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SUMMARY Bacteria can form single- and multispecies biofilms exhibiting diverse
features based upon the microbial composition of their community and microenvi-
ronment. The study of bacterial biofilm development has received great interest in
the past 20 years and is motivated by the elegant complexity characteristic of these
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multicellular communities and their role in infectious diseases. Biofilms can thrive on
virtually any surface and can be beneficial or detrimental based upon the commun-
ity’s interplay and the surface. Advances in the understanding of structural and func-
tional variations and the roles that biofilms play in disease and host-pathogen inter-
actions have been addressed through comprehensive literature searches. In this
review article, a synopsis of the methodological landscape of biofilm analysis is pro-
vided, including an evaluation of the current trends in methodological research. We
deem this worthwhile because a keyword-oriented bibliographical search reveals
that less than 5% of the biofilm literature is devoted to methodology. In this report,
we (i) summarize current methodologies for biofilm characterization, monitoring,
and quantification; (ii) discuss advances in the discovery of effective imaging and
sensing tools and modalities; (iii) provide an overview of tailored animal models that
assess features of biofilm infections; and (iv) make recommendations defining the
most appropriate methodological tools for clinical settings.

KEYWORDS animal host models, biofilms, flow cells, imaging, quantification

INTRODUCTION

Biofilms are multidimensional communities in which resident bacteria coexist within
the self-derived extracellular matrix (ECM) (1, 2). Although the developmental

stages leading to biofilm formation appear to be conserved (Fig. 1), every species (or
consortium of species in the case of polymicrobial biofilms) forms a unique multicellular
community (3, 4). This protected network possesses the ability to evade environmental
threats, such as antimicrobials and host defense mechanisms (5).

Biofilms account for 80% of chronic microbial human infections, leading to in-
creased rates of hospitalization, elevated health care costs, and increased mortality and
morbidity rates (6). Upper and lower respiratory tract diseases, native valve endocar-
ditis, chronic otitis media, eye infections, chronic wounds, diabetic foot ulcers, urinary
tract infections (UTIs), and periodontitis are all biofilm-associated diseases (7–12).
Biofilms can also develop on abiotic surfaces, including medical devices such as
orthopedic prostheses, artificial cardiac valves, coronary stents, intravascular and uri-
nary catheters, neurosurgical, cochlear, and breast implants, dentures, and ventricular-
assist and ocular devices (13).

Since the term “biofilm” was introduced in 1978, the intrigue and excitement
surrounding a new microbiological field of study have produced opportunities of
environmental, industrial, and clinical importance (14). Biofilms made a global impact
in the literature, and their study continues to generate more questions. Because of the
mechanical, physicochemical, microbiological, and medical components of biofilms,
different disciplines views biofilms from different perspectives: chemists focus on
organized chemicals, physicists deal with thermodynamics, and biologists examine the
microbial physiology that affects biofilm formation and also unravel resistance patterns,
yet all are left with the question of how all these components comprise the biofilm-
associated threat. The unique nature of biofilm communities within the context of
infection makes the constant development of new strategies acting against biofilms, as
well as architectural and behavioral investigations, an evolving necessity (15). The last
decade has seen a multitude of diverse methodological tools and enabled a context for
comparative use and analysis that follows the rationale that biofilms thrive on living
and inanimate surfaces by adaption and survival. Their versatile behavior leads to
extended (by design) experimental diversity and subsequently confounds efforts to
evaluate biofilm-specific in vitro antimicrobial susceptibility. For the methodological
piece alone, it should be noted that the risk of erroneous data acquisition is significant
and that limited accuracy and reproducibility of viability assays have been recorded (16,
17). This description fails to capture the inconvenient reality. Dye aggregates will not
bind stoichiometrically to complex communities (18). Microscopic enumerations, by
default, provide indirect population assessments. Conventional colony formation assays
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have limited value, as the attempt to “normalize” these communities in test tubes often
requires processes that disturb the members.

In this review, we (i) emphasize classical approaches for biofilm monitoring and
quantification, (ii) highlight the evolution of imaging tools for architectural analysis of
biofilm communities, and (iii) provide examples of methodological applications, includ-
ing apparatuses to trace clinical biofilms. Despite the wealth of research approaches,
there is an unmet need to filter the most interesting contribution per methodological
group. We present here an understanding of the advantages and disadvantages of each
group to help guide current research in this field of study.

MULTIDIMENSIONAL ARCHITECTURE OF BIOFILMS

The ECM typically includes some type(s) of polysaccharides, proteins, and/or DNA
(19). However, the ECM structure differentiates according to (i) the species or strains
comprising the biofilm (20, 21); (ii) the conditions during development, and in turn the
expression of bacterial factors (22); and (iii) the spatial location sampled within any
given biofilm (23, 24). The ECM components affect structure, physiology, interactions
with the surrounding environment, resistance toward antibiotics, and host defense
mechanisms (25–28).

Biofilm architecture is highly variable. Bacteria can build exposed or submerged
biofilms on either biotic or abiotic surfaces and under static or shear-flow conditions or,
alternatively, coalesce directly in the host, as seen in intracellular bacterial communities
(IBCs) involving uropathogenic Escherichia coli (UPEC) and Klebsiella pneumoniae (29–
33). Another example of complex biofilm architecture is that of sputum-encased
endobronchial Pseudomonas aeruginosa biofilms, which form aggregated clusters of
bacterial cells surrounded by polymorphonuclear leukocytes (PMNs), the PMN-released
enzymes elastase and collagenase, and oxygen radicals in the cystic fibrosis (CF) lung
(34).

Differences among biofilm communities are also created in response to incoming
signals and have importance in bacterial dispersal triggered by nutrient availability
modifications (35). D-Amino acids, for example, have been reported to act individually
or synergistically to trigger disassembly of biofilms and to inhibit pellicle formation by
Bacillus subtilis and other species (36). The process happens through D-amino acid
internalization in the bacterial cell wall affecting the anchoring of the amyloid-like
protein TasA (37). Likewise, the cyclic diguanylate monophosphate (c-di-GMP) concen-
tration affects matrix and structural component production, motility, cell attachment,
and eventually biofilm formation in a number of species (38–41).

Surface-Associated Biofilms and Importance of the Substratum

Surface-attached biofilms forming colonies are valuable for studying bacterial com-
munity architecture on a solid surface (Fig. 2A). Interestingly, different gene expression
patterns are observed by comparing biofilms attached to solid surfaces and planktonic

FIG 1 Developmental stages in biofilm formation. One or more planktonic bacterial species adhere to a biotic/abiotic
surface. Attached bacteria grow as a multicellular community, forming microcolonies in which they multiply and mature.
This microbial infrastructure results in the development of a mature biofilm. Eventually, biofilms serve as bacterial
reservoirs that are transmitted back to the environment through biofilm dispersal and then colonize new surfaces. (The
concept of this figure was inspired by reference 71.)
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bacteria grown in liquid cultures (42–47). Surface-associated biofilms are highly depen-
dent on the substratum material and may or may not be exposed to air. Among the
most common materials that promote biofilm formation on abiotic substrata are
polyvinyl chloride (PVC), silicone, polystyrene, and metal (48–50). In microbial keratitis,
for example, P. aeruginosa exhibits preferential adhesion to polymeric contact lenses
(51), while in urinary catheters bacteria are preferably adherent to silicone and PVC
biomaterials (52). As far as air exposure is concerned, the acquisition of antimicrobial
resistance (AMR) and tolerance to xenobiotics has been attributed to (i) adequate
oxygenation required for bacterial metabolism and (ii) facilitated DNA exchange due to
the juxtaposed distribution of the bacterial cells in the well-organized biofilm cluster at
the air-liquid interface (53).

Apart from surface composition, surface coatings can also play a role in biofilm
formation. Blood components (fibrin, laminin, collagen, fibronectin, and immunoglob-
ulins) compose the fibrin sheath that fosters the adherent growth mode around and
into the air-deprived lumen of central venous catheters (CVC). Although results from
both in vitro and in vivo studies regarding fibrin sheath-coated surfaces are inconsistent,
reports of enhanced incidence of persistent bacteremia confirm the biofilm formation
attributed to fibrin coating for some species (54).

Biofilms that take up nutrients directly from the surface to which they adhere (such
as bacterial colonies on agar plates) are highly dependent on the substratum material
(55, 56). In this case, the community grows outwards from the center of the colony, and
architectural complexity most likely increases in response to nutrient and other envi-
ronmental gradients that are created over time (45, 55, 56). Among these biofilms are
the type called pellicles, which have been described as floating biofilms formed on a
liquid surface (Fig. 2B) (42). Examples of bacteria that form liquid surface-associated
pellicles include different strains of E. coli and Salmonella spp. (23, 57–59). This type of
biofilm exhibits various degrees of meniscus growth, strength, and structure and
possesses matrix-embedding, host-derived extracellular polymeric substance (EPS)
components, laying the foundation for involvement in clinically relevant conditions (29,
60, 61). The liquid substratum provides the primary source of nutrients for the growing
community. The term “pellicle” has also been used for dental diseases caused by
biofilms formed from multicellular aggregates that require saliva proteins for attach-
ment (62, 63).

Submerged Biofilms

In addition to surface-associated biofilms, bacteria can form submerged biofilms
under both static and shear-flow conditions. These types of biofilms are perhaps the
most relevant in most chronic infectious disease states, as most of the device-
associated infections involve the formation of submerged biofilms. Pathogenic biofilms
formed on all types of catheters, including urinary and central/peripheral venous access
lines, endotracheal and nasogastric tubes, and cerebrospinal fluid shunts, as well as on
artificial cardiac valves, are examples of multicellular communities developing under
variable-flow conditions (Fig. 2C) (64, 65). In catheters of all types, bacteria are intro-
duced from the outside environment into the catheter lumen during catheter insertion

FIG 2 Biofilm types. (A) Surface-attached biofilms form colonies on a solid surface and are highly dependent on the substratum
material. (B) Pellicles are formed in the air-liquid interface of fluids in nature or in the lab. Cells are bound together, forming
a distinct macroscopic floating infrastructure. Thick pellicle formation requires the presence of exopolysaccharides (EPS). (C)
Submerged biofilms develop under flow conditions. Biofilm formation under flow conditions is achieved in either indwelling
catheters or suitably adapted lab devices.
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and can swim or are carried by normal fluid flow. Bacteria then attach to the abiotic
material by using adhesive fibers. Host biomolecules, such as fibrinogen, laminin,
collagen, and fibronectin, also serve as platforms for bacterial adherence, as they
become deposited on the surface in both central venous and urinary catheters shortly
after insertion of the device (62, 66). Bacterial expansion upon adherence leads to the
formation of the biofilm community, a process known as maturation.

Laminar/semilaminar flow (implicated in biofilm formation in blood vessels), turbu-
lent fluid mechanics (characterizing prosthetic valves), and discontinuous trickle (refer-
ring to catheter-associated UTIs [CAUTIs]) are several examples of fluid flow dynamics
(67–69). For each condition, suitably adapted lab devices that contain simultaneous
growth medium supply and waste removal are developed. These flow systems create
optimal conditions for the generation of mature biofilms. Culture preparation, surface
conditioning, and adjusted methods provide lab substrates mimicking clinical condi-
tions. A characteristic example involves the evaluation of four CVC Staphylococcus
epidermidis biofilm infection models that differ in material type (glass versus polymer)
and nutrient presentation (static versus continuous flow) (70).

Roots of Biofilm Phenotypic Resistance

The biofilm life cycle ends with the dispersal of bacterial cells stemming from the
biomass after maturation (71). The dissemination and colonization of new target sites
explain recalcitrant chronic infections within the host; biofilm-originating cells form
bacterial niches with resistance phenotypes at the newly colonized sites. The biofilm
dispersal process is controlled by environmental signals (oxygen, nutrients, tempera-
ture, and signaling molecules), intracellular reduction of the concentration of c-di-GMP,
and upregulation of motility or quorum sensing (QS) genes, though many bacterial
dispersal signals remain cryptic (13, 72, 73).

A single clonal population alters the growth rate and turns on adaptive pathways
due to multiple environmental signals. The study of this complex yet distinct adapta-
tion process elucidates changes in chronicity that contribute to fitness without being
limited to specialized cells and signals (74). Since the environmental gradients sur-
rounding the microbial community influence biofilm composition, phenotypically dis-
tinct subpopulations arise, including extracellular matrix producers, adhesive fiber
producers, motile bacteria, and metabolically quiescent and/or antibiotic-tolerant bac-
teria (23, 24, 75, 76). Persisters emerge through diverse cellular and molecular phe-
nomena, including biofilm matrix protection against the host immune system, redun-
dant toxin-antitoxin (TA) modules induced by DNA damage (SOS response), nutrient
elimination, the age of the inoculum, and the downregulation of genes related to
motility, cell division, and protein synthesis (77–79). The quiescent phenotype is
actively present in chronic and recalcitrant infections surviving under antibiotic pres-
sure. For example, the reversible overexpression of the HipA and RelE toxins has been
implicated in the interruption of cellular functional processes in E. coli under stress.
Hence, persisters prevail without multiplying or being killed, exhibiting tolerance but
not resistance, and therefore do not qualify as mutants (80, 81). The slow-growing
small-colony variant (SCV) subpopulation is another equally puzzling phenotype that
complicates biofilm formation as well as treatment and diagnosis of biofilm-related
disease. The contribution of SCVs to biofilm formation has been studied for a rather
small number of bacterial pathogens despite the huge clinical significance of persistent
infections evading detection and complicating treatment (82, 83). In combination,
these different phenotypes within microbial communities give rise to an extremely
resilient community that can withstand many stressors and shield the resident bacteria
from eradication.

Adaptive and phenotypic biofilm variations generate hurdles for the overall inves-
tigation and understanding of infection mechanisms. The partitioning of one or many
different bacterial species is an additional unknown in this equation. Multispecies
populations generate dynamic consortia with unique interactions [pathogen(s)-
pathogen(s), pathogen(s)-commensal, and pathogen(s)-host], metabolic requirements,
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and phenotypes, setting investigative limitations with respect to the in vivo clinical
setup, infection pathogenicity, and response to treatment; on the other hand, mono-
species biofilms constitute a minute fraction of both acute and chronic infections (84).
Inter- and intraspecies interactions based on species-specific virulence traits set the
stage for a complex microenvironment in which bacteria can exchange genetic markers
and compete or cooperate for resources. The interplay among multiple pathogenic
species enhances horizontal gene transfer of clinically prevailing phenotypic resistance
elements. A fundamental trait of pluralism in biofilm composition is based upon the
presence and content of nonbacterial elements. Examples of bacterial-fungal cooper-
ation within the protected environment of a biofilm include that in wounds, the oral
cavity, and urinary tract infections. This evolutionary tactic provides a stable survival
equilibrium among kingdoms (85, 86). Therefore, explaining the rationale for the
clinical relevance of multispecies biofilms is not trivial. While multispecies biofilms are
the most clinically relevant infections, their study has been the most limited due to the
complexity of each community, the lack of knowledge regarding the identity and
abundance of each biofilm resident, and the technical limitations associated with
different biofilm setups. Examples include Haemophilus influenzae competing with
Streptococcus pneumoniae, but not with Moraxella catarrhalis, in ear infections; Staph-
ylococcus aureus and P. aeruginosa cooperating for survival in chronic wound infections;
group B streptococci promoting survival of UPEC in UTIs; and Porphyromonas gingivalis
and Treponema denticola exhibiting synergy in biofilm formation involved in periodon-
tal disease (87–92).

Since the onset of the first biofilm studies, several technological advancements have
greatly enhanced our ability to molecularly dissect biofilm architecture and character-
istics both temporally and spatially. Below is a comprehensive review of the method-
ological landscape used for the study of biofilms, presenting a blend of classical and
more recent technologies.

LABORATORY SETUPS

Cutting-edge points regarding technical information are discussed and the
strengths and limitations of the most popular laboratory devices are provided in Table
1. All biofilm species are not created equal, so they often require specific experimental
conditions matching the developed methodological tools. Some tools are more prac-
tical and relevant than others, covering adherence, life in a “turbulent flow habitat,” or
the effect of coaggregation and flagellation on all types of bacteria.

Culturing Biofilms under Static Conditions

The complexity of colony biofilms on agar plates was overlooked for decades due to
the lack of advanced methodologies to probe architecture differences (Fig. 3A). This
method generates a stable structure and limits the possibility of cell detachment,
ensuring that observed differences in cell numbers are due to cell death rather than
detachment (93).

Microtiter plate-based assays were first described in 1985 for assessing staphylo-
coccal adherence to plastic tissue culture plates (94) (Fig. 3B). Bacterial inocula with
standardized concentrations are placed in a 96-well microtiter plate made of PVC,
polystyrene, or other material and incubated aerobically at 37°C for designated time
frames (1 to 4 h for initial attachment and �20 h for biofilm formation, depending on
the species). Planktonic cells are removed by gentle washing, and the adherent cells are
stained with crystal violet (CV) and quantified by spectrophotometry (95, 96). Studies
concerning biofilm-forming isolates have exhibited that motile bacteria, including
flagellated E. coli, P. aeruginosa, Vibrio cholerae, and Salmonella enterica, tend to
coaggregate at the air-liquid interface. In contrast, the nonmotile cocci, including
enterococci (with the exception of the motile organisms Enterococcus casseliflavus and
Enterococcus gallinarum) and staphylococci, form aggregates at the microtiter plate
base (97–102). Microtiter plates with removable silicone or polystyrene disks at the
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TABLE 1 Assays and lab devices used for biofilm formation evaluation

Assay or device Advantage(s) Disadvantage(s) Reference(s)

Static conditions
Agar plating Stable structure Difficulties in handling colonies due to increased

growth rate
93, 435

Low possibility of cell detachment Variations in bacterial strain motility rate
Microtiter plate assay Simple Difficulties in mature biofilm generation due to lack

of nutrient supply
436, 437

Rapid Poor attachment to abiotic surfaces by several
clinical strains

Highly reproducible Limited substratum options
Antimicrobial susceptibility assay Inability to test biofilms with flow viability

validation
Air-liquid assay Simple Visualization of early-stage biofilms only 93, 95

Direct microscopy Planktonic cells may hinder biofilm observation
Coverslips can be used in the absence of

an inverted microscope
Washing and staining steps required

Stained coverslips do not require
immediate microscopy (can wait �1 wk)

BRT Accurate, automated, reproducible, and
rapid

No biofilm viability validation 105, 108

Amenable for high-throughput screening Specified software and biofilm index provide the
result

No need for staining or washing steps Inability to test biofilms under flow

Flow conditions
Kadouri system Large biomass generation Planktonic cells may not be discarded due to low

flow
93

Applies to various growth demands Wells overflow
DNA microarray assay facilitation Close monitoring required to avoid waste tube

blocking and drying of the wells
Proteomics facilitation
Mature biofilm formation

Drip-flow cell reactor Large biomass produced Limitations in confocal microscopy visualization 95, 126
Viable cell enumeration No nutrient laminar flow
Medical material surface antibiofilm testing
Molecular study facilitation
Antimicrobial susceptibility assay facilitation
Microsensor monitoring study

Robbins device Structural integrity conserved Limited in situ biofilm visualization 119, 438
Modified Robbins device Study of biofilm physiology Biofilm destruction during sampling for quantitative

analysis
Biofilm-related bacterial metabolic product

investigation
Investigation of immune response to

biofilm-associated bacteria
Allows aseptic sampling and plug handling

Rotating-disk reactor Surface material-associated study Limitations in confocal microscopy visualization 126, 127,
128, 439

Biofilm growth rate study For antimicrobial compound testing, coupons need
transfer into 96-well plates

Biomass structure investigation
Antimicrobial susceptibility testing
Identical biofilm production

Calgary device Antimicrobial susceptibility assay Sonication may lead to erroneous results 436, 440
3D imaging facilitates structural analysis Time-consuming
Viability assay facilitation Specific fluorophores required for CLSM

Sample destruction due to fixation required for
microscopy

Microfermentors Genetic and biochemistry analysis
facilitation

441

Study of biofilm adherence and formation
Multi- or monospecies biofilm evaluation
Mature biofilm formation

(Continued on next page)
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bottom can serve as platforms to facilitate microscopic and molecular examinations
(97).

An air-liquid assay enables qualitative analysis of biofilm formation through direct
phase-contrast microscopic visualization of the early-stage bacterial aggregates in
flat-bottomed wells (Fig. 3C). Bacterial inocula placed in a 24-well flat-bottomed plate
are incubated at an angle or coverslips are placed at an angle into wells for the
appropriate incubation time; coverslips are washed and stained with crystal violet or
with a fluorescent antibody against a species-specific antigen or a protein of choice. A
conventional or fluorescence microscope can be used for biofilm visualization (93). The
sad (surface attachment defective)-associated reversible and irreversible attachment of
P. aeruginosa was investigated by this assay to decipher the pseudomonal develop-
mental shift from the planktonic to the biofilm state in the CF lung (103). Biofilm
formation on epithelial cells, assessed by the air-liquid method, served as an in vitro
model of chronic rhinosinusitis due to P. aeruginosa PAO1 (104).

The BioFilm ring test (BRT) is a newly available tool for the study of biofilm formation
kinetics that was developed in the last decade. It detects biofilm formation in modified
96-well polystyrene microtiter plates by use of magnetic microbeads and a scanning
plate reader (105) (Fig. 3D). Biofilm-associated adherence is determined when beads
remain scattered after the application of a magnetic field; in contrast, beads are
immobilized in the center of the well bottom in the presence of planktonic cells (105,
106). Examples of BRT biofilm formation kinetics include those of (i) the nontypeable H.
influenzae (NTHi) strains isolated from body fluids (blood, sputum, and pleural and
cerebrospinal fluid) of individuals with nonbacteremic, community-acquired pneumo-
nia and chronic obstructive pulmonary disease (COPD) and from middle ear fluid of
patients with otitis media; (ii) the S. aureus and S. epidermidis strains from acute and
chronic osteomyelitis and infectious arthritis cases; and (iii) the P. aeruginosa strains
from CF patient sputum samples (107–110). A recent extension of BRT is Antibiofilmo-
gram, which is used for susceptibility profile testing of bone and joint infection-related
S. aureus biofilms with 11 widely used antibiotics. This method aims to facilitate
therapeutic choices by narrowing the window of truly efficient antibiofilm treatment
options (111).

Culturing Biofilms under Flow Conditions

Continuous-flow cultures enable the formation of mature biofilms in chambers
covered with coverslips or on silicone or latex tubes fitted to a peristaltic or syringe
pump. The peristaltic pump facilitates flow of fresh growth medium, whereas plank-
tonic cells and waste are removed. The biofilm formed is monitored microscopically
after introducing fluorescent proteins or reporter genes (112). Reporter genes are
informative for the stage-specific physiological changes that occur under dynamic
conditions and differentiate biofilms from their planktonic counterparts (21, 23, 113).
Green fluorescent protein (GFP) serves as an example of the reporter signals associated
with the csgBA genes, which have been used extensively in biofilm interventions for
UPEC (23).

Among the advantages of continuous-flow models is the ability to compare the
effects that different media, oxygen concentrations, temperature shifts, and substances
exert on a biofilm at all developmental phases. These models also offer evaluation of

TABLE 1 (Continued)

Assay or device Advantage(s) Disadvantage(s) Reference(s)

Microfluidics-based device Noninvasive technique No metabolic products obtained (closed system)
Continuous biofilm formation assessment
Enhanced physiological relevance of live-

cell assays due to shear flow
Simplicity of usage
Host-bacterium interaction analysis
Real-time visualization of biofilm growth
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FIG 3 Laboratory setups. (A) Colony biofilms on agar plates. (1) Schematic diagram of a colony biofilm. (2) Various types of macrocolonies grown on agar
medium. (Panel 1 reprinted from reference 427 with permission of the publisher; panel 2 reprinted from reference 428.) (B) Microtiter plate. (Photograph taken
and kindly provided by Alex Hall.) (C) Air-liquid biofilms. (1) Pellicle formation at the air-liquid surface. (2) Crystal violet staining was performed to assess

(Continued on next page)
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the effects that transiently occurring molecules, such as antibiotics or adherence
inhibitors, have on biofilms. However, the technical disadvantages of continuous-flow
biofilms include increased experimental complexity as well as possible formation/
trapping of air bubbles in the setup tubing. This can perturb proper medium flow, affect
the architecture, and put the system at risk for contamination (114, 115).

The Kadouri system is an intermediate system between static biofilms and low-flow
cells (Fig. 3E). The major difference from static assays is that the wells are part of a
closed system with two outputs, one for the continuous fresh medium supply via an
adjusted pump and one for the removal of waste and planktonic cells, while the
difference from flow-cell systems lies in the minimal shear forces (93, 116).

Drip-flow cell reactors enable biofilm formation in the air-liquid interface at low
shear forces (117) (Fig. 3F). A biofilm is formed in channels (mainly silicon tubes)
containing glass coupons or catheters, and a large biomass is produced (20, 22, 61). An
in vitro model has been applied for bacteriophage-based bacterial biofilm inhibition on
medical device surfaces. This model involved S. epidermidis biofilms on hydrogel-coated
urinary and central venous catheters with a modified drip-flow biofilm reactor; the
modification was a shift from drip to constant flow (118).

The Robbins device (RD) generates submerged biofilms growing in aqueous systems
that can be used for the interrogation of multispecies communities (119, 120). Culturing
multispecies biofilms in vitro can become complex regarding the microenvironment
simulations. At present, multispecies biofilms are formed either by coculture of different
preacquired clinical strains or by transfer of a mixed environmental population into the
experimental setup (121). So far, the most commonly applied device is the modified
Robbins device (MRD) (Fig. 3G), involving mono- or multispecies biofilm formation on
catheter segments of various materials under flow conditions. Thus, MRD enables
real-life biofilm simulation on catheter surfaces and is considered amenable for in vivo
evaluation of implanted devices and catheters (14, 122, 123). This setup has been
applied for biofilm therapeutic interventions, including pharmaceutical preparations,
such as minocycline and EDTA (M-EDTA), as well as the maintenance of catheter lumen
patency and bacteriophage therapy for biofilm-related infections in CF patients (124,
125).

Rotating-disk reactors, including the CDC biofilm reactor, facilitate growth under
controlled moderate shear stress and continuous-medium-flow conditions (126) (Fig.
3H). The reactor consists of a disk that rotates over a magnetic base and coupons of
various materials that promote biofilm growth. A glass reactor vessel enables medium
supply and waste removal; coupon removal at desired intervals is feasible (126). An
alternative method involves concentric reaction chambers with cylinders enabling
biofilm formation. Modifications in speed or the cylinder’s diameter affect the cell
density and biofilm structure (127, 128). Rotating-disk reactors enable antimicrobial
agent and antifouling material efficacy, and the removable disks serve as testing
surfaces for antibiofilm compounds (21).

The peg lid Calgary biofilm device (CBD) generates biofilms on the bottoms of 96
pegs fitted in a polystyrene microplate lid or a multichannel tray containing a bacterial
inoculum of a standardized optical density (Fig. 3I). Pegs are then sealed and incubated
on a rocking table that creates shear forces at a specific temperature for a specific time.
Planktonic cells are rinsed off, and biofilms are detached from the pegs by sonication
and then placed into sterile 96-well microtiter plates with specific dilutions of the tested
biocide to estimate the minimum biofilm eradication concentration (MBEC) after 24 h

FIG 3 Legend (Continued)
air-liquid biofilm formation on abiotic surfaces. (Panel 1 reprinted from reference 429; panel 2 reprinted from reference 430.) (D) BioFilm ring test. Photos of
scanning microplates were taken with a plate reader after magnetization and show no biofilm formation (1) and biofilm formation (2). (Photos reprinted from
reference 108.) (E) Kadouri biofilm system for flow biofilm study. (Reprinted from reference 431.) (F) Drip-flow reactor and various components. (Photograph
kindly provided by the Center for Biofilm Engineering, MSU-Bozeman; see reference 117 for further details.) (G) Modified Robbins device. (Reprinted from
reference 431.) (H) Rotating-disk reactor. (Photograph kindly provided by BioSurface Technologies Corp.) (I) Peg lid Calgary device. (Adapted from reference 432
with permission from Macmillan Publishers Ltd.) (J) Biofilm growth in microfermentors. (Reprinted from reference 433.) (K) Microfluidic device and experimental
setup for biofilm formation (Reprinted from reference 434 with permission.)
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of incubation (129, 130). The study of sputum biofilm-forming P. aeruginosa strains
isolated from CF patients is one example of CBD being used to compare the efficacies
of multiple antibiotic combinations (131, 132).

Microfermentors use slides of various materials as the substrate to form bacterial
communities, while a constant medium flow and sterile air supply are provided (5, 133,
134) (Fig. 3J). The large mass of biofilm generated through this assay provides infor-
mation not only about the biofilm-forming ability of the tested strains but also about
the antimicrobial susceptibility profile (5, 134). Methicillin-resistant S. aureus (MRSA)
strains appear to switch between proteinaceous and exopolysaccharidic biofilm matri-
ces according to the provided substrate and environmental conditions in microfermen-
tors (135).

Microfluidics-based devices, including the relatively recent BioFlux device, are fully
integrated platforms consisting of modified 96-well plates with laminar flow chambers,
a shear-flow control system, an imaging system, and advanced software for data
collection and analysis (Fig. 3K). Microfluidic channels enable fresh medium movement
due to pneumatic pressure at a controlled flow rate, rolling velocity, and time. Anti-
microbial agents can be delivered to the flow biofilms from the inlet to the outlet well.
In high-throughput (HT) flow-cell biofilm viability assays, viable cells are quantified by
epifluorescence microscopy coupled with chemical or genetic color coding; high-
quality images are attributed to coverslip glass at the bottom of the wells (136).
Modifications involving protocol adaptations (temperature, medium type, and concen-
trations) and supplemental accessories (software packages and modules) extend mi-
crofluidic applications by facilitating complex assays and multiple experiments (137).
Examples of the use of microfluidics-based devices adapted for coculturing eukaryotic
cell lines with bacterial aggregates include the study of HeLa cells with enterohemor-
rhagic E. coli (EHEC) and commensal biofilms to demonstrate the developmental events
in a gastrointestinal (GI) tract infection (138). Another example provided real-time
monitoring of osteoblast adhesion and viability on the Ti alloy surfaces of orthopedic
implants infected with S. epidermidis (139).

Most of the existing lab setups for monospecies or multispecies bacterial biofilm
formation also serve for biofilm-mammalian cell coculture systems. Both static and flow
coculture biofilm model systems have been applied to study biofilm formation on
biotic surfaces as well as the responses to various therapeutic approaches (140). These
models aim to reflect the infectious process in real time and offer the advantage of
examining the host-pathogen interaction. Various culture systems have been employed
in biofilm-mammalian cell coculture models, including (i) human airway epithelial cells
(CFBE cells) and human bronchial epithelial cells (BEAS-2B) cocultured with P. aerugi-
nosa (140–142); (ii) a human oral keratinocyte cell line cocultured with multispecies oral
biofilms involving P. gingivalis, Fusobacterium nucleatum, Aggregatibacter actinomyce-
temcomitans, Streptococcus mitis, Streptococcus oralis, Streptococcus intermedius, Veillo-
nella dispar, Actinomyces naeslundii, and Prevotella intermedia (143, 144); (iii) intestinal
epithelial cells cocultured with E. coli O157:H7 (145); and (iv) human osteoblasts
cocultured with Staphylococcus epidermidis (146).

QUANTITATION AND VIABILITY ASSAYS

Static experimental conditions and a discontinuous nutrient supply are limiting
factors in assessing mature biofilms in a lab setting (147). Monitoring the viable bacteria
within a biofilm can be achieved through (i) cultivation, (ii) metabolic activity detection,
and (iii) membrane integrity evaluation. Conventional CFU enumeration fails to gener-
ate reproducibly reliable results for most biofilm quantification due to the presence of
cell aggregates hampering distinct colony development as well as individual-species
resolution, in the case of multispecies biofilms. Furthermore, vortexing or sonication
before plating may lead to sample structure destruction or air bubble entrapment and
erroneous results due to partial cell detachment (2, 148).

The crystal violet (CV) assay, one of the most commonly used in vitro biofilm-
associated techniques (Table 2), enables optical visualization of biofilm thickness and
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total biofilm biomass quantification, especially in the initial stages, but is not accurate
for calculating cell viability (24). Additionally, CV lacks sensitivity and specificity due to
high variability when the dye (i) binds unspecifically to negatively charged molecules
or (ii) is unevenly extracted by ethanol. The Congo red agar method investigates
coagulase-negative staphylococcus (CoNS) strains for the production of slime and
qualitatively scores cellulose and amyloid fiber production by Gram-negative bacteria
(tested predominantly in E. coli, P. aeruginosa, and Salmonella) (149–153). Dimethylm-
ethylene blue (DMMB) binds to glycosaminoglycans (GAG) and polysaccharide inter-
cellular adhesins (PIA). This is a species-specific method targeting S. aureus biofilms,
restraining the diagnostic range of the technique to this PIA-related biofilm matrix-
possessing species (154).

The Live/Dead BacLight assay uses double staining with the fluorescent nucleic acid
dyes Syto 9 and propidium iodide (PI). Syto 9 fluoresces green and penetrates both
damaged and intact cell membranes, providing total cell counts, while PI fluoresces red
and crosses only damaged cell membranes. The dual presence of the dyes enables
multimodal measurements, including microplate readings, flow cytometry analysis, and
even microscopy. Indeed, in flow cytometry studies addressing antimicrobial agent
testing for MIC determination, the dual usage of Syto 9 and PI required no preparatory
stages. Drawbacks of the green fluorophore, including bleaching, ranging binding
affinities (as in the case of Gram-negative bacteria), and background cross-signals,
undermine the utility of Syto 9, thus welcoming the combination with PI. Additionally,
the pronounced ability of PI to intercalate with DNA results in enhanced fluorescence,
displacing Syto 9 and interfering with cell viability testing (155). The large sample
requirement makes the method time-consuming and unfit for HT assays (147).
Fluorescence-activated cell sorting (FACS) has been investigated intensively for the
separation of biofilm subpopulations in the lab, with the potential to be deployed for
quantification; reliable single-cell isolation of bacterial cells, on a scale orders of
magnitude smaller than what mammalian cell flow systems are commonly designed to
provide, remains a confounding factor in many cases (156).

Other nucleic acid-binding dyes applied for fluorescence microscopy include acri-
dine orange (AO), a cell-permeating dye that enables total counts of cells within the
biomass; ethidium bromide (EB), which stains nucleic acids red when the integrity of
the cell membrane is lost; and the DNA-specific probe DAPI (4=,6-diamidino-2-
phenylindole), which stains cells with intact membranes (157–159). The concept of
dual-dye flow cytometric cell determination was introduced by use of a customized
lab-built device employing a violet diode laser (397 nm) that excites fluorescence of
both DAPI and Hoechst dyes in permeabilized and intact cells. Despite the fluorophore
complications, flow cytometry is unique for the study of heterogeneous subpopulations
(160). A high DAPI concentration is indicative of a thicker biofilm; therefore, it can be
used for biofilm extracellular matrix component detection and visualization. Such an
example of DAPI implementation is the matrix analysis of Salmonella enterica serovar
Typhi- and S. Typhimurium-associated gallstones (161).

2,3-Bis(2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino)carbonyl]-2H-tetrazolium
hydroxide (XTT) is used to spectrophotometrically identify metabolically active cells
that reduce XTT to water-soluble formazan (162). However, it requires bacteria with
high levels of aerobic metabolism and exhibits intra- and interspecies variability due to
biofilm heterogeneity (30). The resazurin dye, also known as alamarBlue (AB), fluoresces
and can be measured via spectrophotometry. In fact, resazurin is a nonfluorescent blue
redox indicator that is reduced to the pink fluorescent compound resorufin through
cellular respiration (163, 164).

Oxidized 5-cyano-2,3-ditolyl tetrazolium chloride (CTC) dissolves in water, and the
electron transport chain of metabolically active cells reduces CTC to fluorescent form-
azan crystals (165). The incubation time and the CTC concentration affect the number
of detectable cells, so this method is suitable only for estimating the number of highly
metabolically active cells and only for aerobic or microaerophilic systems (166).

The biotimer assay (BTA) measures metabolism by estimating the time needed for
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the visualized color change of specific indicators (phenol red and resazurin) with
respect to the initial bacterial concentration according to correlation curves for plank-
tonic bacteria (167). The BTA is a rather simple and convenient colorimetric tool for
biofilm susceptibility determination without requiring particular lab equipment. Fluo-
rescein diacetate (FDA) emits yellow fluorescence once it is hydrolyzed by esterases.
Although it is used to reproducibly measure microbial activity and biofilm biomass, it
is unable to reach deep into thick biofilms (162, 168).

“GRIND AND FIND” APPROACH VIA MOLECULAR ANALYSIS

Multispecies biofilm interrogation requires advanced molecular methodologies that
enable species discrimination and strain-specific probes highlighting spatial distribu-
tion through advanced microscopy (Table 2). Additionally, surface cell attachment and
phenotypic variation are initiated and influenced by specific on/off switch genes.
Wild-type strains, isogenic mutants, and plasmids are constructed and studied with
molecular assays to further specify and recognize genetic factors involved in biofilm
formation. For example, the ica gene cluster was found to mediate PIA production,
whereas the reversible insertion/excision of the IS256 sequence element has a strong
correlation with phase variation/phenotypic switching of staphylococcal strains (169–
173).

PCR-based approaches as well as transcriptional and proteomic profiling can be
used to interrogate gene expression differences occurring among free-living and sessile
species. Genetic virulence traits are associated with phenotypic shifts contributing to
the pathogenesis of clinically relevant strains. Genome sequences for adhesion pro-
teins, tissue-penetrating enzymes, and toxins have been studied extensively for human
biofilm-forming colonizers, such as MRSA, enterococcal, Acinetobacter baumannii, and
K. pneumoniae strains (174). Alterations in the expression of transmissibility, QS, and
oxidative stress regulatory genes affect the survival of pseudomonal strains in CF
patients, and genetic modifications affecting the biofilm-associated pneumococcal
phenotype lead to a shift from asymptomatic carriage to nasopharyngeal pathogenesis
(175).

Early microarray analysis revealed that during the formation of E. coli biofilms and
subsequent colonization, 38% of genes were modified, resulting in the altered expres-
sion of 600 genes (176). Similar to microarray analyses, quantitative real-time PCR
(qPCR) examines a subset of genes from biofilm-isolated cells, while multiplex PCR
detects multiple target sequences and is a useful tool for genetic analysis of polymi-
crobial/multispecies communities or gene polymorphisms (177–179) (Table 3). PCR
product detection and quantification are based on probe chemistry.

RNA sequencing (RNA-seq) analyses based on next-generation sequencing (NGS) are
now replacing conventional microarrays and provide higher sensitivity and information
pertaining to small noncoding RNAs actively participating in oral pathogen dysbiotic
processes (180). Additionally, RNA-seq-based transcriptomic analyses have provided a
multitude of genes associated with biofilm formation by both Gram-positive and
Gram-negative bacterial species (such as MRSA, Enterococcus faecalis, and P. aeruginosa)
in clinical entities, including otitis media, CF, chronic wounds, and endodontic and
indwelling device infections (181, 182). NGS platforms provide massive parallel se-
quencing of DNA segments physically or artificially produced from a single sample. This
allows time-efficient reading of entire genomes (whole-genome sequencing [WGS]) as
well as identification and quantification of genomic sequences in a sample at the level
of a single molecule (target sequencing or sequencing of multiple bacterial species and
subpopulations).

NGS in combination with reverse transcription-PCR (RT-PCR) (whole-exome se-
quencing or RNA-seq) provides evidence for a sample transcriptome. This combinato-
rial approach does not require genetic sequences, thus worthily replacing microarrays.
RNA-seq analyses revealed the proportion of the dormant cell subpopulation within the
bacterial biomass of S. epidermidis and the coexistence of unknown bacterial species in
oral cavity pathogenesis (183–186).
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TABLE 3 Biofilm-related gene detectiona

Method Species Gene(s) Function Reference(s)

PCR Staphylococcus spp. ica gene cluster Biosynthesis of PIA, cell accumulation, biofilm
formation

444, 479

MSCRAMM genes 10 genes encoding surface components, involved
in recognition of adhesive matrix molecules

480, 481

Enterococcus spp. esp, ace, agg, empfm
operon

esp encodes extracellular surface protein (Esp),
involved in adhesion and facilitation of
colonization and persistence

482, 483

ace encodes collagen adhesion protein (Ace),
which regulates interaction with host matrix
proteins (collagens I and IV, laminin)

483

agg encodes aggregation substance (Agg),
involved in conjugation mediation, adhesion to
eukaryotic cells, and cellular aggregation

483

empfm operon is involved in biofilm formation 484
Escherichia coli fimA, papC, hly, ecpA fim encodes type I fimbriae 485

pap encodes P-fimbriae
hly encodes pilin structure

Salmonella spp. adrA, csgD, csgA, gcpA, spiA adrA is involved in cyclic di-GMP level control,
cellulose production, biofilm formation

486

csgD is involved in biofilm formation
csgA and adrA are involved in curli and cellulose

expression
gcpA is involved in cellulose production, biofilm

formation
spiA is involved in biofilm formation and virulence 487

Acinetobacter baumannii blaPER-1 Cell adhesion, drug resistance 488, 489
Pseudomonas aeruginosa psl gene cluster (pslA to -F) Involved in biofilm formation, protection against

aminoglycoside antibiotics
25, 490

pel genes Seven genes involved in pellicle matrix formation 25
QS genes (lasIR, rhlIR) Cell-to-cell communication enhancement, coding

for AHL synthase, biofilm formation, resistance,
motility

491, 492

TA genes (mazEF, relBE,
hipBA, ccdAB, mqsR)

Biofilm formation, virulence, “genetic competence” 492

Klebsiella pneumoniae ecpA Encodes major pilin subunit 493
fimA, fimH fimA and mrkA encode fimbrial subunits 493
mrkA, mrkD fimH and mrkD encode minor tip adhesion 493

Yersinia pestis hmsT, hmsP (*) Regulatory genes, involved in biofilm formation
on biotic and abiotic surfaces (*)

494

Vibrio cholerae flaA, fliH, fliN, flgH, flgL,
pomA

Encode flagellar proteins for cellular motility

cpsF, epsD, epsF, rfaD Encode cell wall components (EPS, LPS)
lacI Encodes a transcriptional regulation protein

RT-PCR Streptococcus pneumoniae CSP receptor gene comD Encodes a QS peptide for competence system
induction, biofilm formation, virulence
enhancement

495

Quantitative
RT-PCR

Streptococcus mutans brpA, comDE, vicR Encode regulatory proteins 496
gbpB, spaP Adhesion facilitation
ftf, gtfB, gtfC Polysaccharide synthesis
relA Acid stress tolerance
smu0630 Biofilm formation in both presence and absence

of sucrose
A. baumannii pgaABC gene cluster Extracellular matrix production and biofilm

thickness increase
497

Y. pestis hmsT Regulatory gene, biofilm formation on
biotic/abiotic surfaces

498

P. aeruginosa psl, pel (*) Biofilm formation, protection against
aminoglycoside antibiotics (*)

25

Salmonella spp. spiA, qseB spiA is involved in biofilm formation and virulence 487, 499

(Continued on next page)
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The heterogeneous, noncrystalline, and insoluble biofilm extracellular matrix is a
rather perplexing assembly. Proteomics has provided deeper knowledge by (i) giving
insights into the protein profile determinants that regulate host-pathogen interactions
as well as the virulence and pathogenicity traits of the menacing bacteria; (ii) answering
substantial questions regarding the biofilm antimicrobial resistance phenotype, offer-
ing potential alternatives for rational drug design; and (iii) underpinning physiological
differences from planktonic species (187–189). Indeed, the use of proteomics has been
substantiated by mass spectrometry (MS) to extend its utility beyond research in the
field of diagnostics to clinically oriented infectious disease investigation, with particular
emphasis on host-pathogen interactions (190, 191). The coupled use of proteomics
with MS was an amenable mapping approach in a landmark study of the microbial
proteome and the human microbiome (192). Moving one step further, metaproteomics
constitutes a cutting-edge tool for the study of multispecies community interactions by
means of cooperation and competitiveness and the ways that these relationships shape
the microbial consortium. Metaproteomics also offers the ability to elucidate the
metabolic signatures of multispecies biofilms, even for the unculturable bacteria that
reside within biofilms but cannot be cultivated by classic microbiological means,
potentially providing novel tools for drug design (189, 193, 194).

Hydrogen nuclear magnetic resonance (1H-NMR) has been deployed for proteomic
chemical compositional biofilm analysis and exhibits wide applicability to single- and
multispecies communities. A “sum-of-the-parts” method to examine E. coli amyloid-
integrated biofilms aimed to determine the pristine biofilm ECM composition. NMR also
allows principal chemical component analysis, supporting the identification of key
features between methicillin-susceptible S. aureus (MSSA) planktonic and biofilm
species. The phenotypic differences were attributed to the uptake of specific amino
acids, lipid catabolism, fermentation of butanediol, and metabolism alterations
ranging from the production of energy to the accumulation of cellular components

TABLE 3 (Continued)

Method Species Gene(s) Function Reference(s)

qseBC are involved in fimbria regulation, biofilm
formation, quorum sensing, virulence

Multiplex
PCR

CoNS ica gene cluster PIA biosynthesis, cell accumulation, biofilm
formation

500

Quantitative
multiplex
PCR

mecA, agrA, sarA, atlE,
divIVA (**)

mecA is involved in resistance to methicillin 501
agr locus is involved in cell wall and extracellular

protein synthesis
sarA is involved in hemolysin production
atlE is involved in initial adherence
divIVA is involved in cell division, is unique to S.

epidermidis (**)
500

MRSA sea, seb, sec, sed, see, seg,
seh, sei, sej

Staphylococcal enterotoxin genes 502

eta, etb, etd, cna, atl, fnbA,
fnbB

eta, etb, and etd are exfoliate toxin genes
cna, atl, fnbA, and fnbB are adhesion genes

cap5HK, cap8HK Surface-associated genes

Real-time
PCR

E. faecalis gelE (***) Gelatinase production, virulence factor 503
S. epidermidis sarA, arlRS Encode staphylococcal regulators 504

Quantitative
real-time
PCR

S. aureus icaC, fnbA, fnbB, clfB Adhesion genes 505
P. aeruginosa QS genes (lasIR, rhlIR) (***) Production of autoinducer molecules important

for cell-to-cell communication, coding for acyl
homoserine lactone (AHL) synthase, biofilm
formation, resistance, motility (***)

506, 507

aPIA, polysaccharide intercellular adhesion; TA, toxin-antitoxin system; AHL, acyl homoserine lactone; QS, quorum sensing; EPS, extracellular polymeric substances; LPS,
lipopolysaccharides; CoNS, coagulase-negative staphylococci. Some genes were studied by use of more than one technique, as follows: *, studied with RT-PCR; **,
studied with multiplex PCR; and ***, studied with real-time PCR.

Bacterial Biofilm Infection Methodology Clinical Microbiology Reviews

July 2018 Volume 31 Issue 3 e00084-16 cmr.asm.org 19

http://cmr.asm.org


(195). Structural and morphological properties are also characterized by 13C-NMR,
which groups carbon pools from a single intact ECM sample. This approach defined
the chemical composition and protein content of Vibrio cholerae biofilms (196, 197).
Proteome-wide tagging and labeling of bacterial proteins allow state-selective
analysis and were applied to determine differences in predetermined proteins for
planktonic and sessile bacterial species (198). Another example of NMR-based
applications for diverse systems involves total correlation spectroscopy (TOCSY)-
NMR for the detection of solution and carbohydrate polymer components in S.
epidermidis biofilms (199). Although NMR is a good choice for biofilm compositional
study, in the case of full matrix analysis and determination of the actual composi-
tion of biofilm carbohydrate components MS is usually applied due to the need for
derivatization into monosaccharides.

IMAGING MODALITIES TO VISUALIZE COMMUNITY ARCHITECTURE

Evolving imaging modalities have contributed to significant improvements in spatial
and temporal characterization of biofilms themselves and the signaling factors that
alter bacterial behavior within the host-biofilm microenvironment (Table 2).

Optical Microscopy

Fluorescence in situ hybridization (FISH) utilizes nucleic acid probes that bind to
cRNA or DNA sequences within individual bacterial cells, enabling visualization of the
spatial distribution of multispecies biofilms by use of specific probes (16S or 23S rRNA)
along with epifluorescence microscopy. The targets are independent of cell metabolism
levels, so FISH detects all viable microorganisms, including unculturable ones (200).
Peptide nucleic acids (PNA) exhibit higher target specificity and better hybridization
kinetics. PNA FISH is versatile in clinical microbiology and biofilm investigations, in
combination with confocal laser scanning microscopy (CLSM), offering species identi-
fication, spatial information, and bacterial load determination within mixed-species
biofilms in chronic wound specimens and CF sputum (201, 202). On the other hand,
immunofluorescence (IF) assay employs fluorescently labeled antibodies that bind to
specific target antigens and detect cell types or cellular subcomponents defining
expression at biofilm developmental stages (203).

The use of specific fluorescent probes has enhanced the specificity of CLSM for
protein quantification and localization within colony biofilms. The structural complexity
of the microbial polysaccharides confers a significant limitation on the use of labeled
probes (45, 204, 205). Fluorescent probes (dextrans, rhodamines, and Oregon Green)
and fluorescence correlation spectroscopy (FCS) combined with CLSM enable biofilm
diffusion quantification and thickness evaluation. These provide information on factors
affecting antibiotic and biocide transportation within the biofilm microenvironment
(206). CLSM in combination with computational software can be extended to a multi-
spectral and three-dimensional (3D) biofilm imaging and quantification technique.
Digital analysis has replaced conventional qualitative and semiquantitative techniques
with more accurate and sensitive procedures. Computer programs and software pack-
ages for biofilm visualization, quantification, and deconvolution (Imaris, COMSTAT,
Amira, Volocity, ISA3D, ImageJ, and Fiji), containing structural variables including
porosity, thickness and roughness coefficients, fractal dimension, and homogeneity,
have been launched or belong in the public domain, thus providing analysis options
(207–209).

Structured illumination microscopy (SIM) enhances fluorescence abilities for 3D
imaging of living cells (210). Computational removal of out-of-focus light leads to true
optical sectioning via exclusion of the associated blurred images (211–213). 3D-SIM
visualizes macromolecules interacting within the surrounding cellular environment.

Optical coherence tomography (OCT) offers real-time, 3D in vivo biofilm imaging
ideal for biomass structure development and porosity identification. OCT enables
nondestructive in situ biofilm analysis for chronic middle ear infection and dental
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biofilm growth monitoring (214, 215). Doppler OCT imaging can be employed for
quantitative biofilm dynamics analysis during the biofilm formation stages (216).

Electron and X-Ray Microscopy

Transmission electron microscopy (TEM) offers a high resolution for visualizing
specific structural components, such as polysaccharide fibrils and extracellular DNA.
Combined with ruthenium red staining, TEM reveals the morphological features of
bacterial cells within a fibrous matrix; such an example is the confirmation of the
presence of P. aeruginosa biofilm in a burn wound animal model (204). Scanning
electron microscopy (SEM) is applied for biofilm structure and function (morphology,
glycocalyx density, and layer thickness) analysis on living surfaces or inanimate mate-
rials. Compared to TEM, it is considered the optimal imaging tool, offering detailed,
high-resolution 3D biofilm visualization (217). Staphylococcus lugdunensis and Propi-
onibacterium acnes causing implant-related osteomyelitis in an in vivo animal model
were visualized by SEM analysis when present in intercellular aggregates within the
bone marrow but not when localized intracellularly (218).

Unlike SEM and TEM, environmental SEM (ESEM) retains visualization ability without
laborious sample preparation and facilitates imaging of external cell polymers, though
the spatial resolution is reduced compared to that of traditional SEM techniques (217,
219). ESEM combined with energy-dispersive X-ray spectroscopy (EDS) has been em-
ployed for determination of the Proteus mirabilis biofilm composition on infected
urinary catheters (219). Finally, cryo-SEM is optimal for fragile, fully hydrated samples,
offering ultrafast freezing as an optimal method of nonsolid specimen fixation (220).
When biofilms from diabetic foot wounds were investigated using SEM, a high level of
resolution and detail was obtained, but the exopolymer matrix was destroyed during
sample preparation. This limitation was overcome by the application of ESEM or
cryo-SEM due to preservation of the biofilm hydrated state (221).

The recent discovery that ionic liquids provide clear SEM-based visualization of
biofilms from fully hydrated biological samples has opened new ways for broad SEM
utilization (222). Additionally, the method of immersed atmospheric SEM (ASEM),
combining heavy metal labeling, charged nanogold labeling, and immunolabeling,
enabled visualization of nanostructures of the biofilm-surface interface in liquids (223).

Scanning transmission X-ray microscopy (STXM) provides data on spatial distribu-
tion as well as quantitative and qualitative analyses of biofilm components, thus
dissecting the heterogeneity of microbial communities (224). For example, multispecies
microbial consortia have been investigated by STXM for the analysis of selenium
particle biotransformation (225). In another application, a CLSM-STXM combination was
used on pseudomonal biofilms tested with antimicrobial agents, such as chlorhexidine
dihydrochloride, benzalkonium chloride, triclosan, and trisodium phosphate, to detect
differences in cell density, spatial distribution, and membrane integrity (226).

Scanning Probe Microscopy and Imaging Mass Spectrometry

Atomic force microscopy (AFM) has gained increased attention due to its microbial
cell surface structural and physical probing ability (227, 228). AFM applications involve
visualization of the biofilm structure and detection of the physicochemical interactions
(van der Waals and electrostatic forces) between microbial cells and various surfaces
(229). For example, an AFM-mediated investigation of P. aeruginosa biofilm formation
and adhesion on surface substrates, including sheets of aluminum, steel, rubber, and
polypropylene, indicated that the polypropylene substrate’s rough surface exhibited
enhanced bacterial adherence compared to that on steel (230). Confocal resonance
microscopy (CRM) determines chemical differences among bacterial species. This tech-
nique can be used to map distributions of biomass, EPS, chemical components, and
molecular compounds (231).

Matrix-assisted laser desorption ionization–imaging mass spectrometry (MALDI-IMS)
provides the spatial molecular distribution for each identified molecule within the
biomass (24). IMS generates a wealth of data for developing “chemical fingerprint”
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databases that enable chemical definition of colonies between bacterial species as well
as discrimination of the subpopulations within biofilms (50, 232, 233). MALDI-IMS was
used on single-species UPEC biofilms in order to analyze differences in the spatial
proteome of adhesive fibers that confer virulence and biomass growth. Phase variation
of the promoter of fim, encoding type 1 pili, was found to be under the control of
oxygen availability (24).

Secondary ion mass spectrometry (SIMS) constitutes a label-free imaging method-
ology providing the highest depth and spatial resolution (234, 235). Unlike MALDI-IMS,
SIMS does not require the use of a matrix to get spatial information. When comple-
mented with MALDI and CRM, this method provides identification and specific loca-
tions of proteins and other chemical species, macroscopic and cell-level chemical
differences, mass-based discrimination of similar molecules, and the spatiotemporal
distribution of metabolites and signaling molecules, even for multispecies biofilms
(234–236). For example, the chemical heterogeneity and secondary metabolites, such
as rhamnolipids or quinolones, participating in biofilm growth and cellular signaling of
a P. aeruginosa wild-type strain and an isogenic QS mutant were investigated by
MALDI-SIMS, providing in situ chemical mapping (234).

The future of biofilm visualization requires (i) in situ imaging of fully hydrated
biological specimens, with avoidance of biofilm-destructive procedures; (ii) defined
probes that enable a combination of imaging techniques for better resolution and 3D
structure and/or microscopy that does not require probes (OCT or magnetic resonance
imaging [MRI]); and (iii) updated software tools to meet the demands for enhanced
digital biofilm imaging analyses (209).

MODELING BIOFILMS EX VIVO

Ex vivo models involve biofilm growth on natural tissue in a minimally altered
environment, offering more strictly controlled experimental conditions for extensive
research than those of in vivo models (5). They facilitate the study of the association
between biofilm formation and virulence or determinants of pathogenicity. These
models contribute to the development of effective imaging tools that can monitor
tissue-specific bacterial establishment. For example, porcine skin explants infected with
S. aureus and P. aeruginosa have been used for the growth of mature biofilms that
mimic chronic skin wounds and provide a way to assess antibiofilm antibiotic efficacy
(237).

Implants and medical devices enable biofilm formation that results in chronic
infection. An ex vivo whole-blood model of S. epidermidis prosthetic joint infection was
employed to elucidate the association between complement C5a levels and PIA-related
biofilms as one of the main components of biofilm accumulation (238). An ex vivo
model of MG63 human osteoblasts cocultured with S. epidermidis strains was used to
examine whether infection-related isolates exhibit adherence and internalization abil-
ities different from those of commensal isolates. Flow cytometry, BRT, and CV assays
were combined to test this hypothesis, which showed no statistically significant differ-
ence compared to studies on the harboring and expression of virulence factors that
efficiently discriminate invasive strains from commensals (110, 239).

Ex vivo models are also useful for assessing therapeutic windows of antibiofilm
experimental treatments. A 3-day tolerant S. aureus biofilm grown on a porcine skin
explant model was no longer detectable after treatment with a surfactant-based
wound dressing, whereas biofilms wiped with moistened gauze reoccurred (240). In a
similar model, biofilms formed within the first 24 h were found to be more susceptible
to antibiotics than mature formations, validating current therapeutic strategies that aim
at early wound prophylaxis (241). Similarly, porcine skin models have been used to test
the effect of negative-pressure wound therapy with instillation on P. aeruginosa bio-
films as well as the influence of tetracycline release of a zein and poly-�-caprolactone
(zein/PCL) fibrous dressing on S. aureus biofilms (242, 243). The comparative efficacy of
glycine and tricalcium phosphate (TCP) over that of glycine or sodium bicarbonate in
biofilm removal was examined by use of an ex vivo model using biofilms grown on
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titanium (Ti) and zirconium (Zr) implant surfaces (244). The effects of topical treatments
and commonly used antimicrobial dressings on biofilms of different maturation levels
were also tested (237, 245).

Cardiac valves constitute a substratum for in vivo clinical biofilms, highlighting the
need for an ex vivo study model. An ex vivo model of porcine cardiac valve tissue
combined with electron microscopy was used to examine the effects of the aggrega-
tion substance (Asc10) protein of E. faecalis on biofilm formation and persistence in
endocarditis. It was found that Asc10 increased cell aggregation, leading to accelerated
biofilm formation (246).

The murine respiratory pathogen Mycoplasma pulmonis was recently used for
biofilm development of a tracheal epithelium organ-mounting system that can be
scanned with a fluorescence microscope, resulting in the observation that in vitro and
ex vivo biofilms share common structural features and characteristics (247). In a similar
way, an ex vivo pig model of bronchiolar tissue infected with P. aeruginosa, resembling
the CF lung mucus environment, provides a realistic and replicable HT assay to study
the structure as well as virulence and physicochemical traits present in chronic biofilm-
associated lung infections (248).

The otitis, nasal, and throat mucosal biofilm formation models are further substrates
for ex vivo biofilm model applications (249). An ex vivo model of stainless steel
tympanostomy tubes inoculated with P. aeruginosa and S. pneumoniae combined with
SEM was used to examine biofilms formed on clearance of mucoid plugs after ofloxacin
challenge (250). Moreover, consecutive lavage samples of otitis media biofilms revealed
the presence of NTHi subpopulations with different growth rates and gene expression
modes (251). In the case of the oral cavity, an ex vivo root canal model was applied to
test the parameters influencing the efficacy of irrigation in biofilm removal, utilizing
marketed fibronectin- and collagen-based films (252, 253).

In a GI biofilm study, the pathogenicity of Aeromonas caviae strains isolated from
human feces was investigated by use of an ex vivo rabbit ileal and colonic mucosa
model. Cultured tissue was used for adhesion assessment of A. caviae strains (incubated
with colonic and ileal intestinal fragments), whereas microscopy generated information
regarding colonic and ileal mucosa colonization and biofilm formation (254).

A porcine vaginal mucosal model (PVM) aimed to investigate the interactions
among the commensal vaginal Lactobacillus spp., the anaerobic species Gardnerella
vaginalis, and the sexually transmitted organism Neisseria gonorrhoeae, as well as the
mechanisms of biofilm formation. The model quantified and unraveled different pro-
files for the effects of pH, acids, and Lactobacillus crispatus on G. vaginalis and N.
gonorrhoeae growth when a live vaginal mucosal surface was used (255).

DISSECTING BIOFILMS IN VIVO

The urgent need to investigate biofilm-associated infections and develop effective
therapeutic strategies gave birth to translational approaches that allow the dissection
of virulence and pathogenicity determinants and the identification of novel therapeutic
targets. The widespread host-based models simulating biofilm-related mammalian
diseases (Fig. 4) are discussed below.

Nonvertebrate Animal Models

Exploiting nonvertebrate animal models has provided an important solution to the
need for investigations of biofilm-associated infections. The fruit fly (Drosophila mela-
nogaster), the wax moth (Galleria mellonella), and the nematode worm (Caenorhabditis
elegans) have historically been used to evaluate microbial virulence traits involved in
mammalian infections and to test the efficacy of antimicrobial compounds (256–262).
These studies have elucidated factors affecting virulence, pathogenicity, and host
immune responses by altering gene expression, studying efflux systems, toxins, or QS
compounds, and allowing easy measurement of the host mortality (263–270). The
majority of pathogenic assays using these invertebrate models, by design, detect
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FIG 4 Comparative visualization of biofilm-attributed human infections and classes of major vertebrate and nonvertebrate models developed. This is not an
extensive list, but presentation of the bacterial strains that are most commonly encountered in biofilm-related research studies is included.
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survival rates despite the wealth of microscopy and molecular methodologies that are
often employed as surrogates for intensive interrogation.

Drosophila is extensively used to model wound or epithelial infections by Gram-
negative bacteria, and comprehensive methodology exists for modeling persistent
colonization and for assays of persister cell formation (271–273). For the adult fly, the
infection methodology includes (i) needle pricking (mimicking wound infection), (ii)
feeding (mimicking oral infection methods), and (iii) injection pumping (mimicking a
systemic infection similar to bloodstream infection in mammals). Larvae are less
commonly infected than adults with either the feeding or injection pumping method
(271–273).

Innate host responses in Drosophila against P. aeruginosa are largely conserved in
humans (274–276). It was also demonstrated that there is a remarkable conservation in
the virulence factors used by bacteria to infect both Drosophila and mammals (277,
278). Drosophila models remain valuable tools for exploring biofilm molecular deter-
minants; two adherence factors required for in vivo virulence of Pseudomonas fluore-
scens are (i) gmd, encoding the enzyme GDP-mannose dehydratase, involved in the
synthesis of A-band-O-antigen-containing lipopolysaccharide (LPS); and (ii) a fadL
homologue involved in long-chain-fatty-acid transport (279). D. melanogaster has
served as a model for the study of the functional correlation of the paraoxonase family
members with biofilm formation and QS in vivo. This correlation has shown the
protective role of the human enzyme paraoxonase 1 (PON1) in innate immunity (280).
Finally, Drosophila as an infection model of P. aeruginosa biofilms has provided a direct
or indirect model of virulence and pathogenesis determinants through comprehensive
analysis of the molecular responses of hyper- and low-biofilm-forming strains (281).

The fly has also proven valuable for modeling of biofilm formation by Providencia
spp.; it was identified that Providencia sneebia is lethal while propagating in the fly but
elicits a mild immune response (282). Moreover, a chronic gut Yersinia pestis infection
was established in the anterior fly larva midgut to mimic and dissect the relationships
between biofilm-associated genes (PhoP, GmhA, and OxyR), the gut immune system,
and antimicrobial peptides (283).

Galleria mellonella, a worm with a complex immune system, provides a competi-
tively advantageous alternative to other hosts regarding size and amenability for the
evaluation of antimicrobial treatments (284). The infection development model em-
ploys larval caterpillars (third- or final-instar stage) that are injected with bacteria in the
hemocoel via the last left proleg (285). The wax moth has (i) facilitated screening of a
U.S. Food and Drug Administration-approved library to identify antibiofilm compounds
against Francisella novicida (286); (ii) been used to model biofilm formation by Acin-
etobacter baumannii, Burkholderia cepacia, Burkholderia multivorans, Campylobacter
spp., and species in polymicrobial infections, such as the P. aeruginosa Liverpool
epidemic strain and oral streptococci (287–292); and (iii) been applied for evaluation of
the antibacterial and antibiofilm activities of alternative therapeutic strategies against
a multitude of pathogens, including S. aureus, MSSA, MRSA, and Acinetobacter bau-
mannii (293–295).

The free-living nematode C. elegans has been used to model infections by most
Gram-negative bacteria, including E. coli, Burkholderia pseudomallei, B. cepacia complex
(BCC), P. aeruginosa, and Yersinia pseudotuberculosis, through the feeding methodology
(296–300). The C. elegans-BCC interaction studies provided insights into the identifica-
tion of the roles of specific biofilm-related virulence factors, including (i) the
autoinducer-dependent acyl-homoserine lactone (aidA), (ii) the phenazine biosynthesis
regulator (pbr), and (iii) the host factor phage Q (hfq) surface-associated lipoproteins
(261, 301–307).

A few reports involve less common invertebrate hosts for modeling of biofilm
infections, such as (i) the ciliated protozoan Tetrahymena pyriformis for Legionella sp.
and K. pneumoniae biofilms, (ii) the amoebae Acanthamoeba spp. for Legionella sp. and
nontuberculous mycobacterium (NTM) biofilms, and (iii) the soil-living amoeba Dictyo-
stelium discoideum for A. baumannii, Legionella sp., P. aeruginosa, and S. aureus biofilms
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(308–314). There have been attempts to employ plants, such as the duckweed Lemna
minor and the wounded alfalfa Medicago sativa, to allow biofilm growth of Burkholderia
cenocepacia and S. enterica (315–317). Arabidopsis thaliana (thale cress) is a popular tool
in plant molecular biology that has been utilized as a host system to study B. subtilis
and P. aeruginosa biofilm formation (318, 319).

Vertebrate Animal Models

Vertebrate animal models have been used extensively to mimic human biofilm
infections and to test antimicrobial efficacy (320, 321). Localized mammalian animal
models may refer to skin and soft tissue infections experimentally studied by use of
infected excisional wounds, partial-thickness abrasions, scratches, burns, abscesses, and
surgical sites. Apart from the pathogen of interest, experimental variation can also
include the mammalian host by alteration of its immunological state (5, 266, 321–338).
Here we include some examples from the literature which underline the recent efforts
and achievements in the field of vertebrate-based biofilm formation and evaluation.

The optically clear zebrafish, Danio rerio, has been applied for P. aeruginosa biofilm
imaging and for biofilm formation quantification of the bacterial fish pathogen Ed-
wardsiella tarda and the pig pathogen Streptococcus suis (339–342). Zebrafish has also
been used to study Mycobacterium haemophilum and to evaluate oral pathogen
adhesion in a vertebrate orointestinal model (343, 344).

Mouse model biofilm formation has been described for (i) a multidrug-persistent A.
baumannii murine wound infection to evaluate therapeutic solutions against trauma
and surgical infections in hospitalized patients (345) and (ii) BALB/c and C3H/HeN mice
to study chronic P. aeruginosa wound infection establishment after a third-degree burn
with skin necrosis (346).

Reports for in vivo porcine skin infection models are surprisingly scarce given, for
example, the MRSA-associated skin wound model that examines the effective bacterial
load reductions of various methods of debridement (hydrosurgery and plasma-
mediated bipolar radiofrequency ablation) (347). Antimicrobial photodynamic therapy
(aPDT) has been applied against a variety of pathogens implicated in acute and chronic
biofilm-associated infections. In order to test the efficacy of photosensitization, various
animal models have been applied. Mouse, rat, and pig wound, osteomyelitis, and
arthritis models as well as dog dental infection models revealed the therapeutic
potential of PDT against pathogens, including streptococci, MSSA, MRSA, P. aeruginosa,
A. baumannii, P. gingivalis, and Fusobacterium nucleatum (322–327).

Rat models are in constant use due to their amenability to wound and infection site
colonization without the requirement of disturbing factors (foreign bodies or diabetes
mellitus induction), allowing a correlation with rat age, location of the wound, and size
of the inoculum (348). Mouse models employing tissue cages and catheter infection
can provide information about the antimicrobial efficacy of biomaterial coatings and
host-pathogen interactions (349, 350). In the field of implanted device-associated
infections, a major model involves totally implantable venous access ports (TIVAPs)
implanted in rats. This model allows monitoring of bacterial biofilm development,
physiology, and prevention strategies by use of inocula of four bioluminescent patho-
gens, including S. aureus, S. epidermidis, E. coli, and P. aeruginosa (351). Along with rat
models, rabbits have also been used in prospective animal studies to investigate, for
example, the effect of a 60-�A implantable direct-current fusion stimulator on the
implant-related infection rates in a postoperative spinal wound infection model. All
sites were inoculated with MSSA, but no significant difference was observed for the
implant and bone infection rates and the bacterial load (352). Another observation
found by use of an indwelling device rat model was the inhibitory effect of QS
disruption via RNAIII-inhibiting peptide (RIP) on S. epidermidis infections (333).

Titanium implants have been used to examine the inhibitory and prophylactic
effects of gentamicin coatings on titanium oxide surfaces (bioactive TiOB) (353).
Likewise, murine osteomyelitis models have been developed to monitor immune
responses occurring during S. aureus infection and healing (interleukin-4 [IL-4] and
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gamma interferon) following implant placement after bone fractures. A fracture fixation
murine model employed skeletally mature C57BL/6 mice that were treated with Ti
fracture fixation plates and screws after femur osteotomy (354). A rat model of acute
foreign-body osteomyelitis was used to evaluate the role of the E. faecalis ahrC and eep
genes in biofilm formation and virulence. Stainless steel orthopedic wires were inocu-
lated with E. faecalis OG1RF �ahrC and Δeep isogenic mutants and implanted into the
proximal tibiae of rats (355). In an S. aureus-associated murine osteomyelitis model, a
fixation plate was employed for debridement of the fracture during a revision surgery,
followed by the placement of a vancomycin-laden implant. Infection monitoring was
achieved via bioluminescence imaging, X-ray, and micro-computed tomography (�CT)
for the evaluation of both osteolysis and bone formation (328).

An implantable-cage MRSA infection model using male albino guinea pigs was
developed, and treatment efficacy against planktonic and biofilm infections was eval-
uated for the most commonly prescribed antimicrobial agents. Antimicrobial testing
concluded with an optimal combination of fosfomycin and rifampin against implant-
associated MRSA infections (356). Rabbits have also been used in models of spinal
implant S. aureus infections to assess the antimicrobial potential of modified Ti pedicle
screw coatings as well as the efficacy of front-line antistaphylococcal drugs (357, 358).

The majority of models developed for the study of gastrointestinal colonization and
biofilm formation are murine, with an emphasis on colitis. One of these mouse models
identified the importance of the stringent response regulator DksA for Salmonella
pathogenicity, virulence, and biofilm formation. During early stages of S. Typhimurium
infection, DksA is induced at the murine midcecum and is required for systemic
infection (359). Likewise, the contribution of other bacterial species to early GI coloni-
zation was proved by use of a Clostridium difficile colon and cecum mucus mouse
model with FISH application (360). A notable reported intestinal model involves eval-
uation of Shigella flexneri adhesiveness in the guinea pig gut. Deficient LPS inner core
biosynthesis presented by the ΔrfaC mutant resulted in enhanced biofilm formation on
and adhesion and invasiveness to human epithelial cells, an observation that could be
utilized for the development of new therapeutics. It was also concluded that fitness
gains through host adhesion and strong biofilm formation did not replace the effect of
fitness loss due to LPS deletion on survival rates (361).

Mouse models have also been applied to mimic biofilm-associated UTIs as well as to
evaluate the correlation between host immune systems and local defense factors, the
attributed infection (nephron obstruction and pyelonephritis), and treatment (362).
Future UTI models may utilize human-mouse chimeras based on severe combined
immunodeficient (SCID)-hu mice in order to achieve a better match with human
conditions (321).

P. aeruginosa is of utmost importance in chronic lung infection, and efforts to reveal
the relationships between the vertebrate host and virulence factors are long-standing
(329). A murine inhalation model was developed to connect chronic P. aeruginosa
nasopharyngeal carriage with lung infection, which complicates and increases resis-
tance to therapeutic agents (363). In a P. aeruginosa and S. aureus coinfection mouse CF
model, P. aeruginosa isolates were found to outcompete S. aureus at early stages of
chronic infection (364). Moreover, the therapeutic potential of inhaled liposomal ami-
kacin was tested in a P. aeruginosa rat lung infection model (330). P. aeruginosa biofilms
formed on murine tumors have also been used to examine the efficacy of ciprofloxacin,
colistin, tobramycin, and their combinations (331).

Oral biofilms are a major chapter in biofilm-related literature, and the quest for
animal models in closer proximity to humans leads to the exploitation of primates. In
a screening effort to identify an optimal host for monitoring Aggregatibacter actino-
mycetemcomitans, the leading cause of periodontitis in humans, Macaca mulatta
(rhesus [Rh] monkeys) ranked as the first choice. Rh monkeys provide an established
oral habitat to validate A. actinomycetemcomitans-mediated periodontitis (365). Rh
monkeys have also been tested for age-mediated apoptosis gene expression in oral
mucosal tissues. The transcriptomic analysis of apoptotic gene expression reflects
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decreased apoptotic phenomena in the oral mucosa of aging animals that conse-
quently may increase dysregulation in anti-inflammatory responses and induce disease
(366).

A murine periodontitis model combined with genomics and quantitative PCR was
used to examine the role of host factors in persistent subgingival biofilms (336).
Likewise, a rat model of A. actinomycetemcomitans-induced periodontitis was com-
bined with RT-PCR for versatile applications, ranging from genetic reduction to thera-
peutic efficacy evaluation according to exopolysaccharide variations (367). Another rat
model, the in vivo extraradicular biofilm model, is more inclusive, as it may facilitate
identification and quantification of biofilm-forming bacteria by use of real-time PCR
(rt-PCR) and micro-computed tomography (368). Chinchillas (Chinchilla lanigera) have
been employed for study of middle ear infections in an attempt to establish realistic
infection models, to overcome limitations in biofilm analysis, and to correlate the
sequence of events in polymicrobial infections with the host immune system. A
chinchilla otitis media model involving an NTHi 86-028NP isolate and an isogenic
phosphorylcholine (PCho) transferase (licD) mutant was deployed to show that PCho
facilitates biofilm stability and alleviates the host immune response, promoting NTHi
infection and increased persistence (369).

Biofilm treatment efficacy testing is a field that demands available surfaces and
assays, and rabbits and guinea pigs have been tested toward this end. A rabbit otitis
model examined the efficacy of a nanoporous middle ear implant coating releasing
ciprofloxacin against P. aeruginosa (370). In another study, a guinea pig animal model
combined with otoendoscopy, histology, and bone CT was used to examine the
inhibitory effect of a vancomycin-eluting nanofiber mat against MRSA biofilms formed
on ossicular prostheses and middle ear infections (371).

Animal models offer insight into the interplay of basic biofilm features and host
defense mechanisms (372). However, the risk of coincidental assessment of the exper-
imental conditions is high, and most mammalian models are considered not identical
in effectively reproducing the major infectious entities within the human host (Fig. 4).

IN VIVO IMAGING TOOLS

Bioluminescence imaging takes advantage of bacterial cloning vectors optimized to
allow for the expression of luciferin in different bacterial cells (373). As a result, these
microbial cells “glow in the dark,” and a sensitive imaging camera is able to capture
images of small animals, revealing both the location and intensity of the infecting
microorganisms in real time, in a noninvasive manner. This technology has dramatically
reduced the number of animals needed to obtain statistically significant data on
antimicrobial therapeutics (374). Previously, animals were generally sacrificed at dis-
crete time points, followed by tissue removal, homogenization, and CFU culture and
enumeration. This has often left unanswered the question of what happens at later
times, as many antimicrobial treatments are highly effective at early time points but the
microbial cells regrow when the initial antimicrobial action has ceased (351, 375).
Scarce protocols examine the dynamic processes of biofilm formation, bacterial load,
infection physiology, and response to treatment for in situ models of implantable
devices. Bioluminescence combined with a totally implantable venous access port
model has been used to assess localized and systemic infections related to CVC in rats,
reproducing clinically significant situations of foreign body-associated infections (351).
These models have been valuable in the investigation of aPDT, which involves photo-
sensitizing dyes topically applied to the infection site and subsequent harmless visible
light illumination and reactive oxygen species (ROS) generation (324, 376). Biolumines-
cence imaging of localized infections not only is well suited for monitoring the
effectiveness of experimental antimicrobial therapeutics but also has a major role in the
study of microbial virulence and pathogenicity. A virulence-specific study of an oral
mouse infection model that employed a multiplexed biophotonic imaging-based
inducible luciferase reporter was used to track individual species temporally and
spatially in polymicrobial biofilms (377). Bioluminescence technology has expanded to
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include imaging in three dimensions for biofilm infections that would otherwise be
challenging to monitor and treat (378–382).

Near-infrared fluorescence molecular probes have been delivered by local injection
and used to visualize inflammation as well as implant-related biofilm infections in a
rapid and minimally invasive manner, therefore aiming at detecting orthopedic-related
infections (383). The hydro-sulfo-Cy5 probe detects ROS generation following
bacterium-free or biofilm-containing implant application. On the other hand, diamino-
cyanine sulfonate was used to detect ad hoc biofilm-associated nitric oxide production
(384).

The dye C-SNARF-4 coupled with ratiometric imaging allowed 3D visualization in
real time of the extracellular pH variation in the growth of dental biofilms (385).
Ligand-targeted ultrasound contrast agents (UCAs) coupled with optical and high-
frequency acoustic microscopy have facilitated detection, visualization, and quantifica-
tion of S. aureus biofilm matrices in both test tube and animal model adjusted surface
cultures (386). Noninvasive 3D OCT can be used to identify as well as visualize, in real
time, in vivo bacterial microcommunities involved in biofilm-associated otitis media
(387). OCT has been coupled with low-coherence interferometry to image the biofilm
layer on the sensitive, ultrathin tympanic membrane in the middle ear (388). Another
optical technique, intraoral cross-polarization swept-source OCT (CP-OCT), provided an
additional tool to visualize the in vivo density of the biofilm formed between the
enamel and the interface (389). Spatially resolved MRI was used to study structures
within dynamic physical and chemical material systems, and also in biological systems,
with a limited number of biofilm applications (390). In an analogous fashion, micro-
positron electron tomography coupled with the radioactive probe [18F]fluoro-
deoxyglucose was used to monitor S. aureus biofilm infections and antimicrobial
therapy in a mouse model (391).

Optical, radiographic, and �CT imaging modalities have been used as tools to
monitor orthopedic implant biofilm infections longitudinally, to assess the bacterial
load, and to detect osteolysis (392). Multiresolution imaging coupled with in vivo
labeling uncovered the supplemental tasks of the matrix components of V. cholerae
biofilms (393). Maltodextrin-based imaging probes (MDPs), a family of light-emitting
contrast agents chaperoned with maltohexaose, enable in vivo bacterial detection with
paramount responsiveness through a cell-specific mechanism. MDPs are rapidly inter-
nalized through the maltodextrin transport pathway and selectively accumulate within
bacteria at low concentrations, with enhanced specificity over that for mammalian cells
(394).

Finally, a bioluminescence-fluorescence combination containing a naturally light-
emitting bioluminescent S. aureus strain and fluorescent neutrophils from an enhanced
green fluorescent protein (EGFP)-expressing mouse strain (LysEGFP) was applied for
visualization of a surgical site infection in the knee joint in a mouse model. In vivo
bioluminescence imaging was used to quantify the microbial burden. Accordingly, in
vivo fluorescence imaging was used to assess the neutrophil inflammatory response. In
the same mice, bioluminescence and fluorescence optical imaging combined with �CT
imaging allowed for visualization of 3D anatomical details. This triple imaging combi-
nation was proposed to simultaneously track bone biofilm infections, including inflam-
matory responses and local anatomical modifications, in a noninvasive manner (381).

SHAPING UP THE METHODOLOGICAL PIPELINE
Literature Search on Method Implementation

Extensive electronic literature searches provided additional information on the
current methodological landscape of biofilm research. Queries were conducted to
search the literature from the first biofilm report in October 1988 through August 2017
by using the keywords “biofilm(s) and/or assay” (particularly involving the colorimetric
assays applied in the lab) and “biofilm(s) and/or device” separately (Fig. 5). Two
specialized exceptions, for “microfluidics” (“bioflux” and “microfluidic device”) and
“Calgary” (“MBEC device” and “MBEC HT”), were introduced to the query search. Articles
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without an abstract or in a language other than English and papers with irrelevant
content were excluded from the search process.

What we deduce from the graphical representation of biofilm-based methodology
publications is that the number of research articles for assays is higher than that for
devices, with an average ratio of 7 assay publications to 3 device publications and a
statistically significant difference (P � 10�4). It is also evident that in the approximately
30-year timeline of the query, methodologies are irregularly distributed, indicating a
lack of consistency and approval. Figure 5 reveals that (i) the peg lid CBD-MBEC and
microfluidics-based devices stand out, with a dynamic presence and increasing rates of
use; (ii) the drip-flow cell reactors and rotating-disk reactors might be occasional
choices for biofilm growth; (iii) the Kadouri system has remained an interesting alter-
native in the past decade; (iv) CV, XTT, Congo red, Live/Dead BacLight, and resazurin
assays show continuously increasing rates of use; and (v) DAPI appears to be a less
popular yet solid choice that never acquired a dynamic rate similar to those of the five
major assays for biofilm viability assessment. Another interesting observation is that
significant development of different technologies for both assays and devices took
place between 2008 and 2015 (up to 12 different assays and 7 different devices).
Although an exponentially growing number of assays and devices were developed and
applied, only a few have prevailed. More specifically, CV, XTT, and Congo red assays
were the predominant methodologies among assays, while the Bioflux, Calgary, and
drip-flow technologies dominated among devices over the past 6 years. This observa-
tion leads us to the conclusion that experimentation in developing novel methodolo-
gies in the biofilm research area is declining and that most of the methods have been
abandoned by the research community.

Through implementation of the same search criteria, 4.9% of the publication fraction
is dedicated to biofilm techniques over biofilm research (1,839/37,833 publications).
This percentage is extremely low, taking into consideration the gap in studying
multispecies biofilms under realistic environmental or clinical conditions. In order to
strengthen our result that the percentage of publications regarding biofilm techniques

FIG 5 Illustrative quantitative and time-dependent representation of biofilm-based methodology publications for currently used devices and assays. CV, crystal
violet; DAPI, 4=,6-diamidino-2-phenylindole; CTC, oxidized 5-cyano-2,3-ditolyl tetrazolium chloride; AO, acridine orange; AB, alamarBlue; DMMB, dimethylm-
ethylene blue; BTA, biotimer assay; FDA, fluorescein diacetate; XTT, 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino)carbonyl]-2H-tetrazolium hydrox-
ide; CR, Congo red.
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over biofilm research is low, we attempted to evaluate the publication fraction of
another research area’s methodological achievements. Genome editing is a large and
promising area of research, leading the way toward exploring the potential of new
developments by implementing a wide range of novel tools and techniques (395).
Interestingly, the methodologies applied in the study of genome editing, until Sep-
tember 2017, amounted to 23.4% (2,355/10,062 publications) of publications, with the
following keywords used as queries in PubMed searches: (“genome editing” or “chro-
mosomal editing” or “genome inversions” or “chromosomal inversions” or “genome
translocation” or “chromosomal translocation” or “structural variations” or “engineered
nucleases” or “nucleotide repeats” or “DNA repeats”) and (“double-strand breaks” or
“DSBs” or “zinc-finger nuclease” or “ZFN” or “transcription activator-like effector nu-
clease” or “TALEN” or “clustered regularly interspaced short palindromic repeats” or
“CRISPR” or “CRISPR-associated protein 9” or “Cas9” or “RNA-guided engineered nu-
clease” or “RGEN”).

The field of biofilm research has proved that the establishment and definition of a
“perfect method” comprise a rather precarious generalization. Taking for granted the
uniqueness of bacterial biofilms as vivid microcommunities, the approach of a “one-
size-fits-all” methodology would abolish any attempt at a thorough understanding.
Pluralism in available methodologies is instrumental in order to address basic questions
about biofilm formation, structure, adherence, physiology, kinetics, and interactions
with the host.

State-of-the-Art Methodologies in Biofilm Investigation

The majority of information that constitutes the current knowledge on biofilm
formation patterns is based on in vitro studies. Combined technologies simulate biofilm
growth and formation conditions. However, studying biofilms in the lab provides
information which differs significantly from our experience in clinical practice. Such an
observation defines the need for further experimental accuracy in order to link in vitro
and in vivo outcomes. The host habitat, regarding immunity parameters as well as the
components of the human body (tissues [acting as adherence surfaces] and body fluids,
such as urine and blood), constitutes a challenging landscape for bacterial growth
which differs from experimental conditions (396). Some state-of-the-art compositions
and devices have already entered the market over the last decade (Table 4).

Biofilm growth detection based on molecular probes or staining agents enables
direct observation, quantification, and topographical mapping of bacterial growth in
vivo or on medical tool surfaces (397–402). A number of adherence assays exploit
biofilm properties and detect biofilm formation and structure (403, 404). Indwelling
medical devices carrying color change indicators integrated in substrates prone to
degradation in the presence of bacteria mediate detection when applied in vivo (405,
406). Immunoassays and enzymatic methods certify biofilm presence and assist in
quantification (407, 408). Other in vivo theranostic devices employ imaging and sensing
tools enabling biofilm “fingerprint” detection through data collection and analysis of
thickness, growth speed, and physicochemical properties (409–412).

Combinatorial application of older and conventional methodologies for both in vitro
and in vivo biofilm investigation constitutes a significant resource for the launch of
cutting-edge tools. Enhancement of techniques by use of sensing modules, bioinfor-
matics, and the inspirational introduction of biomaterials in surface construction have
provided alternative insights into biofilm research. Where lies the difference between
research lab methodologies and inventions? What is the clinical significance of the
innovation landscape? Sum-of-the-parts comparative analysis gives answers regarding
the differences between conventional methodologies and innovative tools. Commer-
cially exploited staining methods differ from those applied in the academic or clinical
lab, including a wider variety of biocompatible dyes offering a speedy and easy way to
detect results. In-host commercial theranostic devices allow real-time information on
the applicability and success rate of the technique right from the bedside. Finally,
computational and biosensing methods embedded in daily routines, even adjusted to
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the size of a toothbrush, set the road for the development of devices that will
eventually enter clinical settings.

Extending beyond Commonplace Platforms

Quartz tuning forks (QTFs) have been applied for P. aeruginosa biofilm growth

monitoring and (bio)sensing (28, 413). The adhesion dynamics that determine biofilm

development are monitored by use of piezoelectric tuning forks. QTFs also enable
biomass growth detection as well as antibiotic testing and determination of nanome-
chanical surface properties (414).

TABLE 4 Innovative platforms for biofilm evaluationa

Patent no. Method Description Reference(s)

US 8399649 B2 Molecular probes for biofilm-related
protein expression

mucE and algW gene expression determination facilitates
monitoring of biofilm formation initiation in human
specimens and indwelling devices

397

US 20120322048 A1 Topographical detection on living
tissues

Fluorescent staining agents (i.e., alcian blue and ruthenium
red) topically react with extracellular matrix biofilm
components found on wounds

398

EP 2537601 A1, EP
2634260 A1

Colorimetric detection assay The detection kit contains a staining solution (i.e., aqueous
solution of Coomassie blue, crystal violet, safranin,
ruthenium red, rhodamine, or erythionine) and a rinsing
solution (i.e., oxidizing or chelating agent) which identify
the presence of biofilms on surfaces upon application

399, 400

US 7955818 B2 Microbial culture viscosity
measurement

The motion of a charged particle driven by electrical,
magnetic, or electromagnetic field application is
indicative of biofilm presence in a microbial culture

401

US 20080176265 A1 Potassium permanganate staining
solution

Potassium permanganate is applied as a slime matrix
staining agent or contrast enhancer for biofilm
microscopic visualization or quantification

402

US 20060275847 A1 Combinatorial automated structure
analysis

Electromagnetic radiation and CLSM assays of fluorescent
biofilm moieties are combined with computational
image analysis to provide a multiplanar structure
determination

403

US 20030177819 A1 Tools to validate clinical sterility A flowchart of metabolic, imaging, and immunological
assays can be used to certify the absence of biofilm
formation on medical surfaces and devices
(respirometry, Live/Dead staining, CLSM, SEM, AFM, FISH
probing, ELISA)

404

US 20140356901 A1 Urine-detectable colorimetric assay Indwelling device colonization is detected by the
degradation of a polymeric substrate doped with a
blood-soluble and urine-passable dye (i.e., methylene
blue, �-carotene, rifampin, Evan’s blue, indocyanine
green, or betanin)

405

US 20140352602 A1 Hydration/pH change indicator Color change of a moisture indicator identifies biofilm
presence on catheter surfaces

406

US 20100285496 A1 Lateral flow immunoassay Labeled antibodies certify the presence of a biofilm-related
target analyte

407

EP 1067385 B1 LAL assay The reaction of LAL with bacterial endotoxins or
lipopolysaccharides mediates surface-associated biofilm
load quantification

408

WO 2014052449 A1 Photoacoustic flow cytometer A photoacoustic flow cytometer is applied to blood and/or
lymphatic circulation, and photoacoustic pulse analysis
enables biofilm quantification

409

US 8697375 B2 MRI-based diagnosis MRI scanning detects probes that are selectively bound to
biofilm found either on mammalian tissues or on
indwelling medical devices

410

US 8233957 B2 Electrochemical sensing system pH and impedance sensor modules placed onto catheter
surfaces calculate biofilm thickness, speed of growth,
and chemical properties

411

US 20120295216 A1 Diagnostic ultrasonic toothbrush An ultrasonic sensor detects biofilm thickness by temp,
oximetry, proximity, and pH measurements

aCLSM, confocal laser scanning microscopy; SEM, scanning electron microscopy; AFM, atomic force microscopy; FISH, fluorescence in situ hybridization; ELISA, enzyme-
linked immunosorbent assay; LAL, Limulus amoebocyte lysate; MRI, magnetic resonance imaging.
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A polyurethane-coated, magnetostrictive, ribbon-like sensor as part of a flow system
connected to a bioreactor has been used to wirelessly monitor P. aeruginosa biofilm
formation with the aid of magnetic field telemetry (415). Electromagnetic (EM) wave
sensors offer a reliable, real-time, cost-effective methodological tool for in situ P.
aeruginosa growth analysis. EM wave sensors mounted on a polymethyl-methacrylate
microfluidic cell structure contributed to the early detection of biofilm growth upon
excitation at microwave frequencies (416).

Chronicity due to AMR stems from the lack of detection methodologies for clinically
relevant biofilms formed at an early stage. A shift in this reality would potentially
support better treatment options. This concept was the foundation for development of
a coupled optical and acoustic imaging technology that noninvasively detects and
quantifies biofilm biomass. Ligand-targeted UCAs assessed the ability of S. aureus to
form communities in vitro (386). High-frequency scanning acoustic microscopy (SAM)
coupled with UCAs facilitated ultrasonic imaging and quantification of the mechano-
elastic biofilm properties. This method was proven to be efficient, though the similarity
of biofilm acoustic impedance (1.9 MRayl) and that of human soft tissues (1.35 to 1.85
MRayl) poses a serious limitation to in vivo imaging.

Bacterial aggregates require specific spatial distribution and environmental param-
eters to develop physicochemical properties that confer clinically relevant phenotypes
(virulence factor production, AMR, and biofilm formation) contributing to strain-specific
pathogenicity (417–419). The technical drawback of monitoring the behavior of these
populations due to their small size (101 to 105 cells) was recently overcome by use of
a laser-based lithographic technology that provides microscopic printing of the 3D
geometry of the bacterial aggregates, along with scanning electrochemical microscopy
(SECM) enabling redox-active, biofilm-derived small-molecule quantification (for exam-
ple, that of pyocyanin from P. aeruginosa) (420–422). Coupling of these two analytical
tools achieves real-time quantitative monitoring of bacterial aggregate interplay and
assesses the impacts of spatial organization and chemical signaling on sociomicrobi-
ology.

Extending the use of 3D printing technologies, a novel material consisting of the
broad-spectrum antibiotic nitrofurantoin and the biodegradable polymer poly(L-lactic
acid) was manufactured to mimic catheters. The 3D-printed disks exhibited �85%
biofilm inhibition; therefore, an antimicrobial option has emerged for medical device
coatings (423). One of the most recent setups for real-time E. coli and P. aeruginosa
biofilm biomass growth evaluation was achieved through a sensing microsystem in
which a microfluidic flow reactor employs a surface acoustic wave (SAW) sensor and
electrodes constituting a source for current signals. This electric field is coupled with
the use of gentamicin, and therefore this integrated sensing platform serves for biofilm
growth monitoring and biofilm elimination (424). A novel impedimetric sensing system
based on the interdigitated microelectrode microsystem envisions paving the way for
the development of smart biosensors for rapid implant-associated biofilm identification
and removal. In short, this microsystem allows label-free E. coli biofilm growth detection
in microfluidic channels by evaluating the fractional relative change in real time as well
as monitoring the threshold-activated bioelectric effect on the in situ treatment process
(425). A custom-made surface plasmon resonance (SPR) biosensor was recently applied
for E. coli biofilm formation investigation on gold-plated glass disks. In particular, the
angle-based SPR biosensor allowed real-time capture of the SPR curve as well as
calculation of the refractive index change, thus offering a complete picture of the
biofilm formation cycle (426).

CONCLUDING REMARKS

It is evident that most experimental biofilm procedures provide descriptive and
quantitative information, but combining tools and methods unravels more pieces of
the puzzle. Most of the conclusions obtained here are derived from in vitro studies, yet
their relevance to the processes and methodologies occurring in vivo are a subject for
further consideration and experimentation. Recalcitrant and persistent biofilm-
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associated diseases have raised the need for new therapeutic approaches and methods
for reliably culturing mature biofilms and evaluating their chemical, structural, and
physiological characteristics.

The lack of consistent and robust animal biofilm models is perhaps the most critical
element missing from the equation. It appears that engineering-driven approaches give
and will continue to give methods and tools transcending the current norm and status
of biofilm analysis. This pool is still in the periphery of clinical knowledge. Thus, the
fundamental questions remain partially answered. That is, how do we detect biofilm
formation at the bedside, and what is the best course of action for eradication?
Commercially available kits and the wealth of research information can educate but
barely provide comprehensive and articulated answers. A more compelling set of
answers may arise when the intersection of clinical and engineering approaches
becomes relevant.

Advances regarding the microbiome and unculturable bacteria designate the im-
perative need for reliable tools for thorough investigation of host-biofilm interactions.
Consequently, the establishment of robust biofilm susceptibility assays also remains a
challenge for clinical entities. Information stemming from combinatorial assays may
provide comprehensive and critical insights into any given biofilm-associated clinical
query.
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