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Modeling Semicontinuous Longitudinal
Expenditures: A Practical Guide

Valerie A. Smith (®), Matthew L. Maciejewski (2, and
Maren K. Olsen

Objective. To compare different strategies for analyzing longitudinal expenditure
data that have a point mass at $0. We provide guidance on parameter interpretation,
research questions, and model selection.

Data Sources, Study Design, and Data Collection. One-part models, uncorrelated
two-part models, correlated conditional two-part (CTP) models, and correlated
marginalized two-part (MTP) models have been proposed for longitudinal expendi-
tures that often exhibit a large proportion of zeros and a distribution of continuous,
highly right-skewed positive values. Guidance on implementing and interpreting each
of these model is illustrated with an example of longitudinal (2000-2003) specialty
care expenditures of veterans with hypertension, drawn from Veterans Administration
data.

Principal Findings. The four strategies answer different research questions, are
appropriate for different structures of data, and provide different results. If there is
a point mass at $0, then the MTP model may be most useful if the primary interest is
in mean expenditures of the entire population. A CTP model may be most useful if
the primary interest is in the level of expenditures conditional on them being
incurred.

Conclusions. Researchers should consider which modeling strategy for longitudinal
expenditure outcomes is both consistent with research aims and appropriate for the
data at hand.

Key Words. Semicontinuous data, two-part models, zero-inflated, expenditures,
costs

Health care expenditures are often characterized as semicontinuous, consist-
ing of two components: a portion with zero expenditures and a portion with
continuously distributed, right-skewed positive values. These two compo-
nents have led to considerable research examining strategies for modeling
cross-sectional expenditures (Duan et al. 1983; Diehr et al. 1999; Madden
et al. 2000; Buntin and Zaslavsky 2004). One approach may be to use
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standard “one-part” (single-component) regression models, without treatment
for the zero-valued component. An alternative is a “two-part” model, which
explicitly models both the zero and positive-valued components.

In a simulation study, Manning and Mullahy (2001) examined a range
of outcome distributions with one-part models and suggested fitting a series of
parametric distributions and conducting a modified Park test to assess fit.
Motivated by an analysis of Medicare expenditures, Buntin and Zaslavsky
(2004) compared modeling approaches with respect to calibration of predic-
tions and several error metrics, providing the analyst with suggested descrip-
tive analyses to assess model performance. Basu and Manning (2009)
summarized these and other current estimation strategies and affirmed that
there is not one universally accepted approach for estimating cross-sectional
expenditures.

All issues related to cross-sectional expenditure estimation are rele-
vant to longitudinal expenditures. There are additional considerations
with longitudinal expenditures, and less research compares strategies for
modeling longitudinal expenditures. As with any longitudinal outcome,
the estimation must incorporate the correlation of repeated measurements
(Basu and Manning 2009). Furthermore, the distribution of longitudinal
expenditures and the proportion of zeros are dependent upon the time-
frame under consideration (e.g., person-month vs. person-year). In some
situations, longer time periods allow more opportunity for individuals to
have accrued positive expenditures; therefore, the proportion of expendi-
tures observed in any given time interval may rely upon the length of the
interval.

In this study, we compare popular strategies for analyzing semicontinu-
ous longitudinal expenditures. Our focus is on methods where the $0 are true
values, unlike, for example, the double-hurdle model (Deaton and Irish 1984).
We focus on implications of analytic decisions on what research aims can be
answered, ease of implementation, and appropriateness of use. We discuss the
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rationale and details of each model’s specification, software available, model
parameter interpretation, and trade-offs. Each strategy is demonstrated with
longitudinal specialty expenditures from a cohort of veterans with
hypertension.

The remainder of the study is laid out as follows. Section 2 summarizes
the motivating example, while Section 3 describes each modeling strategy,
explaining implementation details, interpretation, and benefits and draw-
backs. Section 4 illustrates each approach applied to the motivating example,
and Section 5 concludes with a comparison of approaches and points to areas
for future research. Code implementing each model is provided in
Appendix SA2.

ILLUSTRATIVE EXAMPLE: SPECIALTY CARE
EXPENDITURES

In December 2001, the Veterans Health Administration (VA) increased spe-
cialty visit copayments from $15 to $50, creating a natural experiment to
examine changes in expenditures. The original study (Maciejewski et al.
2012) examined whether increasing specialty visit copayments impacted the
likelihood of seeing a specialist or the level of specialty expenditures among
veterans who did. Annual inflation-adjusted VA specialty expenditures were
constructed for each patient in each year (2000-2003), 2 years prior to, and
2 years after the copayment change.

Veterans were exempt from copayments if they were low income or had
disability from their military service to merit a need-based exemption.
Remaining veterans were required to pay copayments. To reduce nonequiva-
lence of the groups, the original study conducted one-to-one propensity score
matching, generating a sample of 1,693 veterans exempt from copayments
and 1,693 veterans required to pay.

The yearly percentage of patients with zero expenditures ranged from
23 percent to 29 percent over the study period, yielding potential need to
account for the zero-valued expenditures in the analysis (Figure S1 in
Appendix SA2). The explanatory variables of interest included (1) an indica-
tor of whether a veteran had copayments required; (2) year indicator effects
for 2001, 2002, and 2003; and (3) an interaction of copayment status and each
time effect.
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MODELING STRATEGIES FOR LONGITUDINAL
SEMICONTINUOUS EXPENDITURES

This section describes four modeling strategies, including generalized linear
models (GLMs) with empirical “sandwich” variance estimation via general-
ized estimating equations (GEEs) (i.e., a one-part model via GEE); uncorre-
lated, two-part GLMs with empirical variance estimation via GEE;
correlated, conditional two-part mixed-effects models; and correlated,
marginalized two-part mixed-effects models. Conditional versus marginal can
sometimes refer to subject-specific versus population-average estimates; we
reserve conditional and marginal to refer to whether estimates are conditional
upon incurring a positive outcome or refer to the entire population.

Model Descriptions

One-Part Generalized Linear Model via Generalized Estimating Equations. A one-
part GLM fit via GEEs treats the observed expenditures as realizations of a
single process, so the model does not differentiate between zero and positive-
valued expenditures. The GLM utilizes a link function to accommodate non-
normally distributed data, eliminating need to transform the data prior to
modeling:

SE(Yy)) = Bo + Bixig + ...+ Byxpy

where Y is the semicontinuous outcome for individual 7 at time j, g(-) is the
link function relating the outcome to the linear predictor, and x;. .., X;
are the covariates for individual i at time j. Commonly, a log link, where
gE(Y;)) = log(E(Yy), is used, but other link functions can be used, such as a
square root or identity transformation.

Similarly to GLM:s fit with quasi-likelihood for cross-sectional expendi-
tures, GLMs fit via GEEs do not require specification of a parametric distribu-
tion (Liang and Zeger 1986; Diggle et al. 2002). Rather, one specifies only the
mean and variance. Often, the variance is given as a mean—variance relation-
ship (e.g., variance proportional to the mean, Var(£(Yj)) = pE(Y};), where
p represents a proportionality constant), and a link function, as described
above, provides the form of the mean model. When modeling longitudinal
expenditures using GEEs, the working correlation structure of expenditures
also needs to be specified.

In addition to a substantial proportion of zeroes, expenditure data often
exhibit skewness, heteroscedasticity, and heavy tails (i.e., unusually large
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expenditures compared to the mean), so one must consider the specification
of the mean—variance relationship. When coupled with empirical “sandwich”
standard error estimates, GEE methodology is asymptotically robust to such
misspecification. The sample size required to achieve robustness in the empiri-
cal standard errors may be quite large, particularly when data are very skewed
or contain a significant number of zeros (Smith et al. 2017). If used with small
sample sizes, empirical standard errors may underestimate the true standard
errors. Additional work has extended GEEs to incorporate a broader set of
mean-variance relationships via Extended Estimating Equations (Basu and
Rathouz 2005) or partially linear mean function and semiparametric covari-
ance structure (Chen, Liu, and Lee 2016). For more information on determin-
ing and testing appropriate model specification and fit in the context of one-
part GLMs, see Manning and Mullahy (2001) and Buntin and Zaslavsky
(2004).

Modeling longitudinal expenditures with one-part GLMs fit via GEEs
has several advantages. Standard one-part GLMs fit with GEEs are easily
implemented in most statistical software packages, including SAS’s PROC
GENMOD using a REPEATED statement and PROC GEE (SAS Institute,
Cary, NC), Stata’s xtgee (StataCorp, College Station, TX), and R’s gee or
geepack (www.r-project.org). Additionally, one-part GLMs use a single-
component model with a link function, modeling the mean on the original
scale, so one can use these models to estimate population-average expendi-
tures and corresponding confidence intervals in the original (e.g., dollar) scale.
When a log link is used, the multiplicative effect of a covariate on the popula-
tion-average mean is easily obtained on the original scale by exponentiating
the corresponding parameter(s). For example, exp(f;) represents the multi-
plicative increase on £{ Y,j) from a one-unit increase in xz; Using one-part
GLMs for expenditures gives analysts the ability to provide easily inter-
pretable answers to investigators (Table 1).

Because one-part GLMs focus inference on the overall marginal mean,
predictions of mean expenditures at any combination of included covariates
are easily estimated from the model. If interest lies in the additive difference in
means, however, one must use the method of “recycled predictions,”
known as “standardization” (Hernan and Robins 2018). Here, predicted val-
ues are obtained for the sample as though each individual was in the treatment
group and again as though each was in the control group, and the mean differ-
ence of these predictions is obtained. Computation of standard errors or confi-
dence intervals for the additive difference in means can be obtained via
bootstrapping, using the method of recycled predictions on each bootstrapped

also
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sample (Basu and Rathouz 2005), or using the “margins” command in Stata
(Williams 2012) or the margins package in R (R Development Core Team
2017; Leeper and Arnold 2017), both of which compute standard errors com-
putationally (e.g., delta method). Approaches such as recycled predictions
could similarly be extended to compute difference-in-difference estimates.

In many situations, it may be unsuitable to model the zero and positive
expenditures as a single component. Smith et al. (2017) showed via simulation
studies that one-part models produced significantly negatively biased covari-
ate effect estimates and high type I error rates when fit to data containing 20
percent or more zeros. In such cases, two-part models should be considered.

Uncorrelated Two-Part GLMs. Two-part models hold appeal when analysts are
interested in the probability of incurring a positive expenditure or the data
contain enough zeros to bias results from a one-part model. In this case, it may
be preferable to conceptualize longitudinal expenditures as semicontinuous.

Two-part GLMs fit with GEEs appear a natural extension of two-part
models for cross-sectional data. They utilize two different models to describe
the “binary part” and “continuous part” of the semicontinuous expenditure
data, and each part separately accounts for correlation among the repeated
measures:

logit(Pr(Y; > 0)) = oo + oarxy + -+ oy
gE(Yy|Yy > 0)) = yo + nixy + -+ 7pXpps

where Y;; and covariates are defined as above. While both components are
written with the same covariates included, this is not required. These two inde-
pendent models can each be fit using GEEs.

Because of the simplicity of independently modeling the two compo-
nents, analysts may be tempted to consider this extension. The second compo-
nent utilizes a link function similar to one-part GLMs, so one can estimate
population-average expenditures and corresponding confidence intervals in
the dollar scale. However, there are critical problems with this approach (see
Su, Tom, and Farewell [2009] for detailed discussion).

Interpretation of the resulting estimates is not straightforward. The bin-
ary model provides population-average estimates of the probability of
incurring positive expenditures for the entire sample at all time points. Specifi-
cally, exp(ay) is interpreted as the odds ratio for incurring a positive expendi-
ture associated with a one-unit increase in the Ath covariate. However, the
continuous model only provides estimates of the level of expenditures among
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the subset of individuals who incurred expenses at each time point rather than the
entire sample; thus, the target population changes over time depending on the
subset with positive expenditures. If a log link was used, exp(y) would repre-
sent the multiplicative increase in expenditures at a given time point, condi-
tional on incurring expenditures at that time point, associated with a one-unit
increase in the kth covariate. Estimates represent different samples at different
time points, so they lack clear interpretation for motivating policy decisions.
Further, conditioning on positive values complicates the ability to make causal
inferences from the second component, yielding causal effect interpretations
erroneous or misleading; see Angrist (2001) for a more detailed discussion.
The two components of the model are often correlated over time, such that
the probability of incurring any expense is associated with level of expenditures
over time. Failure to account for this correlation leads to informative cluster sizes
in the second component and biased results (Su, Tom, and Farewell 2009).
Therefore, we cannot in general recommend use of uncorrelated two-part
GLMs; it is valid if independence between the two components can be justified.

Correlated Two-Part Models—Conditional Specification. The correlated condi-
tional two-part (CTP) random-effects model allows for estimation of correla-
tion between the binary and continuous parts of the longitudinal expenditures
by specifying a joint random-effects distribution, including correlations/
covariance between the random effects (Olsen and Schafer 2001; Tooze,
Grunwald, and Jones 2002; Liu et al. 2010). The joint random-effects distribu-
tion quantifies how the two parts of the outcome are related over time if, for
example, receipt of specialist care leads to identification of previously undiag-
nosed conditions that require follow-up and treatment:

loglt(Pr(Yl] > 0)) = o + 001 X145 + ...+ocpxp,-j + b

where 4;;and &, are random intercepts assumed to jointly follow a multivari-

ate normal distribution as (2') ~MVN(0,X). Correlation is allowed

between the two components via X, and while only random intercepts are
incorporated above, additional random effects could be included.

A generalized linear mixed model with logit link is generally specified
for the binary component. Random effects are included to capture the correla-
tion structure of interest (e.g., random intercepts and coefficient for time). This
is a subject-specific model, so parameter estimates are conditional upon the
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random effects (Table 1). See Hedeker and Gibbons (2006), Fitzmaurice,
Laird, and Ware (2012), and Diggle et al. (2002) for discussion of interpreting
subject-specific estimates. In the continuous component, there are several
modeling options depending upon the distributional characteristics of the pos-
itive expenditures. The lognormal is shown above. Liu et al. (2010, 2016) rec-
ommend generalized gamma mixed-effects models, which include the
lognormal, gamma, inverse gamma, and Weibull distributions as special cases.
Using model estimates to convert predictions from the log-dollar scale back to
the dollar scale is not computationally feasible for a conditional model. How-
ever, one can use results from these models to obtain the average partial elas-
ticity of the mean cost (for continuous covariates) or the log ratio of expected
cost (for binary covariates) following Liu et al. (2010).

Intra-individual variation in expenditures over time is also modeled via
random effects, often a random intercept and random coefficient for time. The
variance components estimates represent the covariance between the random
intercepts and coefficients for the probability of any expenditures and positive
expenditures. It is useful to test whether or not these are equal to 0, indicating
that the two parts of the model are separable (Olsen and Schafer 2001;
Manning, Basu, and Mullahy 2005). Additionally, the analyst can use them to
interpret how the two parts of the model are related. For example, a positive
estimate for the covariance between the binary component’s random intercept
and the continuous component’s random slope indicates that probability of
any expenditure is positively related to the amount of expenditures over time.

Parameter estimation in the correlated CTP model is computationally
challenging and interpretation is difficult, particularly for complex random-
effects specifications (Table 1). This model can be fit via maximum-likelihood
estimation in several software packages, including Mplus (www.statmodel.c
om, referred to as a “two-part semicontinuous growth model”) and PROC
NLMIXED in SAS (Cary, NC). For an illustration of model estimation in
PROC NLMIXED under the generalized gamma distribution, see Liu et al.
(2010). It is also possible to fit this model using Bayesian methodology
(Cooper et al. 2007).

Correlated Two-Part Models—Marginalized Specification. The fourth approach is
the marginalized two-part (MTP) model that provides a blend between the
marginal interpretations of the one-part GLMs and structure of the correlated
CTP model (Smith et al. 2015). Like other two-part models, the first part of
the MTP model is a probability of use component that is typically fit using a
GLM with logit link and random effects. The continuous component is no
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longer conditional on having incurred expenditures in a given time interval.
In the MTP model, the continuous part of the model represents the marginal
mean by incorporating zero and positive values, along with random effects to
allow for intra-individual variability in the marginal mean over time. Similar
to the correlated two-part model, the random effects from the two components
of the MTP model are assumed to be jointly normally distributed, allowing for
dependence between the two parts of the model:

loglt(Pr(Yl] > 0)) = oy + ‘fxlxlij + .- +Ofpx[;l'j + bli
log(E(Yy)) = Bo + Bixiyg + -+ Bppy + by

where b;; and &y, are random intercepts that are assumed to jointly follow a

byi

Like the correlated CTP model, fitting the two components simultane-
ously can be computationally challenging. Fitting the model has been pro-
posed in a Bayesian framework using SAS PROC MCMC, although it has
also been implemented using maximum likelihood (Burgette et al. 2017).
Noninformative priors are suggested, and this framework allows incorpora-
tion of complicated random effect structures, such as fully correlated random
intercepts and slopes in both components of the model (see Smith et al. 2015).

Similar to the correlated CTP model, parameter estimates in the binary
component are subject-specific estimates. Specifically, exp(o) represents the
subject-specific odds ratio for incurring positive expenditures associated with
a one-unit increase in the Ath covariate. Parameter estimates in the second
component represent effects on the overall mean, and those corresponding to
covariates not included as random effects are both subject-specific and popula-
tion average (Table 1). If arandom intercept and slope for time were included,
for example, the intercept and estimated coefficient for time would be subject-
specific. Any covariates representing treatment or treatment by time interac-
tions, on the other hand, would have both subject-specific and population-
average interpretations. Therefore, exp(f3;) represents the multiplicative effect
on the overall mean expenditures of the entire population associated with a
one-unit increase in the kth covariate. These quantities, and any value calcu-
lated from the parameters, can be obtained easily along with corresponding
credible intervals or highest posterior density intervals [HPDI] (a Bayesian
analog to confidence intervals) via statements in PROC MCMC. Specifically,

multivariate normal distribution as ( hi > ~MVN(0,X).

additive mean differences from the MTP model, on the dollar scale, can be
obtained directly from model output, along with 95 percent HPDIs, without
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need for postmodeling computations. Additionally, population-average esti-
mates on the dollar scale are easily computed and represent the overall mean
of both the zero and positive values (Table 1).

The most notable difference between the correlated CTP model and the
correlated MTP model is the interpretation of the parameter estimates in the
second part of the model (Table 1). In the correlated CTP model, these repre-
sent effects on the conditional mean of the subsample who incurred positive
expenditures in any given time interval. Under the MTP model, parameter
estimates in the second part represent effects on the overall marginal mean of
the entire sample.

One can similarly estimate variance components from the MTP model
and assess the level of correlation between the two components of the model.
In the MTP model, these covariances represent different underlying quantities
than they do in the conditional model because the second component includes
the zero values. With the MTP model, the covariances represent relationships
between the binary part and the overall unconditional mean rather than
between the binary part and the mean of the positive values as in the condi-
tional model.

DATA ILLUSTRATION

One-Part Generalized Linear Model via Generalized Estimating Equations

To illustrate, we fit a one-part GLM via GEEs to our example of veterans’ lon-
gitudinal specialty expenditures. Following specification testing (Manning and
Mullahy 2001), a log link with a proportional mean—variance relationship was
determined to fit best. Model-estimated mean expenditures were $1,011 (95
percent CI: $916, $1,116) in 2000 for those not required to pay copayments
and $797 (95 percent CI: $719, $883) for those required to pay. By 2003, mean
expenditures increased to $1,200 (95 percent CI: $1,102, $1,306) for those not
required to pay copayments, but remained steady at $798 (95 percent CI:
$714, $892) for those who were (Table 2). Parameter estimates from this
model are shown in Table 3, and multiplicative mean effects of copayment
requirement each year are shown in Table 2. By looking at the parameter esti-
mates corresponding to years 2001 through 2003 (f;, fs, fis, in equation 1.1
from Table 1, respectively), we see that for those without a copayment, expen-
ditures increased over time and were significantly higher in 2003 than in
2000. For those with a copayment, expenditures were lower than those with-
out. To estimate the difference between groups at any given year, one can
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exponentiate the sum of the coefficients for MUSTPAY and the interaction of
MUSTPAY and the year of interest. For example, the estimated ratio of dollars
spent by those with the copayment requirement in 2001 versus those with-
out was estimated as exp(f, + f5) from equation 1.1 in Table 1. Using
model-estimated parameters, this becomes exp(—0.24 + 0.024) = 0.81
with 95 percent CI (0.71, 0.92). These quantities are easily obtained with
SAS ESTIMATE statements (see code in Appendix SA2) and are inter-
preted as those required to pay copayments incurred in 2001, on average,
0.81 times the specialty care expenditures of those not required to pay
copayments.

If interest lies in additive differences, SAS ESTIMATE statements no
longer provide these nonlinear combinations of parameters. Instead, the dif-
ference can be obtained by subtracting the estimated means and confidence
intervals can be obtained via bootstrapping or the delta method (Efron 1982;
Cox 1990).

Two-Part Generalized Linear Models via Generalized Estimating Equations

As with the one-part GLM, a log link with proportional mean—variance rela-
tionship fit the conditionally positive data well. The first part of the model was
fit with a logit link and binomial variance. Both parts incorporated an unstruc-
tured covariance and used empirical standard errors (Table 3). Odds ratios for
the probability of incurring positive expenditures and multiplicative effects on
the conditional mean of the positive values are shown in Table 2.

From the first part of this model, the odds ratios suggest that the proba-
bility of incurring positive specialty expenditures was significantly lower for
those required to make copayments compared to those not required. The
effect of copayment on the conditional mean among those incurring expendi-
tures appears less strong than the effect of copayment on the probability of
incurring expenditures. The multiplicative effect on the conditional mean
ranges from 0.92 in year 2000 to 0.79 in year 2003, which can be interpreted
as, among those who incurred expenditures in year 2000, those required to
pay copayments incurred on average 0.92 times the expenditures of those not
required to pay copayments in 2000 and 0.79 times in 2003. Note the subsam-
ple incurring expenditures in year 2000 is likely not the same subsample
incurring expenditures in 2003, which complicates interpretation of results.
We also urge caution in interpreting these estimates as estimates from uncorre-
lated two-part longitudinal models can be biased (Su, Tom, and Farewell

2009).
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Correlated Two-Part Models— Conditional Specification

For the CTP specification, a linear mixed-effects model was specified for the
log-transformed positive expenditures. Unlogged positive specialty expendi-
tures exhibited significant skewness (5.6) and kurtosis (75.3), whereas log-
transformed positive specialty expenditures were nearly normally distributed
(skewness = —0.1, kurtosis = 2.7). As shown in equations 3.1 and 3.2 in
Table 1, intra-individual variation in outcomes over time was modeled via
three random effects that were assumed to be jointly normally distributed.
The binary component included a random intercept, and the continuous com-
ponent included a random intercept and a random coefficient of time.

Results from the binary component (Table 4) show that a veteran
required to pay specialty visit copayments was less likely to have a specialty
visit. Trends over time were similar for veterans who were and were not
required to pay specialty visit copayments; a veteran’s probability of a spe-
cialty visit was higher in 2001 through 2003 than in 2000, as indicated by the
significant time effects (i.e., «; through «3 in equation 3.2). Among veterans
who had positive specialty expenditures, those required to pay specialty visit
copayments had lower specialty expenditures in 2000 than those exempt from
copayments (i.e., d, in equation 3.2) and compared to those not required to
pay, their expenditures continued to decrease over time as indicated by signifi-
cant interaction terms (i.e., d5 through 0 in equation 3.2). Although we can
understand general comparisons and trends from this model, deriving policy-
related estimates is not straightforward. One option is to calculate the log ratio
of the outcome for specific levels of a covariate (e.g., predicted specialty
expenditures between exempt and nonexempt veterans at each year) by tak-
ing the expectation with respect to the marginal distribution of the random
effect, as shown in equation (9) in Liu et al. (2010). These log ratios incorpo-
rate both parts of the model to provide an overall estimate of how demand for
specialty care (on the log scale) differs for co-pay-exempt and nonexempt
patients. A log ratio of zero indicates equivalence between groups; negative
values, as estimated in our example (Table 4), indicate those required to pay
incurred lower expenditures than those not required. Confidence intervals
can be generated via bootstrapping (Liu et al. 2010; Maciejewski et al. 2012).

Additionally, the joint random-effects specification allows us to quantify
how the two parts of the model are related over time. The correlation between
the random intercepts of the two parts was 0.7, indicating a strong, positive
correlation between the probability of having a specialty visit and higher
amounts of specialty expenditures in 2000. In contrast, the correlation
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Table 4: Model-Estimated Parameter Estimates, Standard Errors, and Log
Ratios from the Correlated Conditional Two-Part REM*

Log Ratio of
Expected Specialty
Estimate of Effect on Expenditures for
Estimate of Effect on E[In(Cost;| Those Required to Pay
Pr(Cost;; > 0[b;) Cost; > O/)] Copayments vs. Those
Coefficient (SE) (SE) Year  Not Required (95% CI)
Intercept 2.01(0.10) 6.04(0.04) 2000 —0.30(—0.41,—0.18)
Year2001 0.29(0.11) 0.07(0.04) 2001  —0.05(—0.18,0.08)
Year2002 0.64 (0.11) 0.13(0.04) 2002 —0.26 (—0.40,—0.13)
Year2003 0.33(0.11) 0.23(0.04) 2003  —0.35(—0.50,-0.22)
MUSTPAY ~1.03(0.13) ~0.17 (0.06)
MUSTPAY*Year2001 —0.06 (0.14) —0.04 (0.06)
MUSTPAY*Year2002 023 (0.14) ~0.23(0.06)
MUSTPAY*Year2003 —0.21(0.14) —0.31(0.06)

*Fit via ML on log expenditures with random intercept in binary part and random intercept and
slope in conditionally positive continuous part.

between the random intercept in the binary part and the random slope in the
continuous part was —0.01 and not statistically significant, suggesting no asso-
ciation between the probability of specialty care in 2000 and the change in
amount of specialty expenditures over time.

Correlated Two-Part Models—Marginalized Specification

The MTP model is fit following a Bayesian approach with noninformative
prior distributions for all parameters, which allows computational flexibility
and may be more successful than maximum-likelihood estimation in incorpo-
rating correlated random slopes.

From the first component, the odds ratios suggest that the probability of
incurring positive specialty expenditures was significantly lower for those with
required copayments compared to those without (Table 2), consistent with
results from the first components of the uncorrelated two-part GLMs and the
correlated CTP model. Parameter estimates from both MTP components are
shown in Table 3.

To calculate the multiplicative effect of copayment requirement on the
overall mean, one exponentiates the sum of the coefficients for MUSTPAY and
the interaction terms (e.g., exp(f, + f5) in equation 4.2 for 2001). The effect of
copayment on the overall mean suggests notably lower overall expenditures for
those required to pay copayments, ranging 0.71 times the expenditures of those
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not required to pay in year 2000 to 0.51 times in 2003. Examining additive dif-
ferences in means, we see a similar pattern, with expenditure differences among
those with required copayments ranging from $363 lower per year (95 percent
highest posterior density interval [HPDI] —$513 to —$217) 2 years prior to the
copayment increase to $803 lower per year 95 percent HPDI —$981 to
—$634). These estimates are quite different from those generated from the one-
part GLM, which is consistent with simulation results suggesting that one-part
GLMs fit with GEEs provide negatively biased estimates in the presence of
many zeros (Smith et al. 2017). Magnitude of estimates from the uncorrelated
two-part GLMs or correlated CTP model cannot be compared as the target of
inference in the second component is those with positive expenditures.

DISCUSSION

Estimation of health expenditures is challenging when there is a point mass at
zero and a heavily skewed distribution of positive expenditures. In longitudi-
nal applications, these challenges are compounded by the correlation over
time between the probability of incurring positive expenditures and the level
of expenditures. We have illustrated the relative strengths and limitations and
the research questions addressed by four estimation strategies.

The decision of which modeling approach to employ should be driven
first by the research question of interest, and secondly, by the data structure.
To determine the appropriate approach for the research question, two main
considerations should be answered. First, is there interest in what influences
the probability of incurring expenditures? If so, a two-part model may be
appropriate. Secondly, is the primary interest in overall mean expenditures of
the entire population or is more interest in the level of expenditures condi-
tional on them being incurred? If the former, the one-part GLM or the MTP
model is preferable; if the latter, one should consider a CTP model. The
uncorrelated two-part GLM should only be considered if the analyst feels con-
fident of no correlation between the two components, often an untenable
assumption. Even if such assumptions are met and interest is only in the level
of expenditures conditional on them being incurred, care must also be taken
with causal interpretations from the second component of this model due to
its conditioning on positive values (Angrist 2001). Once the research questions
are identified, the analyst must examine the data for its model fit. If there are a
significant proportion of zeros (i.e., more than 10 percent), we recommend use
of a two-part model (Smith et al. 2017).
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Longitudinal cost modeling continues to be an area of research with
many evolving specialized methods. We intend this study not to be a compre-
hensive review of all possible approaches to longitudinal expenditure modeling,
nor do we intend it to formally examine the performance of each model under
varying data scenarios. For a more comprehensive general overview of all cur-
rent approaches, we refer readers to Neelon, O’Malley, and Smith (2016) and
Farewell et al. (2016); for a more comprehensive examination of model perfor-
mance under varying data structures, we refer readers to Smith et al. (2017).
Instead, we hope this will be a helpful guide when grappling with the challenges
inherent in analyzing semicontinuous, highly skewed expenditure outcomes.
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