Table 2.
Internal Predictive In Vitro-In Vivo Correlation Level A Characteristics for the Sustained Release Phase in a Cell Culture Model
| Composite name | Relationship | R2 | Model |
|---|---|---|---|
| -OPF-Msp | Sigmoidal | 0.998 | Y = 51 + (98 − 51)/(1 + 10^[{49 − X} × 0.08]) |
| -OPF-Cmb | Sigmoidal | 0.998 | Y = 65 + (98 − 65)/(1 + 10^[{58 − X} × 0.08]) |
| -OPF-Ads | Linear | 0.986 | Y = 0.38 × X + 62.25 |
| n-OPF-Msp | Sigmoidal | 0.999 | Y = 41 + (97 − 41)/(1 + 10^[{27 − X} × 0.06]) |
| n-OPF-Cmb | Sigmoidal | 0.999 | Y = 54 + (99 − 54)/(1 + 10^[{44 − X} × 0.06]) |
| n-OPF-Ads | Linear | 0.989 | Y = 0.19 × X + 81.17 |
| p-OPF-Msp | Sigmoidal | 0.997 | Y = 35 + (95 − 35)/(1 + 10^[{34 − X} × 0.1]) |
| p-OPF-Cmb | Sigmoidal | 0.991 | Y = 45 + (96 − 45)/(1 + 10^[{53 − X} × 0.2]) |
| p-OPF-Ads | Linear | 0.971 | Y = 0.43 × X + 56.85 |
| Ph-OPF-Msp | Sigmoidal | 0.995 | Y = 28 + (107 − 28)/(1 + 10^[{35 − X} × 0.09]) |
| Ph-OPF-Cmb | Sigmoidal | 0.981 | Y = 52 + (160 − 52)/(1 + 10^[{57 − X} × 0.07]) |
| Ph-OPF-Ads | Linear | 0.998 | Y = 0.28 × X + 75.15 |
Models were based on a sigmoidal function Y = bottom + (top − bottom)/(1 + 10^[{logEC50 − X} × hillslope]) and a linear function Y = slope × X + Y-intercept.