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ABSTRACT
Inhibitors of DNA methyltransferases (DNMTis) or histone deacetylases (HDACis) are epigenetic drugs
which are investigated since decades. Several have been approved and are applied in the treatment of
hematopoietic and lymphatic malignancies, although their mode of action has not been fully understood.
Two recent findings improved mechanistic insights: i) activation of human endogenous retroviral elements
(HERVs) with concomitant synthesis of double-stranded RNAs (dsRNAs), and ii) massive activation of
promoters from long terminal repeats (LTRs) which originated from past HERV invasions. These dsRNAs
activate an antiviral response pathway followed by apoptosis. LTR promoter activation leads to synthesis of
non-annotated transcripts potentially encoding novel or cryptic proteins. Here, we discuss the current
knowledge of the molecular effects exerted by epigenetic drugs with a focus on DNMTis and HDACis. We
highlight the role in LTR activation and provide novel data from both in vitro and in vivo epigenetic drug
treatment.
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Introduction

Cancer is driven by a combination of genetic and epigenetic
alterations, which together modulate gene expression patterns.
This cooperativity of genetic and epigenetic events is best
exemplified by recent genome sequencing efforts of interna-
tional consortia identifying mutations in proteins that control
and regulate the epigenome [1,2]. These proteins read, write, or
modify a complex interplay of epigenetic processes involving
chromatin remodeling, histone modifications, DNA methyla-
tion, and RNA-mediated targeting [3–6]. In healthy cells,
epigenetic modifications regulate tissue-specific and develop-
mental processes as for example the inactivation of one X-
chromosome in a female cell [7,8], regulation of the expression
of imprinted genes through allele-specific modification of
imprinting control regions [9], tissue-specific cell differentia-
tion, or age-related processes [10,11]. Furthermore, epigenetic
marks are involved in the silencing of retrotransposable ele-
ments in the genome [12,13]. Recent genome-wide profiling
highlights the complexity of epigenomic patterns and their
alterations in cancer.

DNA methylation

Methylation of cytosine is the most abundant DNA modifica-
tion leading to 5-methylcytosine, which occurs predominantly
in CpG dinucleotides and has been shown to affect transcrip-
tional regulation [14]. Members of the highly conserved family
of DNA methyltransferases (DNMTs) catalyze DNA methyla-
tion throughout the cell cycle [15]. DNMT1 maintains DNA
methylation patterns, and DNMT3A and DNMT3B methylate
DNA de novo. The majority (70–80%) of the 28 million CpG
dinucleotides are generally methylated, only less than 3 million
CpG sites, mostly located in CpG-rich regions designated CpG
islands (CGIs), are largely unmethylated [16]. In line with the
importance of DNA methylation in developmental processes,
the majority of dynamic CpG sites are located within cis-
regulatory elements.

Histone modifications

Besides chemical modification of DNA, a multitude of covalent
post-translational histone modifications regulate chromatin
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function [17]. A complex regulatory system of proteins,
referred to as ‘writers’, ‘readers’, and ‘erasers’ of histone marks
[2,18] regulates the numerous histone modifications. Methyla-
tion, phosphorylation, and acetylation of the basic histone tails
are catalyzed by enzymes, which share evolutionarily conserved
domains. These post-translational modifications alter the
physical properties of histone tails and affect the interactions of
histones with DNA, non-histone proteins, and between each
other [19]. For example, acetylation of lysine residues reduces
the positive charge of the histone tails and consequently the
interaction with the negatively charged backbone of the DNA
double helix leading to a decondensation of chromatin [20].
Histone deacetylases (HDACs) are an important class of ‘eras-
ers’ that antagonize histone acetyltransferases (HATs) by
removing acetylation from histones and non-histone proteins
[21]. Eighteen HDAC proteins are encoded in the human
genome which are categorized into four classes (I, IIa, IIb, III,
and IV) based on their sequence similarity to yeast counterparts
and dependence on Zn2+ (class I, II, and IV) or the need of a
NAD+ cofactor for enzymatic activity (class III). Loss of many
of the HDACs results in embryonic lethality or strong develop-
mental defects. Such drastic phenotypes reflect the important
role of HDACs in proper down regulation of genes [22].

Transcription regulation

The regulation of transcriptional activity is a complex interplay
of different mechanisms defining the ‘epigenetic code’. For
example, DNA methylation of CGIs in promoter regions has

been correlated with transcriptional repression [23]. Similarly,
histone 3 lysine 9 di- and trimethylation (H3K9me2/3) mark
repressed, while histone 3 lysine 4 mono- and trimethylation
(H3K4me1/3) mark transcriptionally active sites [24,25]. How-
ever, causes and consequences of transcriptional activation or
repression remain debated, since most knowledge is based on
correlative studies. Recently, several studies showed causative
roles for both DNA methylation and histone modifications by
targeting epigenetic factors using the CRISPR-dCas9 technique
[26]. Targeting of DNMT3A to promoter regions caused hyper-
methylation and consequently transcriptional repression of
several genes [27,28]. In line with this observation, recruitment
of ten-eleven translocation (TET) enzymes, which are involved
in DNA demethylation, activated gene expression [29]. In con-
trast, catalytically inactive DNMT3A was not able to alter tran-
scriptional activity at these sites [27]. Accordingly, removal of
H3K4 methylation and H3K27 acetylation from enhancers
repressed proximal transcription [30], whereas introduction of
H3K27 acetylation at promoters enhanced transcriptional
activity [31].

Epigenetic drug treatment

In contrast to genetic mutations, epigenetic modifications are
potentially reversible and, hence, are attractive targets for can-
cer prevention and treatment (Figure 1). First epigenetic drugs
have been developed decades ago and have been tested in
in vitro (cell culture) and in vivo (mouse models, clinical trials)
assays [32]. A multitude of small-molecule inhibitors directed

Figure 1. Simplified models for epigenetic regulation
Gene promoters are usually CpG-rich and frequently associated with CpG islands. In normal cells (upper), the promoter of a tumor suppressor gene is unmethylated and the chromatin in an
active, euchromatic state. In cancer cells (lower), the promoter of a tumor suppressor gene is methylated and in an inactive, heterochromatic state. In contrast, an oncogene’s promoter is methyl-
ated and inactive in normal cells and unmethylated and active in cancer cells. Repetitive elements are usually embedded in densely packed (heterochromatic) chromatin in normal cells and in
more loosely packed chromatin in cancer cells. Epigenetic mechanisms involved in tumor transformation and chromatin remodeling following epigenetic drug treatment are currently under
intensive investigation.
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against distinct epigenomic components or single regulators
has since then been developed and tested: Two DNMT inhibi-
tors (DNMTis), 5-azacytidine (Azacitidine, Vidaza®) and 5-aza-
2'-deoxycytidine (Decitabine (DAC), Dacogen®), with consider-
able response rates and survival benefits for patients with MDS
and AML; as well as five histone deacetylase inhibitors (HDA-
Cis), Vorinostat (SAHA, Zolinza®), Romidepsin (Istodax®),
Belinostat (Beleodaq®), Tucidinostat (chidamide, Epidaza®) and
Panobinostat (Farydak®). Four of these HDACis received FDA
approval and one, Tucidinostat, has been approved in China.
The first four HDACis are used for the treatment of peripheral
T-cell lymphomas, the fifth, Panobinostat, for the combinato-
rial treatment of myeloma [33–35]. In March 2014, another
pan-HDACi, Pracinostat (SB939), has been granted Orphan
Drug status for the treatment of acute myelocytic leukemia
(AML) and T-cell lymphoma. In 2016, Pracinostat received
therapy designation by the FDA in combination with azaciti-
dine for the treatment of patients with newly diagnosed acute
myeloid leukemia (AML) who are older than 75 years of age or
unfit for intensive chemotherapy. In clinical phase II and III
studies, Pracinostat is currently being investigated in combina-
torial treatment with Azacytidine (in MDS and AML patients)
or with the JAK-inhibitor Ruxolitinib (in patients with Myelofi-
brosis). Current activities focus on the development of novel
small molecule inhibitors directed against regulators of the epi-
genome other than DNMTs and HDACs to further improve
the efficiency and specificity of therapies [36]. Under examina-
tion are, for example, the pharmacological inhibition of lysine
acetyltransferases (KATs, e.g. Tip60) [37] or of BET family bro-
modomain proteins, which recognize acetylation of lysine resi-
dues [38]. BET inhibition has already entered clinical phase I
trials [39]. Additionally, polypharmacological agents have
recently been developed such as dual kinase/BET inhibitors,
dual HDAC/BET inhibitors and agents that degrade BET fam-
ily proteins, e.g. proteolysis-targeting chimeras (PROTACs)
[40]. Other epigenetic targets are the histone 3 lysine 79
(H3K79) methyltransferase DOT1L, the catalytic subunit of
Polycomb repressive complex 2 (PRC2) EZH2, or the histone
demethylase LSD1 [41]. Combinatorial treatment with an
LSD1-inhibitor and DNMT1- or HDAC-inhibitor showed syn-
ergistic effects in gene reactivation and increased the therapeu-
tic efficacy of the DNMT1- and HDAC-inhibitors [42]. In
contrast to their treatment successes of hematologic malignan-
cies, epigenetic agents have not shown significant efficacy as
monotherapy against solid tumors. However, recent studies of
solid tumor treatment demonstrated that epigenetic drugs have
favorable modifier effects when combined with other epigenetic
agents, chemotherapy, hormonal therapy, or immunotherapy
[43–46]. Future studies will show whether combinatorial treat-
ments are pivotal in using epigenetic drugs.

DNMT-inhibitors

Silencing of tumor suppressor genes by promoter hypermethy-
lation is a common feature of tumors [47]. Inhibition of the
maintenance DNA methyltransferase DNMT1 leads to DNA
demethylation upon DNA replication and can thus rescue the
expression of tumor suppressor genes and cell cycle regulators
[48,49]. Due to their therapeutic potential, many DNMT

inhibitors (DNMTis) have been developed and used for the
treatment of hematopoietic malignancies [33]. Treatment of
cells with Azacitidine or Decitabine leads to their incorporation
into the newly synthesized DNA strands of the dividing cells,
where they covalently bind and irreversibly inhibit DNMT1
[50]. Both Azacitidine and Decitabine have been used exten-
sively in the treatment of myelodysplastic syndrome (MDS)
and acute myeloid leukemia (AML) with several phase II/III
trials demonstrating an increased overall survival rate and
improved quality of life for the patients [33,51]. Zebularine and
Guadecitabine are additional nucleoside-analog DNMTis,
which are currently under investigation for their therapeutic
potential [33,52].

HDAC-inhibitors

HDACs deacetylate histones but also other proteins such as
transcription factors or proteins involved in DNA repair [53].
Deacetylation of lysine residues in the histone tails is associated
with condensed chromatin and, thus, with repression of tran-
scription. Human HDACs comprise 18 members categorized
into four groups [54]. The observation of HDAC overexpres-
sion in diverse malignancies led to the assumption that HDACs
may act as oncogenes [53]. Therefore, HDACs became a novel
target for therapeutic approaches, and various inhibitors were
developed. These compounds comprise a set of five different
classes: benzamides, hydroxamic acids, fatty acids (short chain),
sirtuin inhibitors and cyclic tetrapeptides. HDAC inhibitors
(HDACis) can selectively target a specific HDAC isoenzyme
(“isoenzyme-selective inhibitor”) or can act on some but not all
HDAC enzymes (“pan-inhibitor”) [54]. For our experiments,
Pracinostat (SB939), a small-molecule panHDACi based on
hydroxamic acid, which is binding all HDAC isozymes with
similar affinity with the exception of HDAC6 and 7 has been
used. Generally, antitumor effects were increased by combined
administration of HDACis with other drugs. For instance,
HDACis have been combined with the DNMTis Azacitidine
(Aza) [54], or Decitabine [55–57], with agents increasing the
abundance of reactive oxygen species [58] or with proteasomal
inhibitors [59].

Although the precise mode of action of HDACis remains
elusive, some of them have been successfully applied in the
clinic and, hence, been approved by health authorities like the
US Food and Drug Administration (FDA). So far, it is known,
that HDACi treatment leads to cell cycle arrest (G1 or G2
phase) and apoptosis of cancer cells [54,60]. Moreover, autoph-
agy and angiogenesis is reduced and modulation of the immune
response has been observed. Cyclin dependent kinase inhibitor
p21 (CDKN1A) expression increases after HDACi treatment,
and p21 inhibits complex formation of cyclins and cyclin
dependent kinases [61]. Extrinsic as well as intrinsic apoptotic
pathways are triggered by HDAC inhibition [54].

Bromodomain inhibitors

Bromodomains are conservative modular domains which play
crucial roles of readers for recognizing acetyl-lysine binding
proteins on histone tails, recruiting complex to act on promoter
region and drive downstream gene transcription [62]. Thus
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developing antagonists targeting BET bromodomain may con-
tribute to potent epigenetic therapies [63,64]. The mammalian
BET family protein is comprised of four members including
ubiquitously expressed BRD2, BRD3, BRD4 and germ cells
restricted BRDT. Among the BET family, BRD4 has been found
to play a diverse role in the regulation of cell cycle progression
and thereby responsible for the development of a variety of
cancers [65]. BRD4 usually binds with the acetylated histones
in chromatin and with positive transcription factor b (p-TEF-
b) [66]. JQ1 is a thiendizaepine-based first small inhibitor mol-
ecule designed against Bromodomain (BRD4) which could
bind to acetyl-lysine recognition motifs or the bromodomain
and extraterminal (BET) family of bromodomain proteins.
Since the first research reports revealed that JQ1 could compet-
itively bind to bromodomain and replace position of oncopro-
tein from chromatin in 2010 [67], increasing studies provided
evidence about pharmacological inhibition of JQ1 to be poten-
tial therapeutic treatments in several different disease models.
To be more specific, JQ1 could disrupt androgen recruitment
through targeting BET bromodomain, decreasing cell prolifera-
tion of castration-resistant prostate cancer cells [38]. JQ1 as a
BET bromodomain inhibitor could also downregulate MYC
expression to reduce cell viability of medulloblastoma which
may cause malignant brain tumors in children [68]. Other
studies reported about the potential synergetic effect of BET
inhibitors with some other epigenetic drugs, especially in lym-
phomas treatment [69]. JQ1 produced the significant synergetic
effect with rapamycin to inhibit the growth and survival of
Osteosarcoma cells [70].

The synthesis of small molecules to target bromodomain is
still continuing, and several novel inhibitors have already
shown the potency to suppress growth of cancer cells [71].
Moreover, few of BET bromodomain inhibitors entered clinical
trials, showing inhibition in several hematological malignancies
from patients and effect on coronary atherosclerosis [72,73].

Activation of human endogenous retroviral elements
by DNMT inhibition

Recent investigations of low-dose DNMTi treatment in cancer
cell lines identified a novel molecular mechanism of action.
Two publications on DNMTi (5-azacytidine and 5-aza-2�-deox-
ycytidine) described the generation of double-stranded RNA
(dsRNA) originating from codogenic and non-codogenic
human endogenous retroviral elements (HERVs) [74,75]. The
dsRNAs triggered the activation of the dsRNA-targeting viral
response pathway mediated by MAD5/MAVS/IRF7 followed
by interferon response and apoptosis. Moreover, a high anti-
viral gene expression signature correlated with durable
response in melanoma patients that received immune check-
point therapy [74]. Delayed gene expression changes in many
IRF7 target genes and no correlation with DNA methylation
changes suggested that these events are secondary to hypome-
thylating agent-mediated effects.

Combined treatment with chemotherapy or immune
checkpoint inhibitors

HDACi- and DNMTi-treatment have shown their efficacy
when combined with chemotherapeutic drugs [76]. DNMTi

treatment, for example, decreased platinum resistance of cancer
cells [77], and clinical phase I trials proved that Decitabine in
combination with carboplatin could lower chemotherapy resis-
tance in recurrent platinum-resistant ovarian cancer [78].
Other preclinical studies [60,79] and clinical trials [80] also
revealed HDACis as chemosensitizers as they increased sensi-
tivity of cancer cells under chemotherapeutic treatments.

Since HDACi and DNMTi were demonstrated to be able to
affect the immune system, the combination of epigenetic drugs
and immune checkpoint inhibitors was considered to be a
promising cancer therapy [46,81]. Several preclinical studies
indicate practicability of co-treatment with HDACi [82,83] or
DNMTi [84,85] and immune checkpoint inhibitors such as
anti-PD-1 and anti-CTLA-4 antibodies in both in vitro and in
vivo experiments. Moreover, many clinical trials are being con-
ducted to evaluate synergistic activity under HDACi or DNMTi
combined with immunotherapies in different types of cancer.
Clinical phase I/II trials are performed to assess efficacy of
combination with Vorinostat and Pembrolizumab (Keytruda®;
human IgG4 anti-PD-1 monoclonal antibody) in patients with
non-small cell lung cancer, advanced renal cell carcinoma or
hormone-resistant breast cancer. The co-treatment of Decita-
bine and Nivolumab (Opdivo®; human IgG4 anti-PD-1 mono-
clonal antibody) or Pembrolizumab will also be evaluated in
patients with AML, metastatic VRC, or NSCLC in clinical
phase II trials [46].

Transposable elements

Transposable elements (TEs) are mobile genomic segments
which represent roughly 50% of the human genome [86]. Dur-
ing evolution, TEs have accumulated many mutations which
disabled the vast majority to transpose. The intermediates of
mobilization define two major TE classes: DNA transposons
constitute about 3% of the human genome [86] and transpose
in an RNA-independent manner, while retrotransposons
require a reverse-transcribed RNA intermediate [87].

Retrotransposons are subdivided into those with and those
without long terminal repeats (LTRs). In humans, non-LTR
retrotransposons are in the majority and some are still active
[88]. HERVs, which make up about 8% of the human genome,
are retrotransposons consisting of the genes gag, pol, and env
which are flanked by two LTR elements [89]. The LTRs have
promoter function required for proviral transcription [90,91].
Loss of internal proviral sequences through homologous
recombination between the LTRs results in the formation of
solitary LTRs that are unable to retrotranspose [89] and are
with about 650,000 copies (90%) in the majority [92]. Transpo-
sition of the remainder can have a detrimental effect on
genome integrity of the host cell and, is therefore prevented by
epigenetic surveillance mechanisms including DNA methyla-
tion and repressive histone modifications [93].

Epigenetic regulation of retroviral elements

Most LTRs are heavily methylated in somatic cells [94,95], and it
has been proposed that DNA methylation has primarily evolved
to silence HERVs and other TEs [96]. Loss of DNA methylation
results in LTR expression in somatic cells [97–99]. How LTR
activity is contained has been extensively studied in embryonic
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mouse cells. Additional to DNA methylation, the interplay of up
to several hundred proteins may be required during early embry-
onic development, when the genome is largely unmethylated
[100,101]. Many of these proteins are involved in chromatin
remodeling or contribute to diverse post-translational modifica-
tions of histones [102]. The methyltransferase SETDB1, for exam-
ple, catalyzes the addition of methyl groups to H3K9 and is
required for LTR silencing in mouse embryonic stem cells (ESCs)
but not in mouse embryonic fibroblasts [100]. Many LTRs are
covered with H3K9me3 in mouse ESCs, while LTRs in differenti-
ated cells are largely devoid of this histone mark [103]. The
TRIM28 (also known as KAP1) co-repressor recruits SETDB1 to
certain ERV superfamilies and is also essential for LTR silencing
[104]. Other histone modifying enzymes such as the histone
demethylase KDM1A (also known as LSD1) and the NURD
HDAC complex have also been shown to interact with TRIM28
[105]. In line with these findings, HDACis activate the expression
of latent exogenous retroviruses after host cell integration, sug-
gesting that histone deacetylation is involved in retroviral silenc-
ing [106]. Despite the evolution of distinct epigenetic silencing
mechanisms, different families of LTRs are coordinately
expressed in a developmental and tissue-specific manner
[107,108] and often serve as alternative promoters or cis-
regulatory elements [92,109–112]. Given the high sequence
homology between members of the same LTR subfamily, they are
also particularly suitable for the evolution of transcriptional net-
works that require the orchestrated expression of stage- or stimu-
lus-specific genes [113,114].

Results

Activation of HERV promoters by DNMT-and
HDAC-inhibitors

In order to better understand the molecular events upon epige-
netic drug treatment, we profiled in the lung cancer cell line
NCI-H1299 genome-wide transcription start site activities using
cap-analysis of gene expression (CAGE)[115] as well as associ-
ated changes in DNA methylation (whole-genome bisulfite
sequencing (WGBS)) and chromatin (chromatin immunoprecip-
itation sequencing (ChIP-Seq)) following treatment with
DNMTi (Decitabine), HDACi (Pracinostat, SB939) or both. Our
unprecedented CAGE study revealed that all three drug combi-
nations largely induced de novo transcription from previously
uncharacterized transcription start sites (TSSs) rather than
expression from canonical promoters [116]. We observed activa-
tion of more than 2000 treatment-induced non-annotated TSSs
(TINATs), all of them not being annotated in common genome
databases before. The strongest effects were found with the com-
binatorial treatment (Decitabine plus SB939). While DNMTi
treatment-dependent transcriptional activation coincided with
DNA hypomethylation and gain of activating histone marks,
HDACi treatment specifically induced a subset of TINATs in
association with H2AK9ac, H3K14ac, and H3K23ac. Strikingly,
the vast majority of these newly identified TSSs originated in
LTRs, especially in LTR12C elements from the HERV9 family.
Moreover, newly induced transcripts contained open reading
frames either encoding for known, truncated, chimeric, or trun-
cated plus chimeric proteins. New transcripts which initiated

within introns of protein-coding genes were frequently
spliced with downstream exons; many such transcripts con-
tained a truncated open reading frame, potentially encoding
novel immunogenic proteins owing to their predicted prop-
erty to bind to MHC class I molecules and, thus, to represent
novel surface antigens. The up-regulation of immune system-
related genes following DNMTi treatment has been con-
nected in previous studies with the transcription of codo-
genic HERVs and the formation of dsRNA [74,75,85]. Using
our own CAGE dataset, we were able to detect the reactiva-
tion of double-stranded ERV RNAs as well as the induction
of Aza-induced viral defense genes.

LTR12C activation by epigenetic drugs is a general but
drug-specific phenomenon

We extended DNMTi and HDACi treatment to four more can-
cer cell lines, the leukemic lines HL60, K562, Raji, and Jurkat,
and profiled genome-wide TSS activities by nano cap-analysis
of gene expression (nanoCAGE) [117]. HERVs were activated
in all four leukemic cell lines, and again, in a synergistic mode
upon combinatorial treatment with Decitabine (DAC) plus
SB939. Moreover, cryptic transcripts initiating in LTR12C ele-
ments were the most prominent (Figure 2).

To examine if LTR12C activation upon epigenetic drug
treatment also occurs in vivo, we analyzed human peripheral
blood mononuclear cells (PBMNCs) from three patients treated
with the pan-HDACi Vorinostat (for study details refer to
Suppl. Table 1). Cells were isolated from peripheral blood sam-
ples which were collected at 0h, 0.5h, 1h, 1.5h, 2h, 4h, 6h and
8h after drug administration. In all three patients, activation of
LTR12C elements could be observed, the patients differing only
in the activation kinetics (Figure 3). We therefore conclude
that activation of cryptic transcripts upon DNMTi and HDACi
treatment is a general rather than a tissue specific phenomenon,
also occurring in human patients. In patient 1 and 2, the
LTR12C expression was analyzed after one week of Vorinostat
administration, whereas patient 3 had already taken Vorinostat
5 months continuously and has reached the maximum toler-
ated dose before the LTR12C expression was investigated.
Therefore, one could assume that for patient 3 the LTR12C
expression level was already higher than for the other two
patients resulting in a lower relative increase of LTR12C
expression during the investigated time points.

We examined additional types of inhibitors, such as those
targeting chromatin-reading bromodomains, HATs, or histone
methyl transferases (Table 1), for their capability to induce

Table 1. Compounds used to test for LTR12C activation in H1299 cells.

Drug Target MW Recommended conc. Used conc.

JQ1 BRD4 456.99 500 nM 250 nM
PU139� HAT 246.26 20 mM 10 mM
GSK2699537� LSD1 232.37 1 mM 1 mM
UNC0638 G9a 509.73 500 nM 500 nM
SGC0946 Dot1L 618.57 10 nM 10 nM
GSK343 EZH2 541.69 500 nM 500 nM
TW36� Spindlin1 350.48 50 mM 25 mM

Epigenetic compounds (Drug); specific target (Target); molecular weight (MW);
recommended and used concentration for single drug treatment of NCI-
H1299 cells; �[126–128].
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Figure 2. Expression analysis of transposable elements upon epigenetic drug treatment in various cell lines by nano-CAGE sequencing
The log2 of transposable elements (TEs) expression of five cell line models (NCI-H1299, HL60, K562, Raji, Jurkat) upon epigenetic drug treatment (SB939 (SB), Decitabine (DAC), combinatorial
treatment (DAC+SB), and control (DMSO)) is depicted in summary for the different TE families (upper part of heatmap) as well as in detail for the different LTR subgroups (lower part of heatmap).
CPM, counts per million.
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LTR12C expression in NCI-H1299 cells. Only the bromodo-
main inhibitor JQ1 increased LTR12C expression (Figure 4),
suggesting that HERV silencing is exerted by specific epigenetic
mechanisms.

In conclusion, the activation of LTR12C retroviral elements
can be found upon treatment with DNMT- and HDAC-inhibi-
tors as well as by using JQ1-inhibitors and is a detectable phe-
nomenon in different human cancer cell lines as well as in
healthy human cells.

Discussion and Perspectives

Clinical relevance of ERV activation

The impact of epigenetic aberrations on carcinogenesis moti-
vated the development of therapeutic strategies making use of
drugs targeting the epigenome [118]. However, their mode of
action and especially the global cellular effects of epigenetic
drug treatment are only sparsely described. Recent publications
highlight the effects of DNMTi and/or HDACi on human
endogenous retroviral elements (HERVs) [74,75,81], or trun-
cated ERVs of the LTR12C subgroup [116]. In two studies
[74,75], treatment of cell lines using a DNMTi led to the induc-
tion of dsRNA which, in turn, induced an interferon-based
viral mimicry response. Using the combinatorial treatment of
5-Azacytidine with HDACis, Topper and colleagues could
achieve anti-tumor responses in non-small-cell lung cancer cell
lines mediated by the induction of ERV9-1 accompanied by
suppression of MYC signaling and an enhancement of the
immune signaling due to upregulation of CCL5 secretion [81].
These findings suggest the potential for combining epigenetic
drug treatment with immune checkpoint blockade. We demon-
strated in our study [116] that DNMTi and HDACi treatment
induces cryptic transcripts (TINATs) which are initiated from
solitary LTR12C elements. Here we demonstrate that this
induction is not only present in human cell lines (Figure 2) but
also in normal PBMNCs from patients treated with Vorinostat
(Figure 3). Of particular interest in the clinical setting is our

observation that, at least in in silico analysis, TINATs encode
peptides with immunomodulatory potential [116]. Polysomal
fractionation analysis revealed in about one third of TINAT
cases translational activity which underscores the possibility of
truncated protein versions. To verify the existence of these pre-
dicted truncated peptides, proteomics studies are required.

Many open questions remain, e.g., whether TINAT induc-
tion also occurs in tumor cells of patients treated with epige-
netic drugs. If so, patients may be stratified according to
treatment response or outcome depending on presence or
absence of TINATs and the occurrence of a higher mutational
burden as an additional factor, as it has been described by
Chiappinelli et al. [74] Possible immunomodulatory conse-
quences of TINAT activation might serve as a prognostic
marker for patients treated with epigenetic drugs.

Molecular mechanisms of HERV activation

The inhibition of specific HDACs was shown to be sufficient
for HERV9-derived LTR12 activation [119]. Similarly, the
induction of TINATs can occur upon HDACi treatment alone,
in the absence of DNMTi. We observed that a subset of
TINATs is induced upon HDACi treatment in association with
the acetylation of H2AK9, H3K14, and H3K23, histone moie-
ties different from the classical promoter- or enhancer-modu-
lating sites of modification. The acetylation of these “non-
canonical” histone sites might contribute to the synergistic
effect of DNMTi plus HDACi double treatment which has
already been described by others [120]. The elucidation of the
mechanism and the identification of the participating factors
for TINAT induction are urgent tasks to be resolved. Proteomic
studies already pointed into a direction different from histone
modifications but to proteins as targets of acetylation which are
involved in the regulation of numerous cellular processes such
as chromatin remodeling, cell cycle, splicing, nuclear transport,
and actin nucleation [121,122].

TINAT induction by the BRD4 inhibitor JQ1

The repertoire of epigenetic drugs also includes inhibitors of
bromodomain-containing chromatin readers like BRD4 which
function in cell cycle progression and contribute to malignan-
cies. When we tested diverse epigenetic drugs, also the BRD4-
inhibitor JQ1 induced TINAT expression in NCI-H1299 cells
(Figure 4). JQ1 acts as an acetyl-histone mimetic and prevents
interactions between bromodomain proteins, acetylated histo-
nes, and transcription factors [67]. Consequently, JQ1 activates
or represses genes and transposable elements, but it also ena-
bles reactivation of HIV-1 transcription in latently infected
human T cells [123]. JQ1’s mode of action in TINAT induction
still remains to be clarified.

Concluding remarks

Treatment of cell lines with epigenetic drugs targeting diverse
classes of epigenetic modifiers, including DNMTs, HDACs, and
BET protein family members, can activate endogenous
retroviral elements and massively induce novel transcripts of
unknown function. Now the exciting task is to decipher if and

Figure 3. LTR12C expression in peripheral blood mononuclear cells (PBMNCs)
upon Vorinostat (suberoylanilide hydroxamic acid, SAHA) treatment
Time course of LTR12C expression (normalized to housekeepers and relative to untreated sam-
ples) in three patients treated with Vorinostat. LTR12C transcription was induced upon Vorino-
stat intake in all three patients in an individual manner.
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how the diverse types of epigenetic drugs converge in their mode
of action to specifically activate HERVs and to verify the existence
of predicted truncated peptides resulting from splicing events of
activated HERVs. And most important, clinical studies are
needed to clarify the consequences of HERV activation upon epi-
genetic drug treatment in patients and to evaluate their immuno-
modulatory potential and their function as prognostic markers.

Materials and Methods

Cell culture and epigenetic drug treatment

NCI-H1299 (CRL-5803, ATCC), HL60 (ACC-3, DSMZ), K562
(ACC-10, DSMZ), RAJI (ACC-319, DSMZ), JURKAT (ACC-
282, DSMZ) cells were grown in RPMI 1640 supplemented
with 10% FCS and 1% PenStrep. Cell line authenticity and
purity was confirmed using the Multiplex Cell Authentication
and Cell Contamination Test by Multiplexion. Cells were
treated with 500 nM (250 nM for HL60, 5 nM for RAJI, 10 nM
for JURKAT) DAC, 500 nM SB939 (100nM for RAJI, 200nM
for JURKAT), or 500 nM DAC (250 nM for HL60, 5 nM for
RAJI, 10 nM for JURKAT) + 500 nM SB939 (100nM for RAJI,
200nM for JURKAT) for 72, 18, or 54 + 18 h, respectively, and
compound-containing media was refreshed every 24 h.

Single treatment of epigenetic drugs from other different
target classes (Table 1) was applied once at the beginning of the
72-hour treatment period, using a final concentration of
250 nM for JQ1, 10 mM for PU139, 1mM for GSK2699537,
500 nM for UNC0638, 10 nM for SGC0946, 500 nM for

GSK343 and 25 mM for TW36, respectively. Recommended
concentrations were taken from the literature for published
compounds or from preliminary cytotoxicity tests on leukemic
cells (data not shown). Due to cytotoxicity reasons in NCI-
H1299, the recommended dosage for JQ1, PU139, and TW36
was reduced by 50%. After 72 hours, cells were harvested, RNA
isolated, cDNA synthesized and LTR12C expression deter-
mined by qRT-PCR analysis.

Vorinostat treatment of study patients

All 3 patients gave consent to participation and were included
in the study “Phase I/II intra-patient dose escalation study of
Vorinostat in children with relapsed solid tumor, lymphoma or
leukemia” (NCT-2007-11-02-1004; for study details refer to
Suppl. Tabl 1). Blood was collected under continuous Vorino-
stat treatment once daily, during pharmakokinetic sampling
collected before (0 min) and 30 min, 60 min, 90 min, 120 min,
4h, 6h, and 8h after oral Vorinostat intake (Suppl. Table 1).
Using density-gradient centrifugation technique (see below),
peripheral blood mononuclear cells (PBMNCs) were separated,
RNA isolated, cDNA synthesized and LTR12C expression
determined by qRT-PCR analysis.

Nano cap analysis of gene expression (nanoCAGE)
sequencing

NanoCAGE was performed in one experiment on five treated
cell line models (NCI-H1299, HL-60, K562, RAJI, JURKAT) by

Figure 4. LTR12C expression following epigenetic drug treatment
LTR12C expression upon epigenetic drug treatment of NCI-H1299 cells. Light grey bars depict LTR12C expression (normalized to housekeepers) following treatment with DNMTi (DAC), HDACi
(SB939) or both. Dark gray bars depict LTR12C expression (normalized to housekeepers) following treatment with compounds inhibiting other epigenetic targets (see Table 1). DNMTi and HDACi
only treatment both induce LTR12C transcription, and a double treatment leads to a synergistic effect. Among the further compounds, only the bromodomain inhibitor JQ1 induces LTR12C
transcription.
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DNA form, Japan. Libraries were sequenced in paired-end
mode on a HiSeq 2000 V4 system (125bp, paired-end) by the
DKFZ Genomics and Proteomics Core facility. Resulting reads
were quality trimmed using fastqc (http://www.bioinformatics.
babraham.ac.uk/projects/fastqc/) and aligned against the refer-
ence genome (hg19) using HISAT2 [124]. Only the first in pair
read of uniquely mapped reads was retained to generate cover-
age tracks. Read counts for repeat classes and subfamilies were
normalized to the library size using edgeR [125].

Isolation of peripheral mononuclear cells from peripheral
blood samples

For qRT-PCR expression analysis, PBMNCs were isolated by
Lymphoprep (Lymphoprep, 250ml, #01-63-12-002A, LOT
12GLS14, Fresenius Kabi Norge AS for Axis Shield PoC AS,
Oslo, Norway) density-gradient centrifugation according to the
manufacturer’s protocol.

qRT-PCR expression analysis

RNA was transcribed to cDNA using random hexamers and
Superscript III Reverse Transcriptase (Invitrogen) according to
the manufacturer’s instructions. Unless stated otherwise,
expression analysis was performed on the Roche Lightcycler
480 system and target-gene expression was normalized to the
housekeeping genes GAPDH, and HPRT1 (primer sequences
in Supplementary Table 2).
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