affect levels of gene expression, we proceeded

to analyze differentially methylated promoters (DMPs) in our experimental cohort. As

described in Methods, promoters were defined in RnBeads package as regions located between

1,500 bp upstream of TSS and 500 bp downstream of TSS. Criteria for DMPs were FDR� 0.1

with the mean beta differences > 0.05. Using these criteria, we found 307 DMPs in PBMCs of

ME/CFS cases. S6 Table lists these DMPs ranked according to the RnBeads package [35]. 306

of these DMPs are hypomethylated in the ME/CFS group while only one appeared hyper-

methylated. Fig 5 shows the distribution of these promoters according to their gene biotype.

Almost half of the identified DMPs belong to protein-coding genes (47.6%), and more than

half (52.1%) belong to regulatory RNA genes. The last consisted of short non-coding RNAs

(including miRNAs, small nuclear RNAs, small nucleolar RNAs) (10.1%), long non-coding

RNAs (including antisense RNAs and intergenic RNAs) (30.6%), and pseudogenes (11.4%).

This distribution of DMPs supports our hypothesis that the differential methylation observed

might lead to deregulation of gene expression in ME/CFS. We also identified 144 DMPs with

more stringent criteria of FDR� 0.05 with the mean beta differences > 0.05 as listed in S7

Table; and it represents similar gene-function patterns as DMPs identified with FDR� 0.1.

3.5. Functional pathway analysis of DMPs

To further understand the potential functions and interactions between the 307 genes con-

trolled by DMPs within the context of cell biological pathways, we performed Gene Ontology

Fig 3. Unsupervised hierarchical clustering of 500 most variable CpG sites derived from samples distinguishes

ME/CFS (N = 13) cases and controls (N = 12). 500 DMS above and below mean level are represented by blue and

yellow across all cases and were used to cluster cases. As shown above, 12 of 13 ME/CFS cases (blue on color-coded bar

above the dendrogram) cluster together (left dendrogram branch) and 12 of the 12 controls (blue color-coded bar)

cluster together (right dendrogram branch), resulting in a divergence of these sub-phenotypes.

https://doi.org/10.1371/journal.pone.0201066.g003
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analysis through Ingenuity Pathway Analysis (IPA). As illustrated in Fig 6, this analysis

revealed changes in numerous immunoregulatory/stress-response pathways such as the p38

MAPK pathway (involved in response to a variety of environmental stresses and to inflamma-

tory cytokines [39]), the IL-10, IL-17A, Il-1 and IL-8 signaling pathways (all with important

immunoregulatory roles, [40, 41]), the AMPK pathway (master regulator of cellular energy

homeostasis that is activated in response to stresses that deplete cellular ATP supplies [42])

and metabolic pathways such as PPARα/RXRα activation and uracil and thymine degradation

pathways [43, 44]. Furthermore, functional analysis of numerous individual genes revealed

hypomethylation in promoters of the IGHJ1, IGHJ1P, IGHJ4, IGHJ5, IGHJ6, IGHJ3P,

IGHV3-7, IGHD7-27, IGLL1 and LRMP genes (S5 Table) which are related to B cell immune

response, differentiation, proliferation and survival [45]. Similarly, ME/CFS cases showed

decreased DNA methylation level in promoters of genes responsible for T cell generation and

activity, such as ZCCHC11, CAPN5, IL21R, P2RX5, TREML2, AKNA and CD248 [46]. Along

with a robust impact in immune response pathways, PMBCs of ME/CFS cases showed

decreased methylation of promoters of genes associated with cell growth that targeted the

MAP Kinase, NF-kB, and TGF signaling pathways (S5 Table and Fig 6). In addition, a distinct

Fig 4. Distribution of differentially methylated sites according to genic location and to CpG island relation. (A)

Distribution of DMS according to genic location. Relative percentages of DMS (both hypo-methylated and hyper-

methylated CpG sites between ME/CFS cases and controls) are reported for each genic body location: gene regulatory

elements (regulatory: TSS1500, TSS200, 5’ UTR, 3’ UTR), the coding regions of genes (gene body), as well as all

Intergenic and 1st Exon gene body regions. (B) Distribution of DMS according to their location in relation to CpG

islands. Relative percentages of DMS (both hypo-methylated and hyper-methylated) are reported. CpG islands with

clustered CpG sites; 2 kb upstream and downstream of CpG islands (N, S Shores); 2 kb upstream and downstream of

CpG shores (N, S Shelves).

https://doi.org/10.1371/journal.pone.0201066.g004
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pattern of hypomethylated promoters of genes involved in miRNA expression (miR-4435,

miR-181, miR-148a, miR-193b, miR-1284, miR-10A, miR-1203, miR-3934, miR-4487 and

miR-4710) and in bio-metal regulation including metal transporter SLC39A13 (ZIP trans-

porter) and multiple zinc finger genes (ZCCHC8, ZCCHC11, ZBTB18, BAZ2B, ZNF225 and

ZNF732) were identified (S5 Table).

3.6. Validation of Illumina MethylationEPIC microarray results by

pyrosequencing

To validate the results of our analysis obtained with Illumina MethylationEPIC microarrays,

we selected two DMPs that had high density of CpG sites and possible ME/CFS relevance by

their role in the neuro-immune signaling axis. The first, corresponding to the Zinc Finger and

BTB Domain Containing 18 (ZBTB18), is a zinc finger transcriptional repressor with a crucial

role in brain development and neuronal differentiation. The second, TABPB, encodes a

Fig 5. Distribution of differentially methylated promoter regions in ME/CFS according to gene biotype. In

RnBeads package, promoters are defined as regions 1500 bp upstream of TSS and 500 bp downstream of TSS. Criteria

for DMPs were: FDR� 0.1 and mean difference> 0.05. The distribution of these DMPs according to the gene biotype:

protein-coding genes and regulatory RNA genes including short non-coding RNAs (miRNAs, small nuclear RNAs,

small nucleolar RNAs), long non-coding RNAs (including antisense RNAs and intergenic RNAs) and pseudogenes.

https://doi.org/10.1371/journal.pone.0201066.g005

Fig 6. Canonical pathway analysis of genes with the DMPs of PBMCs isolated from ME/CFS cases. Genes listed to

the right belong to the respective pathways. Gene Ontology analysis was performed using the Ingenuity Pathway

Analysis (IPA) on 307 genes with the DMPs.

https://doi.org/10.1371/journal.pone.0201066.g006
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transmembrane glycoprotein which mediates interaction between newly assembled major histo-

compatibility complex (MHC) class I molecules and the transporter associated with antigen pro-

cessing (TAP), which is required for the transport of antigenic peptides across the endoplasmic

reticulum. ZBTB18 is in the upper top list of DMPs by order of RnBeads combined rank (posi-

tion 8 of 307 in S5 Table); while TABPB is in the lower part (position 246 of 307 in S5 Table),

thus we included DMPs with values at both ends of the range in the validation step. For each of

the 2 selected genes, we assayed the level of DNA methylation of six CpG sites in the promoter

area. For ZBTB18, three of the CpG sites corresponded to oligonucleotides printed on Illumina

MethylationEPIC microarrays, and three additional CpG sites not included in microarray con-

tent but located in the gene promoter region between cg15896892 and cg19698993, were also

tested. In the case of the TABPB gene, all the assayed CpG sites correlated with probes included

in Illumina MethylationEPIC microarrays. As summarized in Fig 7, pyrosequencing analysis

strongly validated the direction of methylation differences between ME/CFS and control subjects

(p< 0.01) as identified by Illumina MethylationEPIC microarray (FDR� 0.05) in all CpG sites

assayed. Importantly, it was observed that the methylation levels detected by pyrosequencing in

ME/CFS individuals were similar to those observed by MethylationEPIC microarrays in all DMS

(Fig 7), and that the differences in methylation levels assayed by pyrosequencing were even more

pronounced than the same differences assayed by microarrays (Fig 7).

4. Discussion

DNA methylation plays an important role in the interplay between external (environment)

and internal (gene expression) factors and thus may explain the late or stimulus-triggered

Fig 7. Bisulfite-conversion followed by pyrosequencing (PS) validation of DMPs identified by Illumina

MethylationEPIC microarrays (EPIC). Average methylation level of CpG sites within promoters of TABPB and

ZBTB18 were assessed using pyrosequencing. Corresponding probes for TABPB: CpG1—cg04415168 (TSS1500),

CpG2—cg10376053 (TSS1500), CpG3—cg14288848 (TSS1500), CpG4—cg17055704 (TSS1500), CpG5—cg14473643

(TSS1500), CpG6—cg14309283 (TSS1500). Corresponding probes for ZBTB18: CpG1—cg16399365 (TSS1500), CpG2

—cg15896892 (TSS1500), CpG6—cg19698993 (TSS1500). CpG3, CpG4 and CpG5 are not printed on the Illumina

MethylationEPIC microarrays and are located in ZBTB18 promoter between CpG2 and CpG6. � = FDR� 0.05 for

EPIC; � = p� 0.05 for PS. Error bars represent the standard error of the mean.

https://doi.org/10.1371/journal.pone.0201066.g007
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on-set of multisystem complex diseases such as ME/CFS. However, only a few studies have

reported changes in DNA methylation associated to ME/CFS [18–20]. Here, we used a newer

and improved, technology developed by Illumina Inc. that was not available at the time the

preceding studies were performed, with the intention of expanding previous findings. Illumina

MethylationEPIC microarrays have almost twice the coverage of CpG sites compared to the

older Illumina HumanMethylation450 microarrays, including 333,265 additional CpGs

located in regulatory regions as identified by the ENCODE and FANTOM5 projects [36].

Here, we identified differentially methylated CpG sites and promoters in PBMCs of ME/

CFS cases compared to controls in cohorts from two distant geographic locations. Association

of hypomethylation of DMPs with immune regulatory pathway is in agreement with previous

studies [18–20]. Those previous studies found immune cell regulation as the largest coordi-

nated enrichment of differentially methylated pathways and reported genomic DNA hypo-

methylation of genes in immune pathways from PBMCs isolated from ME/CFS cases [18, 19]

and also in CD4+ T cells from ME/CFS cases [20]. Specifically, we found significant differences

in DNA methylation between ME/CFS cases and controls at 17,296 CpG sites in 6,368 genes

overall (FDR� 0.05), across promoters as well as other gene regulatory elements and within

coding regions of genes. DNA hypomethylation was found in 98% of these sites in ME/CFS,

whereas only 2% were hypermethylated compared to controls.

Differential methylation of promoters can have an effect on the expression of the corre-

sponding affected genes. Interestingly enough, less than half of the DMPs (47.6%) associated

with protein-coding genes while over 50% affected non-protein coding DMPs corresponding

to promoters of regulatory gene elements including short non-coding RNAs (including miR-

NAs, small nuclear RNAs, small nucleolar RNAs) (10.1%), long non-coding RNAs (including

antisense RNAs and intergenic RNAs) (30.6%), and pseudogenes (11.4%) (Fig 5). Small

nuclear RNAs and small nucleolar RNAs participate in RNA splicing [47] while long non-cod-

ing RNAs and pseudogenes play important roles in the regulation of transcription and mRNA

stability by annealing to transcripts and sequestering miRNAs as molecular sponges [48],

among other epigenetic mechanisms [49]. It is important to note that the highest beta differ-

ence (hypomethylation at 14%) in the DMP list was observed for the promoter of the gene that

is related to natural killer (NK) cells function (S6 and S7 Tables).

At the single gene level, our results showed hypomethylation of promoters of genes related

to those of reference studies such as some solute carriers, RNA binding proteins, homeobox,

and PHD finger proteins [20]. Among them we found the MED13L gene which is associated

with muscular hypotonia and neurocognitive impairment [50], symptoms that associate with

ME/CFS. We also found DMPs linked to the expression of ribosomal proteins (RPL23A and

RPL7) as well as to the 5S ribosomal RNAs pseudogenes (RNA5SP245, RNA5SP77 and

RNA5SP97) (S5 Table) suggesting possible disturbance of protein synthesis. In regards to the

methylation status of glucocorticoid response-associated genes, we found significant hypo-

methylation of the SGK3 (serum glucocorticoid regulated kinase) gene promoter [18, 19].

Transcriptional profiling studies in ME/CFS cases have pointed out perturbations in T-cell

and B-cell activation and dysregulation in gene expression broadly related to immune

responses [51–56], and such changes fit with other studies showing altered production of

interleukin and interferon cytokines as features of ME/CFS immune dysfunction [57]. In the

current study, we report hypomethylation of DMPs of genes known to regulate the adaptive

immune response such as immunoglobulins and pseudogenes (for example, IGDCC3,

IGHD7-27, IGHJ1, IGHJ3 and other) (S6 and S7 Tables) which is in agreement with the

reported improvement of ME/CFS cases following B cell depletion therapy [58, 59]. We also

observed hypomethylation of promoters of MMP14, MAP4K4, MAPK12 and CREB5 (S6 and

S7 Tables) possibly activating the TNF signaling pathway, that fits with the reported over-
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expression of pro-inflammatory cytokines [60] in ME/CFS. In addition, we also show hypo-

methylation of miRNA-148a promoter that could potentially contribute to its overexpression.

It is known that the miRNA-148-152 family can impair the innate immune response and anti-

gen presentation of TLR-triggered dendritic cells [61]. Furthermore, miRNA-148a can con-

tribute to DNA hypomethylation in lupus CD4+ T cells by repressing DNA methyltransferase

1 expression [62]. It is noteworthy to mention that amongst the DMPs associated to miRNA

expression in this study (S5 Table), miRNA-10a, miRNA-181 and miRNA-4710 were also

reported to be affected at the DNA methylation level in at least one previous ME/CFS study

[20]. Specifically, miRNA-10a has been associated with ME/CFS in NK cells [63] and miR-181

is related to TLR-mediated inflammatory response [64], which is associated with ME/CFS

[65].

Hypomethylation of the IL21R gene promoter (S6 and S7 Tables) may indicate increased

IL21 receptor expression. The ligand binding of this receptor leads to the activation of multiple

downstream signaling molecules, including JAK1, JAK3, STAT1, and STAT3. Knockout stud-

ies of the ortholog mouse counterpart suggest a role for this gene in regulating immunoglobu-

lin production [66]. IL21 regulates both innate and adaptive immune responses, and also

exerts major effects on inflammatory responses that promote the development of autoimmune

diseases and inflammatory disorders [67]. Importantly, IL21 signaling is critical for induction

of spontaneous experimental autoimmune encephalomyelitis [68]. The DMPs reported in our

studies are not only consistent and validate the previous studies of gene regulatory elements in

genes within the immune cell regulation cluster [14–20], but also provide an improved under-

standing using advanced technology as well as validation using cohorts from distant geo-

graphic locations.

It is noteworthy to mention that it is still inconclusive from previous studies or our current

study, whether the significant epigenetic modifications found to associate with ME/CFS indi-

cate a compensatory homeostatic mechanism or result from an adaptive immune response

towards environmental inducers. However, these results indicate that DNA methylation con-

stitutes a potential gene regulatory mechanism capable of mediating long-term changes in

ME/CFS cases, as previously noted by other authors [18–20]. In summary, the association of

differential DNA methylation with ME/CFS definitely suggests a potential role for epigenetic

alterations in the pathophysiology of ME/CFS.

5. Conclusions

To our knowledge, this is the first study that has explored genome-wide epigenetic changes

associated with ME/CFS using the new Illumina MethylationEPIC microarrays covering over

850,000 CpG sites and that has validated the results in two geographically distant cohorts of

ME/CFS cases. Our findings build on previous preliminary reports showing association of

altered methylation profiles of genes with immune functions and confirm DNA methylation

as an epigenetic regulatory mechanism associated with ME/CFS. Future validation studies in

larger cohorts of ME/CFS cases are needed to confirm these findings and evaluate the effects

of such methylation patterns on gene expression.
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