Table 4.
The algorithm of sensitive parameter selection using the LASSO method
| Input: (1) Experimental Data and Dynamical Model |
| (2) Vector of Normalized Parameter Typical Values (), where the pre-normalization parameter vector is |
| (3) Desired Optimal Number of Sensitive Parameters |
| Output: (1) A Subset of the Sensitive Parameters |
| 1. NumParams = 0 |
| = 0.13 |
| 3. while NumParams! = do |
| 4. NumParams = 0 |
| 5. S (selection matrix) = zeros |
| 6. Solve Eq. (C4) |
| 7. for i = 1: do |
| 8. if > 0.005 then |
| 9. NumParams = NumParams + 1 |
| 10. end if |
| 11. if NumParams ≤ then |
| 12. S(NumParams,i) = 1 |
| 13. end if |
| 14. end for |
| 15. if NumParams! = then |
| 16. |
| 17. end if |
| 18. end while |
| 19. |