Skip to main content
. Author manuscript; available in PMC: 2018 Jul 23.
Published in final edited form as: Int J Biostat. 2016 May 1;12(1):305–332. doi: 10.1515/ijb-2015-0052

Algorithm 1.

Super-learner estimation of d0, A(1)

1: function SuperLearner(o1, …, On, f^2,1,,f^2,j)
2: Let F be a randomly ordered vector of length n containing n/U 1s, n/U 2s,…, n/U U’s
3: Initialize an empty matrix X of dimension n × J
4: for u = 1 to U do
5:   for j =1 to J do
6:     Fit the estimate f2, u, j by running f^2,j on the set {Oi : Fi ≠ u}
7:       For all i such that Fi = u, let Xi, j = f2, u, j(A(0)i, V(1)i)
8: Run an optimization routine to solve: αn=argminαΔJ1u=1Ui=Fi=uL2,g0(j=1JαjXi,j)
9: for j = 1 to J do
10:   Fit the estimate fj by running f^2,j on the {Oi : i = 1, …, n}
11: Let fαnj=1Jαn,jfj
12: return dn,A(1)(a(0),v(1)I(fαn(a(0),v(1))>0)..