Skip to main content
. 2018 May 8;140(7):0745031–0745038. doi: 10.1115/1.4039677

Table 4.

The algorithm of sensitive parameter selection using the LASSO method

Input: (1) Experimental Data and Dynamical Model
(2) Vector of Normalized Parameter Typical Values (Φ0RnΘ), where the pre-normalization parameter vector is Θ
(3) Desired Optimal Number of Sensitive Parameters nθ*
Output: (1) A Subset of the Sensitive Parameters θLASSO
1.NumParams = 0
2.λ = 0.13
3. while NumParams! = nθ* do
4.   NumParams = 0
5.   S (selection matrix) = zeros nθ*,nΘ
6.   Solve Eq. (C4)
7.   for i = 1: nΘ do
8.      if ΦiΦ0(i) > 0.005 then
9.         NumParams = NumParams + 1
10.       end if
11.       if NumParamsnθ* then
12.          S(NumParams,i) = 1
13.       end if
14.  end for
15.  if NumParams! = nθ* then
16.     λ=λ+NumParamsnθ*i+nθ*
17.  end if
18. end while
19. θLASSO=SΘ