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The Middle Eocene Climatic Optimum (MECO) represents a ~500-kyr period of global

warming ~40 million years ago and is associated with a rise in atmospheric CO2 con-

centrations, but the cause of this CO2 rise remains enigmatic. Here we show, based on

osmium isotope ratios (187Os/188Os) of marine sediments and published records of the

carbonate compensation depth (CCD), that the continental silicate weathering response to

the inferred CO2 rise and warming was strongly diminished during the MECO—in contrast to

expectations from the silicate weathering thermostat hypothesis. We surmise that global

early and middle Eocene warmth gradually diminished the weatherability of continental rocks

and hence the strength of the silicate weathering feedback, allowing for the prolonged

accumulation of volcanic CO2 in the oceans and atmosphere during the MECO. These results

are supported by carbon cycle modeling simulations, which highlight the fundamental

importance of a variable weathering feedback strength in climate and carbon cycle interac-

tions in Earth’s history.
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The chemical weathering of silicate rocks represents a
negative feedback mechanism that is generally considered
to modulate atmospheric CO2 levels and Earth’s climate on

geological timescales1,2. This phenomenon has been studied for
various carbon cycle perturbations and episodes of global warming
in the geological past, including Pleistocene deglaciations, the
Paleocene-Eocene Thermal Maximum (PETM; ~56Ma), and the
Cretaceous and Jurassic Oceanic Anoxic Events (OAEs), mainly
through the application of isotope ratios of marine sediments that
are sensitive to shifts in weathering fluxes or compositions on the
appropriate timescales3–5. For many of these phases, it is now
relatively well established that enhanced continental weathering
contributed to CO2 drawdown and climatic recovery4,6,7. How-
ever, the available data spanning the Middle Eocene Climatic
Optimum (MECO; ~40Ma) pose questions regarding the func-
tioning of the weathering feedback8. Over a period of ~500 kyr,
global ocean temperatures rose gradually by up to ~5 °C in
association with an increase in atmospheric CO2 concentrations,
sourced from a reservoir with a stable carbon isotopic composition
(δ13C) close to that of the ocean9–13. Importantly, the inferred rise
in atmospheric CO2 and temperature over ~500 kyr during the
MECO should have led to increased weathering and alkalinity
supply to the oceans, but reconstructions show that the oceans
acidified8,10. Therefore, reconstructing the global weathering
response during the MECO is instrumental to improving our
fundamental understanding of carbon cycle dynamics on such
intermediate timescales of ~500 kyr8.

A promising proxy to reconstruct changes in continental
weathering during the MECO is the osmium isotope ratio of
marine sediments at the time of deposition (187Os/188Osinitial,
or Osi)14,15. The 187Os/188Os ratio of the global ocean is governed
by the relative input of radiogenic Os (187Os/188Os= ~1.4)
through continental weathering of ancient crustal rocks, and the
relative input of unradiogenic Os (187Os/188Os= 0.13) through
hydrothermal activity at mid-ocean ridges and weathering of
fresh mantle-derived rocks, with additional contributions from
extraterrestrial sources14. Osmium is a quasi-conservative ele-
ment that is well-mixed in the ocean, and has a short oceanic
residence time (generally ~104 yr in the open ocean, but residence
times of ~103 yr have been inferred for very restricted settings)
14,16. Variations in the 187Os/188Os ratio of seawater are thus
indicative of changes in continental weathering relative to the
other sources on timescales shorter than, or similar to, climate
and carbon cycle processes such as greenhouse warming, ocean
acidification, and carbonate compensation14,15. Seawater Os is
incorporated in the metalliferous and organic phases of marine
sediments without isotopic fractionation, and remains a closed
isotopic system from the time of deposition17–19. As such, Osi
values are calculated on the basis that radiogenic 187Os ingrowth
is derived solely from post-depositional 187Re (rhenium) decay.
Shifts to higher (radiogenic) Osi values, which are attributed to a
global increase in continental silicate weathering rates, have been
recorded for carbon cycle perturbations such as the Toarcian
OAE and the PETM and Eocene Thermal Maximum 2 (ETM2)
transient global warming events5,15,20.

A second parameter that is often used to constrain changes in
continental weathering is the carbonate compensation depth
(CCD). The CCD is the depth in the oceans at which carbonate
delivery is balanced by carbonate dissolution, and is modulated
by the interplay of volcanic CO2 degassing, the weathering of
silicate rocks and organic-rich sediments on land, and the burial
of marine carbonates and organic carbon21. As such, changes in
the position of the CCD as reflected in sediments play a crucial
role in reconstructions of carbon cycle change, both on multi-
million year timescales and during transient perturbations such as
the MECO22.

In this study, we present Osi records of marine sediments from
three locations in different ocean basins in combination with a
compilation of published CCD records8 to reconstruct global
changes in continental weathering during the MECO. Rather than
an Osi increase expected from globally enhanced weathering, we
document a modest global Osi decrease during the MECO that
may represent an episode of enhanced volcanism and/or asso-
ciated basalt weathering. In fact, prolonged CCD shoaling pre-
cludes an increase in total continental weathering rates in
response to CO2 rise and greenhouse warming. We employ a
series of simulations with the carbon cycle model LOSCAR23

together with an independent osmium cycle model to demon-
strate that this combination of observations can only be suc-
cessfully reconciled on MECO timescales by invoking enhanced
volcanism together with a diminished continental weathering
feedback. Finally, we surmise that such a reduced silicate
weathering feedback may have resulted from a progressive
decrease in the weatherability of the continents during
the Eocene. A variable silicate weathering feedback strength may
have been important for other enigmatic climate and carbon cycle
perturbations in Earth’s history.

Results
Middle Eocene osmium isotope records. We present Re-Os data
and Osi values for middle Eocene sediments from Ocean Drilling
Program (ODP) Site 959 in the equatorial Atlantic along the
African continental margin, ODP Site 1263 on the Walvis Ridge
in the South Atlantic, and Integrated Ocean Drilling Program
(IODP) Site U1333 in the equatorial Pacific (Fig. 1; Supplemen-
tary Data 1; Supplementary Figs. 1–3). The Re and Os abun-
dances are significantly enriched in the relatively organic-rich,
siliceous sediments of Site 959 (Re= 10–60 ppb, Os= 100–300
ppt) relative to the carbonate-rich pelagic sediments of Sites 1263
and U1333 (Re= 0.02–0.2 ppb, Os= 10–40 ppt). The abundances
of 192Os, the Os isotope best representing the amount of
hydrogenous Os chelated by organic matter at the time of
deposition24, increase slightly over the study interval at Site 959,
but are essentially stable at the other two sites (Fig. 1). We cal-
culate Osi values of 0.46 to 0.60 at all study sites (Fig. 1), which is
in good agreement with previously published middle Eocene Osi
values from Site 959 sediments25,26 and with Osi values from
ferromanganese crusts that document a progressive increase in
the 187Os/188Os composition of seawater during the Cenozoic27–
29 (Fig. 2).

At Site 959, the Osi values range between approximately
0.56 and 0.60 for most of the middle Eocene study interval, with
the exception of a decrease to 0.51 during the MECO at ~580
mbsf (Fig. 1). Importantly, the lack of an increase in the Osi
values during the MECO implies that weathering rates of felsic
silicate rocks did not increase in response to CO2 rise and
accompanied warming, while such an increase would be expected
from theory and published Osi records from analogous carbon
cycle perturbations3,7,15 (Fig. 2b). Furthermore, the relative
invariability of both the Osi records and the 192Os abundances
—which scale to organic matter content—implies that the balance
of Os fluxes to the oceans and uptake of Os in sedimentary
organic matter did not appreciably change during the MECO.

Although the magnitude of the negative Osi shift at Site 959 is
small (~0.05), it exceeds the maximum analytical uncertainty
(2σ= 0.01) by a factor of 5. The shift starts at the onset of MECO
warming and is also present at Sites 1263 and U1333, where it is
similar in magnitude (Figs. 1, 2). Interestingly, the Osi profile of
Site U1333 is characterized by two separate excursions to lower,
less radiogenic values rather than the gradual and continuous
decrease that is observed at Site 959. The Osi profile at Site
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1263 shows trends intermediate to Sites 959 and U1333.
Nevertheless, the lowest Osi values in all three records occur
toward the end of the MECO, which is coincident with the peak
warming phase10. In addition, the return towards pre-MECO
values is synchronous with the termination of the MECO at all
three sites, implying that the Osi shift lasted for the entire
duration of the event (~500 kyr). The absolute Osi values differ
slightly between sites, likely because of differences in coastal
proximity and oceanographic setting30,31. However, the general
timing and magnitude of the Osi shift are reproduced at all sites,
indicating that the Osi shift records a change in the 187Os/188Os
composition of the global ocean. The global character and
synchroneity of the Osi shift at the end of the MECO also indicate
that osmium isotope stratigraphy is a promising tool for
correlation of the event between sites in future studies (Fig. 2a).

In principle, the modest negative Osi shift during the
MECO may be caused by an increase in the unradiogenic Os
flux from hydrothermal and/or extraterrestrial sources, a decrease
in the radiogenic Os flux from continental weathering, or a
decrease in the 187Os/188Os composition of the continental
weathering flux through a transient change in the exposure of
different rock types, such as basalts7. There is no evidence for an
extraterrestrial impact during the MECO. Furthermore, a
reduction in continental silicate weathering rates during an
episode of greenhouse warming seems paradoxical and unlikely,

even though our Osi records clearly show no evidence of the
expected increase in continental weathering. It is difficult to
exclude a warming-induced change in regional climates and
precipitation patterns—which could have affected the contribu-
tions of rock types with different 187Os/188Os compositions to the
continental weathering flux3,32—as a cause for the Osi shift.
However, this would still require a different cause for MECO
warming.

Finally, the Osi shift could reflect a short-lived increase in mid-
ocean ridge hydrothermal activity or an episode of increased
volcanism and associated weathering of mafic silicate
rocks24,33,34. Mass balance calculations with a progressive two-
component mixing model that involves seawater and basalts (see
Methods; Supplementary Data 2) show that the Osi shift across
the MECO may correspond to a 10–15% increase in the
contribution of the mantle-derived Os flux relative to
the continental Os flux. Although there is no indication for
the emplacement of a large igneous province during the middle
Eocene8, an episode of volcanic activity at mid-ocean ridges or on
land could have increased the Os flux from basalts, and
consequently resulted in a decrease of the 187Os/188Os composi-
tion of the oceans that is consistent with our Osi records.
Moreover, enhanced volcanism would provide a mechanism for
the atmospheric CO2 rise that has been inferred for the
MECO8,11, perhaps similar to the Late Cretaceous episode of

MECO

MECO

MECO

a b c

Site 959
Eq. Atlantic

Site 1263
S. Atlantic

187Os/188Osinitial
187Os/188Osinitial

0.50
520 133 160

162

164

166

168

170

172

174

176

178

180

182

135

137

139

141

143

D
ep

th
 (

ad
j r

m
cd

)

D
ep

th
 (

ad
j r

m
cd

)

145

147

149

151

153

155

540

560

580

D
ep

th
 (

m
bs

f)

600

620

640

660

0.68 1.5 1.0 0.5 0.0 –0.5 0 20 40 60 80 1000.72 0.76

TEX86 CaCO3 (%)δ18O (‰)

0.80 0.84

0 30 60
192Os (pg/g) 192Os (pg/g) 192Os (pg/g)

90 120 150 0 0 2 4 6 85 10 15 20

0.52 0.54 0.56 0.58 0.60 0.62 0.46 0.48 0.50 0.52 0.54 0.56

Site U1333
Eq. Pacific

187Os/188Osinitial

0.44 0.46 0.48 0.50 0.540.52 0.56

Fig. 1 Osi values (in blue) and 192Os concentrations (in red) for the analyzed middle Eocene sediments from the three different sites. a ODP Site 959;
b ODP Site 1263; c IODP Site U1333. The MECO interval is defined based on TEX86 values for Site 959 (in black; Cramwinckel et al.13) and bulk carbonate
stable oxygen isotope ratios (δ18O) for Site 1263 (in black; Bohaty et al.10). The MECO is characterized by low carbonate content at Site U1333 (in grey;
Westerhold et al.84). The error bars indicate fully propagated analytical uncertainties (2σ)

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-05104-9 ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:2877 | DOI: 10.1038/s41467-018-05104-9 | www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


greenhouse warming associated with volcanic eruptions from the
Deccan Traps33,35,36. Potential events that have been dated at
approximately the right age in the middle Eocene include (1) a
pulse of metamorphic decarbonation associated with Himalayan
uplift and metamorphism37,38, (2) increased arc volcanism
around the Pacific rim39 and especially in the Caribbean, related
to an ignimbrite flare-up in the Sierra Madre Occidental of
Mexico40–42, (3) an episode of magmatism in the East African
Rift zone43, in particular in Southern Ethiopia and Northern
Kenya44,45, and/or (4) mid-ocean ridge volcanism in the North
Atlantic, due to rifting in East Greenland and activity of the
Iceland hotspot46–48. However, the timing and magnitude of
these events are at present not sufficiently well resolved to
establish a direct causal link with the MECO. Additionally, it is
unclear if increased Himalayan uplift and metamorphism would
be compatible with the observed negative Osi shift, as
the Himalayas are generally considered to contribute
relatively radiogenic Os to the continental weathering flux49,50.
Yet, the effects of Himalayan uplift and subsequent weathering on
the Cenozoic Osi record are likely small51,52.

Carbon and osmium cycle modeling. Enhanced volcanism and/
or hydrothermal activity may represent the most parsimonious
scenario to explain the modest negative Osi shift and atmospheric
CO2 rise during the MECO. However, a strong silicate weathering
response to greenhouse warming through focused weathering of
fresh basalts is in disagreement with the extensive carbonate
dissolution observed in deep ocean basins8,10. Therefore, total
continental weathering fluxes must have remained approximately
constant during the event. Collectively, the available data indicate
that CO2 was added to the ocean-atmosphere system through
enhanced volcanism, leading to warming, but was not neutralized
through the silicate weathering feedback, leading to sustained
ocean acidification.

To test the plausibility of scenarios involving enhanced
volcanism and/or diminished continental weathering during the
MECO, we performed a series of carbon cycle simulations with
the box model LOSCAR23 by prescribing fluxes with the transient
shift that is inferred from our Osi records (see Methods; Fig. 3;
Supplementary Figs. 4–9). For consistency, we have also modeled
the 187Os/188Os composition of the global ocean by applying the
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same LOSCAR carbon cycle fluxes as forcing to a box model of
the Os cycle (see Methods; Supplementary Software 1). In
addition to a ~0.05 decrease in the 187Os/188Os ratio of seawater,
our target scenario for the MECO involves a rise in atmospheric
CO2 concentrations, a slight increase in the δ13C of dissolved
inorganic carbon in the deep ocean, and a shoaling of the CCD
over ~500 kyr8. Since there are no high-resolution pCO2 records

available for the MECO, the target scenario includes an
approximate doubling of atmospheric CO2 concentrations
relative to middle Eocene background values of 500–1000
ppmv11,53. Furthermore, the magnitude of CCD change during
the event possibly varied between the different ocean basins10, so
we incorporate a conservative estimate of at least 500 m shoaling
in the Atlantic and Pacific in our target scenario.
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All model simulations result in a decrease in the 187Os/188Os
ratio of seawater (Fig. 3; Supplementary Figs. 4–9). Although a
gradual, linear increase in volcanism of 10–20% over ~500 kyr is
sufficient to cause CO2 accumulation in the ocean-atmosphere
system, and hence global warming on MECO timescales, this
scenario results in a deepening of the CCD instead of the
observed shoaling (Fig. 3; Supplementary Fig. 4)8,10. A similar
behavior of the CCD is observed in previous LOSCAR
simulations of the MECO8 and the Late Cretaceous warming
episode36. Crucially, the model is only able to reproduce CO2 rise
in conjunction with shoaling of the CCD on these timescales if we
invoke enhanced volcanism together with a diminished weath-
ering feedback by maintaining the silicate and carbonate weath-
ering fluxes constant (Fig. 3; Supplementary Fig. 5). Although the
magnitude of this modeled CCD response is smaller than the
shoaling inferred from deep-sea carbonate records8,10, we note
that the model may underestimate CCD changes because it does
not account for the additional effects of biological carbonate
compensation54. Such a reduction in net carbonate production
resulting from ocean acidification might amplify the CCD
response for a given CO2 rise. In all scenarios, the model
reproduces the modest increase in deep-sea benthic foraminifer
δ13C values during the event9,10 because of a resulting decrease in
carbonate versus constant organic carbon burial. Finally, the
relatively rapid termination of the MECO is forced by a recovery
of silicate weathering. We note that this does not need to
represent a pronounced tectonic event, as the absolute magnitude
of the flux imbalances is relatively small, but regionally enhanced
weathering in the aftermath of the MECO would be consistent
with observations from the Tethys region55.

Discussion
To reconcile our Osi records and model results with global
warming and atmospheric CO2 rise on MECO timescales8–11,
we hypothesize that a long-term reduction in the strength of the
negative silicate weathering feedback occurred in the Eocene56,57,
due to a progressive reduction in the weatherability of the con-
tinents—the sum of all factors affecting chemical weathering
other than climate58,59. For millions of years prior to the MECO,
the Earth was generally characterized by high atmospheric CO2

levels53 and very warm climates60 (Supplementary Fig. 10), as
well as flat continental relief. Thick, cation-depleted soils devel-
oped and transport-limited weathering regimes prevailed61,62,
and consequently the weatherability of Earth’s surface may have
gradually decreased over the course of the Eocene. Indeed, such a
progressive reduction in weathering feedback strength during the
Eocene has been inferred from inverse modeling simulations of
weathering fluxes based on Cenozoic pCO2 and δ13C records57

(Fig. 2c). With the strength of the weathering feedback strongly
diminished, a small increase in volcanism or hydrothermal
activity would lead to the accumulation of large amounts of CO2

in the ocean-atmosphere system, resulting in prolonged warming
and ocean acidification during the MECO.

Changes in weatherability have also been suggested to explain
other episodes of apparent decoupling between silicate weath-
ering and climate59, for example during major glaciations in the
Paleozoic and Neoproterozoic63–65. Our interpretations of a
limited weathering response during the MECO suggest that a
variable silicate weathering feedback strength57 can indeed act as
a driver for sustained global warming on geological timescales,
with potential importance to other enigmatic phases of carbon
cycle change in Earth’s history. Moreover, a variable weathering
feedback strength governed by the interplay between tectonics,
climate and the weatherability of the continents fundamentally
challenges the parameterization of the silicate weathering

feedback in carbon cycle models, especially those used to model
transient perturbations such as the OAEs and the PETM. We
therefore argue that future studies of these events should focus on
exploring changes in temperature, atmospheric CO2, and the
CCD in conjunction with the strength of the weathering feedback.

Methods
Sampling. The samples used in this study were derived from middle Eocene
sedimentary units from three different sites: organic-rich sediments from ODP Site
959 in the equatorial Atlantic along the African continental margin, carbonate-rich
pelagic sediments from ODP Site 1263 on the Walvis Ridge in the south Atlantic,
and carbonate-rich pelagic sediments from IODP Site U1333 in the equatorial
Pacific (Supplementary Fig. 1). The total organic carbon (TOC) contents of these
middle Eocene sediments range between 0.1 and 2%, with the highest TOC
abundances occurring at Site 95966. Rock samples of 20–40 g were selected across
the middle Eocene interval between approximately 42 and 38Ma, with the highest
sampling resolution across the MECO.

Analyses. Bulk samples were freeze-dried or oven-dried at 50 °C and subsequently
powdered using a ceramic pestle and mortar, in order to homogenize the Re and
Os within the samples. Contact with metal surfaces was avoided so as not to
contaminate the sample set. All Re and Os isotope analyses were performed at the
Laboratory for Source Rock and Sulfide Geochronology and Geochemistry, and the
Arthur Holmes Laboratory at the Durham Geochemistry Centre, Durham Uni-
versity (UK). Samples were digested in a CrO3-H2SO4 solution (0.25 g/g CrO3 in 8
mL of 4 N H2SO4) following the well-established methods of Selby & Creaser67,
which have been shown to significantly limit the contribution of detrital Re and Os
to the hydrogenous fraction bound to organic matter.

Powdered samples of approximately 0.3–1 g were loaded into Carius tubes with
a known amount of 185Re+ 190Os tracer solution (spike) and dissolved in 8 mL of
CrO3-H2SO4 solution. The Carius tubes were then sealed and heated in an oven at
220 °C for 48 h. Osmium was isolated from the CrO3-H2SO4 sample solution by
using solvent extraction with chloroform (CHCl3), and then back extracted by
hydrobromic acid (HBr). The Os was further purified through micro distillation.
Rhenium was isolated by evaporating 1 mL of the CrO3–H2SO4 sample solution to
dryness, followed by solvent extraction involving sodium hydroxide (NaOH) and
acetone (C3H6O)68,69. The Re was further purified by anion chromatography.

Following purification, the Re and Os fractions were loaded onto Ni and Pt
filaments, respectively, together with 0.5 μL BaNO3 and BaOH activator solutions,
respectively67. Rhenium and osmium isotope ratios were determined by negative
thermal ionization mass spectrometry, using Faraday cups for Re and a Secondary
Electron Multiplier for Os in peak-hopping mode.

Re and Os isotope ratios were corrected for instrumental mass fractionation, as
well as spike and blank contributions. Procedural blanks for Re and Os in this
study were 12 ± 3 pg/g and 0.07 ± 0.05 fg/g, respectively, with an 187Os/188Os value
of 0.25 ± 0.15 (n= 3). The 187Re/188Os and 187Os/188Os uncertainties (2σ) include
full propagation of uncertainties in weighing, mass spectrometer measurements,
spike calibrations, blank corrections, and reproducibility of standards.

The 187Os/188Osinitial ratios (Osi) were calculated by correcting for post-
depositional 187Re decay over time with the following equation:

187Os=188Osinitial Osið Þ ¼ 187Os=188Osmeasured � 187Re=188Osmeasured � eλt � 1
� �

ð1Þ

where λ is the 187Re decay constant (1.666 · 10−11 yr−1)70 and t is the age of the
rock. Given the high Re abundances in the organic-rich sediments from Site 959,
we have used best estimates for the depositional ages of each of these samples. An
age of 40Ma was used for all samples from Sites 1263 and U1333, because
improved age estimates would result in variations in Osi values of 0.1% or less on
average. All results are listed in Supplementary Data 1. The Re–Os isotopic system
is expected to have remained closed for the sample set, given that the cores were all
fresh, unweathered, and showed no evidence of post-depositional events (e.g.,
veining, etc.). Further, where the Re–Os data has sufficient spread in isochron plot
space to yield statistically robust isochrons, a geologically reasonable Re–Os
isochron age is obtained (e.g., Site 959; see below for details).

Evaluation of Re and Os data. Although the studied samples were collected for
evaluating changes in Osi rather than establishing isochrons, the Re–Os data of the
sediments from Site 959 show a positive correlation between 187Re/187Os and
187Os/188Os, which results in an isochron age that is in good agreement with the
age of the MECO between 40.5 and 40.0 Ma (Supplementary Figs. 2, 3). In contrast,
the 187Re/187Os and 187Os/188Os data for Sites 1263 and U1333 do not have
sufficient spread in isochron plot space, and hence cannot yield statistically geo-
logically meaningful age estimates.

Age models. We adopt the age model of Cramwinckel et al.13 for Site 959
(Supplementary Fig. 11). This is based on initial71 and recently improved13 cal-
careous nannofossil biostratigraphy. The model also uses the long-term 187Os/
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188Os minimum at 34.65 Ma recorded at this site26, and TEX86 data that mark the
MECO warming13. Moreover, we use the highest TEX86 value during the MECO
peak warming and the lowest TEX86 value at the onset of the MECO as reported by
Cramwinckel et al.13 to tentatively correlate to minima and maxima in the δ18O
records of Bohaty et al.10, which were assigned ages of 40.06 and 40.52 Ma,
respectively. Better age models are available for the other two sites. For Site 1263,
we use a published age model10 based on magnetostratigraphy and bulk carbonate
δ18O and δ13C chemostratigraphy. For Site U1333, an astronomically calibrated
magnetostratigraphic age model72 was used in combination with calcareous nan-
nofossil events73. All ages were adjusted to the framework of the GTS 201274 and
tie points for the age models are listed in Supplementary Tables 1, 2 and 3.

Calculating changes in Os fluxes across the MECO. The 187Os/188Os compo-
sition of seawater is controlled by the balance between input fluxes from con-
tinental, mantle-derived, and extraterrestrial sources. However, the flux of
extraterrestrial Os is generally assumed to be negligible and constant75,76, so our
Osi records can be used to directly infer changes in relative contributions of the
continental and mantle-derived Os sources across the MECO. To evaluate an
increase in the mantle-derived Os flux, we developed a progressive, two-component
mixing model for the release of Os from mantle-derived basalts that incorporates
both the Os abundance and 187Os/188Os composition of seawater and basalts. This
model is an adaptation of the two-component mixing model for strontium (Sr)
isotopes of Faure (1986, Equations (9.2) and (9.10))77, with modifications to
consider the larger range of Os isotope variations in comparison to Sr isotope
variations.

From the relative molar concentrations of natural Os isotopes, we know:

Os½ � � 187Os½ �
188Os½ � ¼ 7:4 ð2Þ

where [Os] represents the molar concentration (in mol/kg) of total Os (i.e., 186Os
+ 187Os+ 188Os+ 189Os+ 190Os+ 192Os), and [187Os] and [188Os] represent the
molar concentrations (in mol/kg) of 187Os and 188Os, respectively78.

Equation (2) can be rewritten as:

187Os
� � ¼ R

7:4þ R
Os½ � ð3Þ

188Os
� � ¼ 1

7:4þ R
Os½ � ð4Þ

where R= [187Os]/[188Os].
Two-component mixing between seawater and basalts can then be expressed for

both 187Os and 188Os as:

187Os
� �

mix¼
187Os½ �sw�Msw þ 187Os½ �bas�Mbas

Msw þMbas
ð5Þ

188Os
� �

mix¼
188Os½ �sw�Msw þ 188Os½ �bas�Mbas

Msw þMbas
ð6Þ

whereM represents the mass of a component (in kg) and the subscripts sw, bas and
mix represent seawater, basalts and the eventual mix between the two, respectively.

We now define:

ΔMbas ¼
Mbas

Msw;initial
ð7Þ

f ¼ ΔMbas

Msw;progressive þ ΔMbas
¼ ΔMbas

Mmix
ð8Þ

where ΔMbas is an infinitesimal representing the mass of basalts added during a
mixing step relative to the mass of seawater initially present, and f represents the
amount of basalts added during a mixing step relative to the total amount of
seawater and basalts present during progressive mixing (Mmix).

Equations (3)–(8) can then be combined as follows:

187Os½ �mix¼ f � 187Os½ �basþ 1� fð Þ � 187Os½ �sw
¼ f � Rbas

7:4þRbas
Os½ �basþ 1� fð Þ � Rsw

7:4þRsw
Os½ �sw

ð9Þ

188Os½ �mix¼ f � 188Os½ �basþ 1� fð Þ � 188Os½ �sw
¼ f � 1

7:4þRbas
Os½ �basþ 1� fð Þ � 1

7:4þRsw
Os½ �sw

ð10Þ

Finally, dividing equation (9) by equation (10) yields:

Rmix ¼
187Os½ �mix
188Os½ �mix

¼ f � Rbas
7:4þRbas

Os½ �basþ 1�fð Þ� Rsw
7:4þRsw

Os½ �sw
f � 1

7:4þRbas
Os½ �basþ 1�fð Þ� 1

7:4þRsw
Os½ �sw

ð11Þ

where R is the 187Os/188Os composition of the corresponding components (i.e.,
seawater, basalts, and the eventual mix between the two). Equations (7)–(11) can
then be used to estimate the extent of mixing between seawater and basalts during
the MECO by progressively calculating Rmix until our observed Osi shift is
reproduced (see Supplementary Data 2). We assumed the pre-MECO 187Os/188Os
ratio of seawater to be ~0.55 based on an average of pre-MECO Osi values recorded
for the three sites and the Os concentration of seawater to be 10 ppq (~53 fmol/kg,
similar to present-day values)14. Furthermore, we used an 187Os/188Os ratio of 0.13
for the mantle and mantle-derived basalts79,80, as well as an Os abundance of 1 ppt
(~5.3 pmol/kg) for basalts80. Finally, we assumed that the maximum amount of
basalt that can theoretically be added to seawater represents ~1% of the total mass
of the ocean, as estimated for OAE231,81, and used increments of 0.01% for the
value of ΔMbas.

Based on an Osi shift of 0.05 from the pre-MECO value of ~0.55 to a peak
MECO value of ~0.50, we calculated a relative increase in the mantle-derived Os
flux of ~13% across the event, which would equal the addition of Os from basalts
with a mass of ~0.13% relative to the total mass of the ocean (Supplementary
Data 2). Similar results are obtained if we estimate the relative increase in the 188Os
flux, rather than the total Os flux. It is important to note that mantle-derived Os
could also have been released to seawater through direct addition from magmatic
degassing or hydrothermal inputs instead of basalt dissolution, but regardless of the
mechanism, a ~13% increase in the mantle-derived Os flux during the MECO
would be sufficient to reproduce our observed Osi shift and would correspond to
the cumulative release of ~9.4 · 106 mol of mantle-derived Os. We also performed
our calculations with the Osi values of each individual site: for Site 959, an Osi shift
from 0.560 to 0.505 would yield a relative increase in the mantle-derived Os flux
of ~14%; for Site 1263, an Osi shift from 0.530 to 0.485 would yield an increase of
~12%; for Site U1333, an Osi shift from 0.515 to 0.460 would yield an increase
of ~16%. These differences are most likely to be attributed to the resolution of our
records. To accommodate for this range of flux estimates, we adopted a best
estimate of 10–15% for the increase in the mantle-derived Os flux during the
MECO, but also explored the effects of an increase of up to 20% because we are
unlikely to have sampled the lowest Osi values in any of our records due to the
relatively low resolution of our dataset.

LOSCAR and Os cycle modeling. Carbon cycle simulations were performed using
the Long-term Ocean-atmosphere-Sediment CArbon cycle Reservoir (LOSCAR)
model23. In this box model, modified from Walker and Kasting82, carbon and
several other biogeochemical tracers (e.g., alkalinity, phosphate, oxygen) are cycled
through atmospheric and oceanic reservoirs. The model ocean is coupled to a
sediment module and consists of surface-water, intermediate-water, and deep-
water boxes of the four main Paleogene ocean basins (Atlantic, Indian, Pacific and
Tethys). The model is designed to simulate the PETM at 56Ma, but the minor
changes in paleogeography compared to the middle Eocene at 40Ma are not of
relevance to the simple LOSCAR model. In these simulations, we use default
parameter settings for the Paleogene setup. Equilibrium pCO2 is set at 750 ppm,
consistent with pCO2 estimates based on planktic foraminifer boron isotope ratios
(δ11B)53, and by default, silicate and carbonate weathering are implemented in the
model as a feedback response to atmospheric CO2 concentrations. The CCD
definition follows the default LOSCAR setup and is taken as the sediment depth
level at which sedimentary CaCO3 contents fall below 10 wt%.

We explored the effects of changes in volcanism and/or continental weathering
with the constraints from our Osi records to assess which scenario is able to
reproduce a more realistic MECO target. We first simulated several scenarios with
a gradual, linear increase in the volcanic CO2 flux (+10, +15, and +20%) over
~500 kyr, either while allowing the silicate and carbonate weathering fluxes to vary
in response to CO2 forcing (Supplementary Fig. 4), or while maintaining these
weathering fluxes at constant values (Supplementary Fig. 5). Subsequently, we
performed several simulations invoking silicate weathering as a forcing rather than
a feedback, by prescribing a gradual, linear decrease in the silicate weathering flux
(−10, −15, and −20%) over ~500 kyr, while keeping the volcanic CO2 flux and the
carbonate weathering flux at constant values (Supplementary Fig. 6). Finally, we
tested the effect of an increase in volcanism (+5%) combined with a decrease in
silicate weathering (−5%) (Supplementary Fig. 7); the effect of a combined
decrease in silicate and carbonate weathering (both −10%) (Supplementary Fig. 8);
and the effect of a decrease in silicate weathering (−10%) while maintaining a
carbonate weathering feedback (Supplementary Fig. 9). For an overview of all
model scenarios, see Supplementary Table 4.

In order to demonstrate that our LOSCAR model simulations are consistent
with the Osi records, the scenarios outlined above were also applied to a separate
box model of the Os cycle. This Os cycle model is inspired by the work of Richter &
Turekian83 and many subsequent studies, including Peucker-Ehrenbrink &
Ravizza14. We fully derive the equations used to model the Os cycle in the ocean
below.

We first define N as the total molar inventory of Os (including all Os isotopes)
in seawater, and 187N and 188N as the molar inventories of 187Os and 188Os in
seawater, respectively. The 187Os/188Os composition of seawater (Rsw) is thus
expressed as:

Rsw ¼
187N
188N

ð12Þ
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Subsequently, changes in Rsw over time can be written as:

dRsw
dt ¼ d

dt
187N
188N

� � ¼ 188Nd187N
dt � 187Nd188N

dt
188Nð Þ2 ¼ 1

188N
d187N
dt � Rsw

d188N
dt

h i
ð13Þ

Multiplying equation (13) by 188N gives:

188N
dRsw

dt
¼ d187N

dt
� Rsw

d188N
dt

ð14Þ

Changes in N, 187N and 188N over time can then be written as follows:

dN
dt

¼ Friv þ Fhyd þ Fext � Fsed ð15Þ

d187N
dt ¼ Friv

187Os½ �
Os½ �

� �
riv
þ Fhyd

187Os½ �
Os½ �

� �
hyd

þ Fext
187Os½ �
Os½ �

� �
ext
� Fsed

187Os½ �
Os½ �

� �
sed

ð16Þ

d188N
dt ¼ Friv

188Os½ �
Os½ �

� �
riv
þ Fhyd

188Os½ �
Os½ �

� �
hyd

þ Fext
188Os½ �
Os½ �

� �
ext
� Fsed

188Os½ �
Os½ �

� �
sed

ð17Þ

where F represents the fluxes of Os (in mol/yr) from and to various reservoirs and
the subscripts sw, riv, hyd, ext and sed represent seawater, riverine, hydrothermal,
extraterrestrial and sediment reservoirs, respectively14,83.

Substituting equations (3) and (4) into equations (16) and (17), respectively,
yields:

d187N
dt ¼ Friv

Rriv
7:4þRriv

þ Fhyd
Rhyd

7:4þRhyd
þ Fext

Rext
7:4þRext

� Fsed
Rsed

7:4þRsed
ð18Þ

d188N
dt ¼ Friv

1
7:4þRriv

þ Fhyd
1

7:4þRhyd
þ Fext

1
7:4þRext

� Fsed
1

7:4þRsed
ð19Þ

Finally, substituting equations (18) and (19) into equation (14) and combining with
equation (4) results in:

N
7:4þRsw

dRsw
dt ¼ Friv

Rriv�Rsw
7:4þRriv

þ Fhyd
Rhyd�Rsw

7:4þRhyd
þ Fext

Rext�Rsw
7:4þRext

� Fsed
Rsed�Rsw
7:4þRsed

ð20Þ

which relates changes in Rsw over time to the fluxes of total Os (F), the 187Os/188Os
compositions of these fluxes (R) and the amount of total Os in the ocean (N).
Because there is no isotopic fractionation associated with Os burial (i.e., Rsed=
Rsw), the net effect of the sedimentary Os flux (Fsed) in equation (20) is zero.

Together, equations (15) and (20) can be used to simulate any transient
perturbation of the Os cycle. We first constructed a steady state model based on
flux estimates and 187Os/188Os values for the present-day Os cycle with a 187Os/
188Os ratio of seawater of 1.06 (see Supplementary Table 5). For the middle Eocene
Os cycle, we assumed that the total Os inventory and the total input and output
fluxes of Os are similar to present-day values, and recalculated the steady state
riverine and hydrothermal Os fluxes for the pre-MECO 187Os/188Os ratio of
seawater of 0.55 by assuming that the 187Os/188Os composition of these fluxes has
remained unchanged. Subsequently, we used scaled silicate weathering and
volcanic degassing fluxes from the LOSCAR model simulations to force our model
of the Os cycle. The modeled changes in the 187Os/188Os ratio of seawater are
included in the respective figures of all model scenarios (Fig. 3 of the main text and
Supplementary Figs. 4–9). The full code used to perform the Os cycle model
simulations is included as an R script in Supplementary Software 1.

Data availability. The authors declare that all data supporting the results of this
study are available in the Supplementary Information files associated with this
manuscript.
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