Skip to main content
. Author manuscript; available in PMC: 2018 Aug 15.
Published in final edited form as: Knowl Based Syst. 2017 May 19;130:33–50. doi: 10.1016/j.knosys.2017.05.018

Table 3.

Parameter settings in other algorithms.

Settings Other algorithms

Classic fuzzy clustering Multi-task clustering Co-clustering Semi-supervised clustering Supervised clustering

FCM LSSMTC CombKM DRCC CKM SFCM
Core parameters The fuzzifier m=min(N,D-1)min(N,D-1)-2, where N and D are the data size and data dimension, respectively; C equals the number of clusters. Task number T = 2; Regularizer l * ∈ {2, 22, 23, 24} ∪[100: 100: 1000]; Regularizer λ* ∈ {0.25, 0, 5, 0.75} K equals the number of clusters Regularizer λ* = μ* ∈ {0.1,1,10, 100,500,1000} See [51] for the detailed parameters K equals the number of clusters The fuzzifier m=min(N,D-1)min(N,D-1)-2, where N and D are the data size and data dimension, respectively;

Note:

* denotes that the optimal settings need to be eventually determined by the grid search.