Skip to main content
. 2018 Jul 1;24(7):379–390. doi: 10.1089/ten.tec.2018.0024

Table 2.

Internal Predictive In Vitro-In Vivo Correlation Level A Characteristics for the Sustained Release Phase in a Cell Culture Model

Composite name Relationship R2 Model
-OPF-Msp Sigmoidal 0.998 Y = 51 + (98 − 51)/(1 + 10^[{49 − X} × 0.08])
-OPF-Cmb Sigmoidal 0.998 Y = 65 + (98 − 65)/(1 + 10^[{58 − X} × 0.08])
-OPF-Ads Linear 0.986 Y = 0.38 × X + 62.25
n-OPF-Msp Sigmoidal 0.999 Y = 41 + (97 − 41)/(1 + 10^[{27 − X} × 0.06])
n-OPF-Cmb Sigmoidal 0.999 Y = 54 + (99 − 54)/(1 + 10^[{44 − X} × 0.06])
n-OPF-Ads Linear 0.989 Y = 0.19 × X + 81.17
p-OPF-Msp Sigmoidal 0.997 Y = 35 + (95 − 35)/(1 + 10^[{34 − X} × 0.1])
p-OPF-Cmb Sigmoidal 0.991 Y = 45 + (96 − 45)/(1 + 10^[{53 − X} × 0.2])
p-OPF-Ads Linear 0.971 Y = 0.43 × X + 56.85
Ph-OPF-Msp Sigmoidal 0.995 Y = 28 + (107 − 28)/(1 + 10^[{35 − X} × 0.09])
Ph-OPF-Cmb Sigmoidal 0.981 Y = 52 + (160 − 52)/(1 + 10^[{57 − X} × 0.07])
Ph-OPF-Ads Linear 0.998 Y = 0.28 × X + 75.15

Models were based on a sigmoidal function Y = bottom + (top − bottom)/(1 + 10^[{logEC50 − X} × hillslope]) and a linear function Y = slope × X + Y-intercept.