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Modeling Skeletal Muscle Stress
and Intramuscular Pressure:
A Whole Muscle Active–Passive
Approach
Clinical treatments of skeletal muscle weakness are hindered by a lack of an approach to
evaluate individual muscle force. Intramuscular pressure (IMP) has shown a correlation
to muscle force in vivo, but patient to patient and muscle to muscle variability results in
difficulty of utilizing IMP to estimate muscle force. The goal of this work was to develop
a finite element model of whole skeletal muscle that can predict IMP under passive and
active conditions to further investigate the mechanisms of IMP variability. A previously
validated hypervisco-poroelastic constitutive approach was modified to incorporate mus-
cle activation through an inhomogeneous geometry. Model parameters were optimized to
fit model stress to experimental data, and the resulting model fluid pressurization data
were utilized for validation. Model fitting was excellent (root-mean-square error or RMSE
<1.5 kPa for passive and active conditions), and IMP predictive capability was strong for
both passive (RMSE 3.5 mmHg) and active (RMSE 10 mmHg at in vivo lengths) conditions.
Additionally, model fluid pressure was affected by length under isometric conditions, as
increases in stretch yielded decreases in fluid pressurization following a contraction, result-
ing from counteracting Poisson effects. Model pressure also varied spatially, with the high-
est gradients located near aponeuroses. These findings may explain variability of in vivo
IMP measurements in the clinic, and thus help reduce this variability in future studies. Fur-
ther development of this model to include isotonic contractions and muscle weakness would
greatly benefit this work. [DOI: 10.1115/1.4040318]
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1 Introduction

While healthy skeletal muscle provides stabilization and loco-
motion for the human body, muscle weakness is a debilitating
condition that can lead to injury, disability, and even death [1,2].
Determination of individual muscle force in vivo is a major clini-
cal challenge, as current methods either do not measure force
(electromyography) or are subject to variability from contribu-
tions of multiple muscles (torque measurements). Intramuscular
pressure (IMP), which is correlated with muscle force, has benefit-
ted from recent improvements in pressure microsensor technology
and thus could be used as an approach to estimate muscle force
[3–5]. However, variations in IMP across multiple patients and
various muscles make this force estimation a challenge [6]. A
validated finite element model could provide the necessary corre-
lation between muscle force and IMP, thus improving the use of
pressure microsensors as a tool to estimate muscle force.

The robust function and complex mechanical behavior of skele-
tal muscle are driven by the active properties and passive structure
[7,8]. Specifically, muscle structure facilitates active force trans-
mission from contractile fibers through passive constituents to the
skeletal system [9]. Thus, understanding and modeling physiologi-
cal function requires studying muscle as not only a contractile tis-
sue, but a passive structure as well. This is particularly evident for
studies of intramuscular pressure, as fluid pressurization is dic-
tated by its environment.

Previously, a finite element model of skeletal muscle was
developed that accurately predicted both muscle force and intra-
muscular pressure under passive stretch [10]. This model charac-
terized the complex passive response of the tissue by

incorporating hyperelasticity, viscoelasticity, poroelasticity, and
anisotropy. However, this model did not incorporate muscle acti-
vation. This work further develops this approach by incorporating
muscle activation through an inhomogeneous geometry and vali-
dation of IMP under active conditions. The goals of this work
were to identify how fluid pressurization is distributed within
active skeletal muscle to potentially identify ideal microsensor
insertion location and to gain further insight into what conditions
dictate this pressurization.

2 Methods

2.1 Experiment. Eight New Zealand White Rabbit muscles
(n¼ 8) were passively stretched and stimulated under isometric
conditions at a total of fifteen different muscle lengths. Passive
data were identified from eleven muscle lengths at which muscle
slack did not occur. Experiments were conducted on anesthetized
animals with the approval of the University of California San
Diego Institutional Animal Use and Care Committee by isolating
and attaching the distal tibialis anterior tendon to an actuator and
load cell. Active isometric contraction involved maximal stimula-
tion of the peroneal nerve. Muscle stress was calculated as force
measured by the load cell from either stretch (passive) or activa-
tion (active) divided by the physiological cross-sectional area
[11]. Intramuscular pressure was measured with a pressure micro-
sensor [3] inserted into the muscle midbelly the longitudinal
direction (parallel to muscle fibers).

2.2 Constitutive Model

2.2.1 Skeletal Muscle. Two similar constitutive models were
simultaneously utilized for skeletal muscle in this study (Table 1),
representing the contractile and passive-only components of the
tissue. As contractile components of skeletal muscle (sarcomeres)
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are capable of generating active force and supporting passive
loads, we will denote this constituent as “excitable.” All other
muscle volumes that are not capable of generating force (fluid,
extracellular matrix, etc.) will be entitled “passive.” The separa-
tion of excitable and passive constituents provides an opportunity
to study the relationship between contractile components and fluid
in skeletal muscle. As the tissue-level passive properties of skele-
tal muscle are attributed to both the active actin–myosin complex
[12–14] and the extracellular matrix [15,16], it is difficult to eluci-
date exactly how to assign properties to these constituents. Thus,
for both previous modeling efforts [10] and the current model, the
passive responses from the extracellular matrix and contractile
elements are coupled into a continuum model. Previously, passive
skeletal muscle was modeled as a hypervisco-poroelastic material
with an anisotropic compressible solid phase [10]. For the current
model, the assumption was made that the excitable constituent did
not contain a fluid component, and as such the constitutive
approaches for the excitable and passive constituents are very sim-
ilar, with the only exception being that the excitable constituent
did not include a permeability/poroelasticity. Thus, it is assumed
that the excitable tissue is comprised of solid material only as a
compressible hyperviscoelastic material [17–20], while passive
tissue was modeled as compressible hypervisco-poroelastic
material [21].

While the full constitutive approach has been previously out-
lined [10], in brief, an isotropic, compressible (or coupled)
Mooney–Rivlin strain energy density function was utilized for the
ground matrix [22], which characterizes isotropic and symmetric
behavior of the tissue in response to tensile, compressive, and
shear deformations. Viscoelastic effects were modeled using a
three-term Prony series [23]. As skeletal muscle exhibits a higher
stiffness in tension (it is not tension-compression symmetric) [24],
tensile anisotropic and nonlinear properties of passive muscle
were largely dictated by three-dimensional (3D) tension-only rein-
forcing fibers with an ellipsoidal fiber distribution (EFD) [25].
Previously, the longitudinal EFD properties were optimized to
experimental data and the transverse EFD parameters were fixed
based on the assumption of an increase in modulus of one order of
magnitude over longitudinal properties [26]. While this formula-
tion yielded excellent model validation to both muscle stress and
intramuscular pressure under passive conditions [10], they were
optimized in this study for improved agreement with experimental
data under both passive and active conditions. A constant, iso-
tropic hydraulic permeability was assumed based on prior experi-
mental and finite element analysis of skeletal muscle [21].

The total stress within a biphasic finite element model that
includes an active component can be decomposed into active
stress ractive, passive stress within the porous solid rsolid, and fluid
pressure p (Eq. (1), where I is the identity matrix). Muscle

activation was modeled using prescribed uniaxial contraction (Eq.
(2)) [27]. Here, J is the Jacobian or volume ratio, T0 is the maxi-
mum activation stress, c tð Þ is a load curve that defines the stress
as a function of time, and n is the unit vector that dictates the
direction of active contraction, which is the physiological penna-
tion angle. The load curve c tð Þ was chosen to replicate the
increase of force of fully fused isometric skeletal muscle [8]

rtotal ¼ ractive þ rsolid � pI (1)

ractive ¼ J�1T0c tð Þn� n (2)

2.2.2 Aponeurosis and Tendon. Aponeurosis and tendon were
modeled as nearly incompressible hyperviscoelastic with a trans-
versely isotropic Mooney–Rivlin strain energy function [28] and a
Prony series viscoelastic formulation [29] (Table 2). This formula-
tion is outlined in greater detail in Ref. [10].

2.3 Finite Element Model. To represent the longitudinal
contractile structure of skeletal muscle, inhomogeneous geometry
of the New Zealand White Rabbit tibialis anterior was developed.
The excitable and passive components of the tissue, which are
separate components both in geometry and constitutive modeling
approach, were connected directly through mesh structure, along
with aponeurosis and tendon tissue. Thus, no contact conditions
were necessary between these three constituents. As skeletal mus-
cle is comprised of roughly 80% fluid [30], it was assumed that
80% of the tissue by volume is unable to generate contractile
force. The remaining 20%, while not entirely comprised of con-
tractile material, is capable of generating active force. Thus, the
model was divided into 80% passive constituent, and 20% excita-
ble constituent. The mesh is comprised of solely hexahedral ele-
ments; thus, inhomogeneity was achieved by denoting one out of
every five longitudinal strings of elements as excitable (Fig. 1).
To achieve a physiologically relevant isometric contractile stress
for whole muscle, the stress in the excitable constituent must
exceed experimentally measured values of isometric muscle fiber
stress. This is to account for the fact that the excitable component
comprises only 20% of the model muscle volume. In muscle at
the microscale, for example, the stress in a maximally contracting
single myofibril (up to 1 MPa) exceeds the stress in a maximally
contracting muscle fiber or whole muscle (roughly 200 kPa), as
the muscle is comprised of noncontractile components (fluid, etc.)
[31,32].

The finite element geometry for the rabbit tibialis anterior is
outlined elsewhere [10], but in short, it was developed by segmen-
tation and hexahedral meshing of lCT images of an in vitro New

Table 1 Constitutive model parameter values for skeletal muscle. Note that the excitable and passive constituents have the same
constitutive model and parameters with the exception of poroelasticity, which was only utilized for the passive constituent.

Mooney–Rivlin SED Prony series viscoelasticity Ellipsoidal fiber distribution

c1

(kPa)
c2

(kPa)
k

(kPa)
gi si

(s)
nlong

(kPa)
blong ntrans

(kPa)
btrans Permeability

(mm4/N s) (passive)

0.05 0.5 5 1.33, 0.476, 0.295, 0.167 0.1, 1, 10, 100 Optim Optim 15 3 0.074

Table 2 Constitutive model parameter values for tendon/aponeurosis. These parameters are identical to previously utilized values
[10].

Mooney–Rivlin SED Prony series viscoelasticity

c1 (kPa) c2 (kPa) k (kPa) c4 c5 (kPa) kmax k (kPa) gi si (s)

10,000 500 50 40 100,000 1.03 500,000 0.203, 0.133, 0.191 0.33, 47.5, 2500
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Zealand White Rabbit tibialis anterior. The pennation angle of
2.5 deg [11] was applied globally by specifying the orientation of
the constitutive model. First, Piola–Kirchhoff stress (engineering
stress) was calculated by summing the total reaction force at the
distal nodes and dividing by undeformed physiological cross-
sectional area of the model. This stress measure was calculated to
match experimental procedures for measured stress, which is nec-
essary for model validation. This approach was the same for both
active isometric and passive conditions. Model pressure was cal-
culated as fluid pressure from 90 midbelly elements of the passive
constituent. Again, this output did not change between active and
passive simulations. The muscle mesh utilized in this study
(18,646 elements) was compared against a denser mesh (46,400
elements) under active isometric conditions to ensure mesh den-
sity convergence. Isometric activation was simulated using an
active stress of 500 kPa (T0 from Eq. (2), determined based on
applied active stress from the results) for the denser mesh and for
the same reaction force using the less dense mesh, only a 0.80%
difference of mean fluid pressure between the two models was
observed at t ¼ 0:5 s.

2.4 Verification of Transverse Stiffness Parameters. To
investigate the role of transverse fiber stiffness in model behavior,
with an emphasis on fluid pressure, variations in transverse EFD
parameters were applied. The tensile model stiffness is largely
dictated by these tension-only EFD parameters by design, as skel-
etal muscle tensile stiffness is roughly two orders higher in tension
versus compression [26,33–36]. While the longitudinal fiber
parameters were determined through nonlinear optimization, the
transverse parameters were not simultaneously optimized. Previ-
ous finite element modeling of passively stretched muscle utilized
a value of �33 kPa for ntrans based on the assumption of the trans-
verse orientation being one order of stiffness higher than the lon-
gitudinal [10]. However, the reported values for transverse tensile
linear modulus of skeletal muscle from literature range from
roughly 20 kPa to nearly 800 kPa [24,26]. Additionally, there
remains uncertainty to the role of transverse stiffness in model
fluid pressurization. To study this, two ntrans parameter values
were directly compared: 33 kPa from the previous study and
15 kPa utilized in this study. A value of 15 kPa was used in this
study as it yielded improved agreement to experimental data of
uniaxial transversally stretched passive muscle (Fig. 4).

A simplified finite element geometry of 2560 cubic hexahedral
elements using the same inhomogeneous nature as presented in Fig.
1 was developed to compare model behavior to experimentally ana-
lyzed excised muscle samples [26]. The mean Cauchy stress in the
direction of elongation (transverse) was compared to the experimen-
tally calculated Cauchy stress. Experimental samples underwent 0.1
tensile strain at a rate of 0.1 s�1 followed by a 300 s relaxation
period, and finally a constant rate pull step to 0.25 tensile strain at
0.01 s�1. The goals of this approach were to (1) improve the accu-
racy of the material parameters used in this study, and (2) investigate
how these parameters affect model fluid pressure. The above whole
muscle finite element model was thus employed with each of these
two parameter values under active contraction at three muscle
lengths to investigate the role of transverse stiffness in model fluid

pressure. The three lengths include one on the ascending limb (�0.2
fiber strain from optimal length), optimal length, and one on the
descending limb (0.2 fiber strain from optimal length). Optimal
length is defined as the length at which isometric stress is maximum,
as determined from experimental data (Fig. 2). The specified con-
tractile internal stress (Eq. (2)) will remain the same for both condi-
tions, although changes to the constitutive approach may result in
differences in reaction force at the model boundary.

2.5 Optimization and Validation. To ensure that passive
model behavior was consistent with passive experimental data fol-
lowing changes to the constitutive model and inhomogeneity from
previously published modeling efforts [10], the same optimization
approach was used. In short, a nonlinear least squares optimiza-
tion algorithm was implemented in MATLAB (lsqnonlin) that
applied an inverse finite element approach. This optimization var-
ied nlong and blong parameters to fit model stress (force divided by
PCSA as outlined above) to the passive experimental stress. This
was completed at increments of 5% fiber strain over a total of
eleven data points, which are identified as muscle lengths in which
the tissue is capable of supporting passive tensile load (no longer
slack). Passive model pressure was compared against experimen-
tal IMP data for validation at these same points.

Active isometric stress from the FE model was optimized to
experimental data by varying the T0 parameter from Eq. (2). This
was done for each of the fifteen experimental data points under
active isometric contraction (635% of optimal length in 5%
increments). For the data used in this study (Fig. 2), slack length
was observed as 85% of optimal length (�15% strain). For each
fit, the muscle was passively stretched to the corresponding exper-
imental length followed by 300 s of relaxation to reach steady-
state [23,37] before activation was applied per the activation
curve. Active model stress and fluid pressure were calculated by
subtracting the steady-state stress and fluid pressure values from
the maximum stress and pressure during contraction. Thus, data
presented for active conditions are the change in stress/pressure
from passive conditions. Experimental and model pressures were
compared for an independent validation. Statistical analysis of
agreement between model outputs and experimental data was
completed by calculating the root-mean-square error (RMSE, Eq.
(3), where ye are experimental data and ym are model data) and
normalized root-mean-square error (NRMSE, Eq. (4))

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X15

i¼1

ye
i � ym

i

� �2

15

vuuuut
(3)

NRMSE ¼ RMSE

max yeð Þ �min yeð Þ
(4)

3 Results

The optimized passive parameters for longitudinal EFD proper-
ties showed a highly nonlinear longitudinal stiffness, which is

Fig. 1 Inhomogeneous finite element geometry of skeletal muscle, showing excitable (dark
longitudinal constituent), passive (light longitudinal constituent), and aponeurosis/tendon
(located at ends of tissue): (a) Whole New Zealand White Rabbit tibialis anterior muscle model
and (b) cross-sectional view of the rabbit tibialis anterior model
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consistent with previous investigations of skeletal muscle longitu-
dinal tensile behavior [4,23,26,35,38] (Table 3). Optimized
applied stress (T0 from Eq. (2)) in the excitable constituent for iso-
metric activation varied for each data point and ranged from 229
to 604 kPa. These values were expected to be higher than the
whole muscle specific tension as the excitable constituent com-
prises only a fraction of the total muscle volume [32,39,40].

Model optimization to experimental stress data under both pas-
sive and active conditions was confirmed visually (Figs. 2(a) and
2(b)) and resulted in small statistical error values (NRMSE values
less than 1%, Table 4). The model was able to match experimental
intramuscular pressure readings under passive tension by visual
analysis (Fig. 2(c)) and through statistical measures (12%

Fig. 2 (a) Model fit to experimental stress under (a) passive stretch and (b) active isometric
conditions. The corresponding experimental data and model predictions for IMP are shown
under (c) passive stretch and (d) active isometric conditions. Physiological in vivo muscle
lengths are highlighted in the top right inset of (d), showing model predictive capabilities. All
experimental data presented as mean and standard deviation. Active data show the change in
stress/pressure as a result of contraction, and are thus calculated as passive stress/pressure
subtracted from total stress/pressure. Note that for muscle lengths below zero in (a) and (c),
the tissue does not support passive tensile load, and thus slack occurs.

Table 3 Optimized longitudinal EFD parameters

Ellipsoidal fiber distribution

nlong (kPa) blong

2.76 10.9

Table 4 Statistical analysis of model agreement to experimental data of sensor insertion in the longitudinal or transverse orienta-
tions. Root-mean-square error (RMSE, Eq. (3)) and normalized root-mean-square error (NRMSE, Eq. (4)). Note that for passive and
active stress, the model was fit to experimental data (hence the smaller errors) and that all pressure comparisons are independent
validation.

Statistic Passive stress (kPa) Passive pressure (mmHg) Active stress (kPa) Active pressure (mmHg)

RMSE 1.26 3.53 0.119 35.3
NRMSE 0.765% 11.7% 0.0786% 48.1%

Fig. 3 Color maps of fully activated finite element model at
optimal length after one second of maximum contraction. (a)
Image of two-dimensional sagittal midbelly slice of the model
showing fluid pressure distribution. (b) Image of two-
dimensional coronal midbelly slice showing fluid pressure dis-
tribution. The distal region exhibited the highest variability in
fluid pressure.

081006-4 / Vol. 140, AUGUST 2018 Transactions of the ASME



NRMSE, Table 4). While this was not as strong under active con-
traction, visual and statistical agreement with experimental intra-
muscular pressure data (NRMSE of 48%) still shows predictive
capability of the model. Visually, model pressures decreased with
increasing stretch similar to experimental data (Fig. 2(d)). The
model agreement with transverse data was stronger at muscle
lengths that occur in vivo (Fig. 2(d) inset, RMSE 9.97 mmHg and
NRMSE of 37%) [41,42].

Intramuscular pressure exhibited inhomogeneity within the
model (Fig. 3). Fluid pressure was highly transient in the distal
region near the larger aponeurosis, which had pressure gradients
of nearly 100 mmHg across less than 15 mm (Fig. 3(a)). While the
proximal region also exhibited pressure gradients, they were not
as drastic (Fig. 3(b), ranging from 0 mmHg to �30 mmHg). Fluid
pressure gradients decreased with time as pressure equilibrated.

The transverse stiffness parameter comparison showed that cur-
rent modeling approaches (a value of 15 kPa for ntrans) had a stron-
ger agreement to experimental tensile stress data than previous

approaches (33 kPa for ntrans) (Fig. 4). This was observed both
under stress relaxation (Fig. 4(a)) (NRMSE of 3.8% for the cur-
rent approach versus 22% for the previous approach) and constant
rate pull (Fig. 4(b)) (NRMSE of 8.3% for current versus 26% for
previous). Transverse parameter stiffness affected fluid pressur-
ization within the model under active contraction, particularly at
short muscle lengths. Specifically, increases in transverse stiffness
lead to increases in fluid pressure in excess of 20% on the ascend-
ing limb for the same active stress generation (Table 5).

4 Discussion

This work presents the first whole muscle finite element model
to predict both intramuscular pressure and muscle stress under
active contraction conditions. Previous modeling efforts either did
not include activation [10] or used an idealized two-dimensional
geometry and lacked time-dependent effects [43]. This work has
developed the foundation for future endeavors to evaluate intra-
muscular pressure distributions within skeletal muscle, study how
disease and degradation affect muscle force and intramuscular
pressure, and how variations in geometry or activation affect force
and IMP. Investigations of diseased muscle may require a separa-
tion of muscle extracellular matrix and muscle fiber passive con-
stituents through either geometry or constitutive modeling. This
could be achieved from a constitutive standpoint by decoupled
anisotropic strain energy terms, and geometrically by either a mul-
tidomain meshing approach similar to other studies [18] or with
one-dimensional (1D) muscle fiber elements. Inhomogeneity
would provide another layer of complexity, which could again be
defined either geometrically through meshing or by changes in
constitutive parameter values as a function of location. Measuring
and modeling IMP may provide unique insight into how the mate-
rial properties and mechanical function of muscle are affected by
a diseased versus healthy state. Future work to investigate the role
of muscle weakness, fibrosis, fatigue, and isotonic contractions on
fluid pressurization would benefit the IMP field.

While the model presented here simulated isometric contrac-
tions, it remains to be seen how strong the predictive capabilities
of this approach is for dynamic contractions. Concentric (shorten-
ing) and eccentric (lengthening) as well as submaximal contrac-
tions would greatly improve the clinical applicability of this work.
The inclusion of fluid and viscoelasticity in this model suggests an
application to dynamic conditions would be appropriate, as the
constitutive framework for this model is reflective of a transient
state. However, limited experimental data exist for IMP under
eccentric and/or concentric conditions [5], particularly for current
IMP measurement tools. Future studies are needed to generate a
clear understanding of IMP in dynamic and submaximal condi-
tions before the efficacy of this model can be evaluated.

Although the NRMSE error value of 48% for longitudinal
active data may seem quite high, experimental standard deviations
are similarly �50%. Additionally, the model showed predictive
capability within experimental standard deviation (less than
25 mmHg and as low as 6.5 mmHg) for data from �0.15 to 0.2
strain (Fig. 2(d) inset), which are muscle lengths experienced
in vivo [41]. The relatively straightforward inhomogeneous

Fig. 4 Comparison of two models to experimental data (mean
with standard deviation in gray) of rabbit tibialis anterior mus-
cle subject to transverse extension. The current model
assumes a ntrans value of 15 kPa while previous modeling uti-
lized 33 kPa. (a) Stress relaxation step of 0.1 strain ramp (shown
left) and 300 s of relaxation (shown right). (b) Constant rate pull
to 0.25 strain at a rate of 0.01 s21.

Table 5 Comparison between the previous modeling approach (ntrans of 33 kPa) and current approach (ntrans of 15 kPa) at three
muscle lengths: the ascending limb (strain of 20.2), optimal length (zero strain), and the descending limb (strain of 0.2). Fluid pres-
sure increased with increases in transverse stiffness, particularly on the ascending limb, yet measured whole model stress had lit-
tle dependence on transverse stiffness.

Stress (kPa) Pressure (mmHg)

Strain from L0 Exp Current model Previous model Model % difference Exp Current model Previous model Model % difference

�0.2 192 192 190 1.1% 56.7 95.6 117 23%
0 237 237 236 0.19% 36.8 38.0 40.3 6.0%
0.2 184 184 184 0.17% 19.6 16.5 17.2 4.2%
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approach in this work was chosen based on the experimentally
measured volume of tissue comprised of solid muscle in contrast
and fluid content, specifically a 20/80 split of excitable to passive
only [30,44]. Previous finite element modeling efforts of skeletal
muscle have utilized similar three-dimensional inhomogeneous
assumptions about contractile constituents [18,45,46], homogene-
ous assumptions [17,20,28,43,47–52], and a combination of three-
dimensional and one-dimensional elements [42,53,54]. The
approach implemented here is clearly a macroscopic geometric
approximation of skeletal muscle, but it does justify insight into
the inhomogeneous behavior of the tissue, particularly for intra-
muscular pressure (Fig. 3). Further increases in accuracy of inho-
mogeneous IMP distributions would surely need to be
accompanied by mesh refinement or depending on the scale of
study alterations to the geometric approach. While it remains to
be seen exactly how other approaches, such as a passive three-
dimensional mesh reinforced with one-dimensional contractile
elements are able to model intramuscular pressure behavior, this
current approach shows predictive capabilities, especially in the
physiological range of strain.

Model fluid pressure exhibited a high level of spatial depend-
ence during immediate contraction (Fig. 3). While this variability
decreased with time even during contraction, the combination of
transience and inhomogeneity manifests in a highly dynamic pres-
sure distribution. This could support previous experimental find-
ings noting the difficulty with repeatability of intramuscular
pressure measurements [6], particularly under dynamic conditions
when sensor movement occurs [5]. Under steady-state conditions,
fluid can equilibrate and thus the model pressure distribution is
uniform. However, it remains unclear if this modeling observation
is physiologically accurate, as current experimental intramuscular
pressure studies do not provide the necessary spatial measure-
ments to correlate with a finite element model. Future work to
experimentally investigate regional IMP in muscle simultaneously
would provide valuable insight into this spatial fluid distribution
and provide strong validation data for this model. Additionally,
dynamic muscle conditions are critical to proper in vivo function
[8] and thus should not be neglected for the sake of simplicity.

Our model further supports experimental findings of increases
in fluid pressure with passive muscle tension [4]. In fact, some
studies have suggested that fluid content in muscle may play a
role in passive stiffness either through poroelasticity [21,55] or
modeling muscle fibers as volumes filled with incompressible
fluid [56,57]. However, the length dependency of fluid pressure in
our model under contractile conditions suggests that variability of

intramuscular pressure in vivo may be dependent on other physio-
logical conditions (in this case muscle length) in addition to mus-
cle force.

When muscle is passively stretched, the transverse direction
compresses due to the Poisson effect. When muscle actively con-
tracts, the transverse direction expands, again due to the Poisson
effect. Thus, when muscle is stretched and contracts, the Poisson
effect enacts opposing deformations, which when combined result
in a small net volumetric deformation (Fig. 5). A small net volu-
metric deformation will result in a small fluid pressure. Or, more
generally, it is well known that fluid is pressurized from changes
in volume in a biphasic material. Our model suggests that as mus-
cle is lengthened, contraction must overcome larger and larger
opposing deformations to pressurize the fluid. Thus, the observed
decreases in change in fluid pressure with muscle stretch are
expected within our model.

This is supported by recent experimental work by Ateş et al. of
human in vivo IMP measurements in the tibialis anterior [58].
Specifically, increases in ankle torque were observed with increas-
ing joint angle (increasing muscle length), but IMP was not found
to increase in similar fashion. As discussed by Ateş et al., TA
moment arm changes cannot account for increasing torque in this
case; thus, the isometric force–length relationship (increasing)
and IMP–length relationship (no increase) were not observed to
be the same, similar to our model. Further experimental work to
identify exactly how muscle length and activation level contribute
to intramuscular pressure readings, such as eccentric or concentric
contractions, would further elucidate the accuracy of our model-
ing approach. Additionally, it remains unclear how contraction
velocity may similarly affect model results.

While passive stretch of in vitro whole skeletal muscle is
largely dictated by longitudinal mechanical properties, in vivo
muscle fibers are connected through fascia to surrounding muscle
fibers and other tissues. As a result, force generation is transmitted
laterally throughout skeletal muscle [9]. Thus, while the trans-
verse tensile properties play a limited role in in vitro passive mus-
cle stiffness, they contribute to the mechanical function of skeletal
muscle in vivo. In our model, the transverse tensile stiffness also
plays a key role in fluid pressurization (Table 5). This was particu-
larly evident on the ascending limb when muscle is at short
lengths, as there is no prestretch to overcome and thus transverse
tensile strains are larger. Stiffer fibers would result in less expan-
sion and thus more fluid pressurization. However, at longer mus-
cle lengths, the role of transverse stiffness seems to be less
important to fluid pressurization (Table 5). This appears to be due

Fig. 5 (a) The deformations resulting from passive stretch and active contraction both enact
the Poisson effect, where the longitudinal strain (horizontal arrows) results in strain in the
transverse plane (vertical arrows). As these deformations oppose each other, the result is a
smaller resultant volumetric deformation, which yields low fluid pressurization. (b) Model
transverse strains (x and y directions, as elongation occurs in the z direction) for three time
points when stretched to optimal length, after initial ramp elongation, at the end of stress
relaxation, and at maximum contraction. Passive elongation results in negative transverse
strains, which is then counteracted by shortening due to active contraction.

081006-6 / Vol. 140, AUGUST 2018 Transactions of the ASME



to the fact that contraction must “overcome” stretch to pressurize
fluid (Fig. 5), as outlined above. The agreement between experi-
ment and model data for transverse muscle stiffness (Fig. 4) is
thus critical for future applications of this work to in vivo model-
ing and to the use of this model for clinical recommendations.

5 Conclusions

This work presents the first whole muscle finite element model
of skeletal muscle that predicts both intramuscular pressure and
muscle force under passive and active conditions. This work also
modeled active skeletal muscle with a hyperporo-viscoelastic con-
stitutive approach, utilized inhomogeneity, and confirmed physio-
logical accuracy in regard to choosing parameter values. The
transverse tensile stiffness was shown to play a key role in fluid
pressurization at short muscle length. At longer lengths, passive
stretch and muscle contraction enacted opposing Poisson effects,
which led to low fluid pressurizations. Future use of this model to
study spatial distribution of fluid pressure within skeletal muscle
will guide the clinical use of the pressure microsensors for accu-
rately measuring intramuscular pressure. Further model develop-
ment to include more complex muscle activation as well as the
effects of muscle weakness or disease would also be highly
beneficial.
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