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Abstract

The nervous system regulates immunity and inflammation. The molecular detection of pathogen 

fragments, cytokines, and other immune molecules by sensory neurons generates 

immunoregulatory responses through efferent autonomic neuron signaling. The functional 

organization of this neural control is based on principles of reflex regulation. Reflexes involving 

the vagus nerve and other nerves have been therapeutically explored in models of inflammatory 

and autoimmune conditions, and recently in clinical settings. The brain integrates neuro-immune 

communication, and brain function is altered in diseases characterized by peripheral immune 

dysregulation and inflammation. Here we review the anatomical and molecular basis of the neural 

interface with immunity, focusing on peripheral neural control of immune functions and the role of 

the brain in the model of the immunological homunculus. Clinical advances stemming from this 

knowledge within the framework of bioelectronic medicine are also briefly outlined.
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INTRODUCTION

“Immunological science is in the midst of a revolution”—the opening words of the preface 

written more than 30 years ago by William Paul, the founding Editor of the Annual Review 
of Immunology (1). Dr. Paul’s vision of this then new journal was that its timely reviews 

would have a critical role in helping immunologists keep current with the rapidly changing 

field, a task that is even more difficult for people in other fields with interest in immunology.

The first 100 years of modern immunology were focused on understanding the role of 

hematopoietic cells in mediating the response to pathogens, and the acquisition of long-term 

immunity. More recently, the cytokine theory of disease; the clinical success of monoclonal 

antibodies in the therapy of rheumatoid arthritis, inflammatory bowel disease (IBD), and 

other cytokine-mediated diseases in humans; and the continuing successes with the 

development of immunotherapy to treat a variety of neoplasms have continued to elevate the 

importance of understanding immunity for the benefit of human health. Immunology has 
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embraced and merged with fields that were previously viewed as “allied” but now occupy a 

central role in the understanding of immunity, including molecular biology, genetics, and 

oncology. Preeminent among these is neuroscience. Studying neuro-immune interactions 

and communication generates conceptually novel insights of interest for therapeutic 

development. It is increasingly recognized that in addition to the immune system, the 

nervous system contributes resources to protect the host in injury and infection (2, 3). The 

intersection of neuroscience and immunology has launched the new field of bioelectronic 

medicine, focused on mapping molecular mechanisms that can be controlled using 

bioelectronic devices that modulate specific neural circuits. Pilot clinical trials have reported 

success using bioelectronic devices targeting a vagus nerve reflex circuit, the inflammatory 

reflex, in patients with rheumatoid arthritis and IBD (4, 5), and large follow-up trials are 

under way. Accordingly, now is an ideal time to review the current state of neural regulation 

in the context of immunology.

Here we present mechanistic insight into the role of peripheral sensory nerves and efferent 

autonomic nerves in the regulation of immune function and their functional organization in 

pathways operating in a reflex manner (Figure 1). The integrative role of the brain in this 

regulation, in the model of the immunological homunculus, and brain functional alterations 

in inflammatory and autoimmune conditions are summarized. We also point to recent 

clinical implications of this knowledge. Understandably, an extensive review of the entire 

neuro-immune dialogue is beyond the scope of this paper. We refer to prior reviews that 

cover the role of the enteric nervous system in the regulation of immune responses in the 

gastrointestinal tract (6); the communication between neurons and cells with immune 

function [microglia and astrocytes in the central nervous system (CNS)] (7–9); and the 

hypothalamic-pituitary-adrenal (HPA) axis, a major brain-derived immunoregulatory 

mechanism with neural components (10–12).

NEUROCENTRIC PERSPECTIVES

In this section, we provide a brief outline of the nervous system, with a focus on peripheral 

neurons, whose participation in neuro-immune communication is further reviewed. We also 

summarize principles of reflex neural regulation and common features of neurons and 

immune cells that mediate their interactions.

Nervous System Organization

The nervous system comprises the CNS (the brain and the spinal cord) and the peripheral 

nervous system. The peripheral nervous system has somatic and autonomic components. 

Somatic nerves originate in the CNS, innervate skeletal muscles, and provide voluntary 

control of movements. The autonomic nervous system has sympathetic, parasympathetic, 

and enteric components. Sympathetic neurons localized in the spinal cord project to 

paravertebral or prevertebral ganglia and synapse with relatively long postganglionic fibers 

innervating blood vessels, lymphoid tissue and organs, bone marrow, joints, spleen, lungs 

and airways, gastrointestinal tract, liver, kidneys, and other visceral organs (13, 14). 

Ganglionic synaptic neurotransmission is cholinergic, while postganglionic neurons release 

norepinephrine, and to a lesser extent other catecholamines (e.g., epinephrine dopamine), 
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and neuropeptide Y (13, 14). Sympathetic preganglionic fibers also control the secretion of 

epinephrine (acting as a hormone) from specialized chromaffin cells of the adrenal medulla. 

Catecholamines, interacting with G protein-coupled β- and α-adrenergic receptors, mediate 

sympathetic control of heart rate, blood pressure, pulmonary function, hematopoiesis, and 

other physiological processes (13).

The vagus nerve, with cell bodies residing in the dorsal motor nucleus of the vagus (DMN) 

and nucleus ambiguus in the brainstem medulla oblongata, is the main nerve of the 

parasympathetic division of the autonomic nervous system, innervating peripheral visceral 

sites. Vagus nerve efferent (motor) cholinergic fibers project to visceral organs, including the 

lungs, heart, liver, gastrointestinal tract, kidneys, and pancreas and form synaptic contacts 

with postganglionic neurons in proximity to or within these organs. Acetylcholine, the 

principal neuromediator released from postganglionic fibers, interacts with G protein-

coupled muscarinic acetylcholine receptors (mAChRs) that mediate vagus nerve regulation 

of heart rate, gastrointestinal function, pancreatic exocrine and endocrine secretion, and 

other physiological functions. Another segment of the parasympathetic part of the autonomic 

nervous system is represented by cholinergic neurons with cell bodies (somata) localized in 

the sacral part of the spinal cord (15). The regulatory functions of these fibers making 

synaptic contacts with postganglionic fibers in the pelvic ganglion are mainly associated 

with the reproductive organs, large intestine, colon, and bladder (15). The enteric nervous 

system, with neuronal bodies and projections localized in the gut, controls gastrointestinal 

functions (16).

Afferent (sensory) neurons transmitting information from peripheral sites to the CNS are 

also important constituents of the peripheral nervous system. These neurons with cell bodies 

outside of the CNS are pseudounipolar cells with a single process forming a bidirectional 

axon. Afferent neurons with cell bodies localized in the dorsal root ganglia are 

somatosensory and visceral. Somatosensory neurons have their peripheral axons in the skin, 

joints, and muscles, whereas visceral neurons innervate the gastrointestinal tract, liver, 

pancreas, lungs, heart, and other organs. Both types of neurons project to the spinal cord via 

the dorsal horn and synapse with interneurons and relay neurons transmitting the signals to 

the brain (17, 18). Vagus nerve sensory (visceral) neurons are localized in the nodose and 

jugular ganglia. These neurons innervate the lungs, heart, gastrointestinal tract, liver, and 

pancreas and project centrally to the nucleus tractus solitarius (NTS) in the brainstem 

medulla oblongata (19, 20). Vagus afferent neurons run within the same nerve bundle with 

vagus efferent neurons and are about 80% of the total neuronal count. Glutamate is the main 

neurotransmitter released by vagus nerve sensory neurons (20). A well-studied function of 

vagal afferents is transmitting peripheral signals for alterations in metabolic homeostasis, 

including cholecystokinin, leptin, and glucose-like peptide 1 to the brain (20, 21).

Neuronal Reflex Regulation

Nervous system regulation of physiological homeostasis is importantly mediated via 

neuronal reflexes. The origins of neuroscience and reflex regulation date back to the early 

seventeenth century, when René Descartes proposed that animal behavior might be 

explained by reflex functions. In his model, a stimulus such as heat would be transmitted to 
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the brain along hydraulic pressure gradients in nerves and this would activate a 

corresponding signal returning to the body to compensate, in this example, by activating a 

withdrawal reflex. This reflex theory of neuroscience was the principal dogma until the late 

nineteenth century, when Santiago Ramón y Cajal identified neurons as individual cells that 

propagated information in a unidirectional fashion. Thus, by the beginning of the twentieth 

century reflex circuits had been mapped. This was accomplished by selectively cutting or 

stimulating sensory or motor neurons from the periphery to the spinal cord and up into the 

somatosensory cortex of the brain. An understanding emerged that sensory and motor reflex 

arcs traveling from the brain to the spinal cord and out into the peripheral organs provide an 

acute control mechanism for physiological homeostasis.

Leading neuroscientists in the early twentieth century spent decades exhaustively mapping 

reflex circuits controlling physiological homeostasis. Harvey Cushing, the father of modern 

neurosurgery, discovered the reflex that is named for him by inflating a balloon in the 

cranium of a dog and observing the corresponding increase in blood pressure and decrease 

in heart rate and respiratory rate. Interested in understanding the neural circuits that control 

these physiological responses, he divided the vagus nerves and noted that he could isolate 

blood pressure and heart rate responses during the increases in intracranial pressure. As a 

result of these and other similar experiments, by the middle of the twentieth century dozens 

of reflexes involving the vagus nerve and other nerves had been identified as mechanisms to 

control the homeostasis of nearly all of the body’s organ systems—but not the immune 

system.

Reflexes can be relatively simple, e.g., as the axon reflex, or more complex, involving 

multiple neuronal types and CNS integration. In the axon reflex, sensory neurons both detect 

environmental changes and generate a response to these changes (22–24). In this structurally 

simple reflex, action potentials as a result of activation of peripheral axonal endings are 

propagated in an orthodromic fashion (to the neuronal bodies) and then, at a point of 

diversion, this neuronal activation is redirected, in an antidromic manner, back to axonal 

terminals. This results in the release of neuropeptides and other molecules, acting on the 

endothelium, smooth muscle cells, and other axonal terminals. Axon reflexes mediate 

vasodilation and other effects with a role in normal physiology and pathophysiological 

conditions, including asthma (23, 25). In reflexes involving the CNS, an environmental 

change activates afferent (sensory) neurons that signal to CNS interneurons (integrative 

centers) and a response via efferent neural output is generated. A variety of CNS-integrated 

reflexes, including those that are somatic (voluntary), autonomic/visceral (involuntary), or 

both, have been identified. The vagus nerve plays an essential role in reflexes regulating 

cardiac function (baroreflex), gastrointestinal function, hepatic metabolic processes, and 

feeding behavior (26–29). Together NTS (the main brainstem site where vagus nerve 

afferents terminate), DMN (a major source of vagus nerve efferents), and area postrema (a 

circumventricular organ in proximity) form the dorsal vagal complex (DVC), an important 

brainstem integrative and regulatory hub (20). Reflex neural regulation is a key component 

in maintaining homeostasis, but substantial disruption of nervous system architecture and 

functional activity, as in spinal cord injury, may result in eliciting detrimental reflexes (30, 

31).
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Shared Molecular Signaling Between the Nervous and Immune Systems

Niels Kaj Jerne was among the first to point to similarities between the nervous and the 

immune systems, including recognition components and the capability to learn and form 

memories (32). In his paper on the network theory of the immune system he noted, “These 

two systems stand out among all other organs of our body by their ability to respond 

adequately to an enormous variety of signals” (32, p. 387). We now know that in a reciprocal 

fashion, the nervous system is a major source of signals that affect immune function and that 

signals from the immune system have a major impact on the nervous system. These 

interactions are facilitated by anatomical proximity and sharing molecular vehicles of 

communication, including receptors and signaling molecules.

Afferent and efferent nerves innervate the skin and visceral organs and are strategically 

localized to monitor sites of infection and injury. The expression of molecules that in the 

past were solely assigned to immune regulation, including pattern recognition receptors 

(such as TLRs) and receptors for TNF, IL-1β, and other cytokines, has been identified on 

sensory neurons (33–37). In addition, the expression of receptors classically implicated in 

neural communication in the CNS and in peripheral nerve regulatory function has been 

identified on immune cells. For instance, muscarinic and nicotinic acetylcholine receptors 

and α- and β-adrenergic receptors are expressed on monocytes, macrophages, dendritic 

cells, endothelial cells, and T and B lymphocytes (38–40). In addition, immune cells 

synthesize and release acetylcholine, catecholamines, and other molecules originally 

identified as neurotransmitters and neuromodulators (38–41). These newly identified 

features of neurons and immune cells are of substantial biological importance. The 

availability of molecular sensors for detecting pathogen fragments and inflammatory 

molecules on both neurons and immune cells allows their simultaneous involvement in 

inflammatory responses (42). Immune cells utilize their additional neuron-like “equipment” 

in close-range paracrine inflammatory regulation and in relay mechanisms in 

neuroimmunomodulatory circuits (39, 40). Thus, the nervous system and the immune system 

that evolved seemingly different regulatory mechanisms can join forces in defense against 

dangers of life-threatening proportions.

FUNCTIONAL NEUROANATOMY FOR COMMUNICATION WITH THE IMMUNE 

SYSTEM

In this section we review the roles of sensory neurons in communicating alterations in 

peripheral immune homeostasis to the CNS and efferent neurons in regulating peripheral 

immune alterations, and their integration in a reflexive manner. Of note, peripheral immune 

signals can also be communicated to the CNS via nonneuronal humoral mechanisms, 

through circumventricular organs, or via neutrophil, monocyte, and T cell infiltration of the 

brain, as previously reviewed (43, 44).

Sensory Neurons and Immune Challenges

Afferent neurons innervate virtually all organs and tissues of the body and provide a vital 

conduit for communicating peripheral alterations in immune homeostasis to the CNS. 

Immune molecules and pathogens activate sensory neurons with cell bodies in the dorsal 
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root ganglia and central projections to the spinal cord. In the spinal cord these neurons 

communicate with spinal interneurons, and relay neurons projecting to the brain (3) (Figure 

2). A main group of these neurons, designated nociceptors, specialize in transmitting various 

forms of pain, which is also a cardinal feature of inflammation (3, 45, 46). The expression of 

several types of voltage-gated sodium channels, including Nav1.7, Nav1.8, and Nav1.9, and 

transient receptor potential (TRP) ion channels, including TRPV1, TRPM8, and TRPA1, on 

sensory neurons mediates depolarization and specific thermal, mechanical, and chemical 

sensitivities to noxious stimuli (45, 47). Sensory neurons, including nociceptors, also 

express receptors for cytokines, lipids, and growth factors (3). Cytokines, including TNF, 

IL-1β, IL-6, IL-17, prostaglandins, and other molecules released from macrophages, 

neutrophils, mast cells, and other immune cells in the vicinity, interact with sensory neurons 

through these receptors during infection, allergy, and tissue damage (46, 48–50) (Figure 2). 

These interactions result in an increased sensitivity of nociceptors to noxious stimuli, known 

as hyperalgesia, or in direct stimulation of sensory neurons (3, 45, 50). Commensal and 

pathogenic bacteria also activate sensory neurons through the release of specific metabolic 

molecules and toxins, acting on Nav1.7, Nav1.8, Nav1.9, TRPV1, and TRPA1 (42, 46).

Vagus nerve afferent neurons with cell bodies in the nodose and jugular ganglia (in rats and 

humans) transmit peripheral immune information to the brain (Figure 2). Most of the vagal 

afferents are unmyelinated, slow-conducting C-fibers, which can be activated by a variety of 

mechanical and chemical stimuli (19). Some of these fibers, innervating the lungs, airways, 

and other organs, express TRPV1, TRPA1, Nav1.7, Nav1.8, and Nav1.9 and function as 

nociceptors (19, 51, 52). Vagal sensory neurons are activated during bacterial or viral 

infection, cellular damage, and airway allergenic responses (19, 44, 46, 53, 54). This 

activation is mediated by TNF, IL-1β, prostaglandins, serotonin, and other molecules 

released from immune cells, including neutrophils, macrophages, and eosinophils (19, 44). 

These molecules increase neuronal sensitivity to noxious stimuli by lowering the threshold 

for evoking action potentials or directly activate sensory neurons (19, 53, 55) (Figure 2). 

Administration of lipopolysaccharide (LPS), cytokines (including IL-β and TNF), and 

pathogens such as Campylobacter jejuni to mice and rats stimulates vagus nerve afferent 

signaling, which can be traced to the NTS and then to other brainstem and forebrain regions 

(54, 56–59). The expression of pattern recognition receptors (TLR4) on nodose ganglion 

neurons and cytokines, including IL-1β and TNF receptors, on peripheral axonal endings 

provides a mediating mechanism for bacterial products, including LPS and cytokines, to 

activate vagal afferent neurons (33, 34, 37, 55, 57). Recent studies have advanced our 

understanding of the role of the vagus nerve in transmitting information for peripheral 

immune alterations to the brain. Intraperitoneal administration of TNF or IL-1β in mice 

results in increased vagus nerve activity and specific patterns of compound action potentials 

(37). Electrophysiological recordings of these cytokine-specific alterations in vagus nerve 

activity, or neurograms, are not obtained in mice with genetically ablated TNF and IL-1β 
receptors (37). These characteristic electrical patterns are also abrogated in mice with a 

surgically transected vagus nerve distal to the recording electrode, an observation that 

indicates that they are associated with afferent vagal nerve fibers (37). These findings 

indicate that specific peripheral immune signaling may have a characteristic differential 

impact on afferent vagus nerve activity. Further identification of populations of afferent 
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vagus nerve fibers that are engaged in signaling specific alterations of peripheral immune 

homeostasis to the brain is of substantial scientific and therapeutic interest.

In addition to sensing immune molecules and pathogens, afferent neurons actively modulate 

immune responses and inflammation, as demonstrated in experimental IBD (46), arthritis 

(48), asthma (60), skin inflammation and chronic itch (61, 62), and bacterial infection (3, 

42). Sensory neurons release substance P (SP), calcitonin gene-related peptide (CGRP), 

vasoactive intestinal peptide (VIP), and other molecules interacting with the endothelium, 

neutrophils, macrophages, and other immune cells in the vicinity of axonal terminals (3, 42, 

63) (Figure 2). Recent findings have also implicated the release of the neuropeptide 

neuromedin U from sensory and enteric neurons in the regulation of group 2 innate 

lymphoid cell-mediated antibacterial, inflammatory, and tissue protective immune responses 

(64–66).

Experimental evidence indicates that this dual function of sensory neurons may occur in an 

axon reflex-like fashion. For instance, in a mouse model of allergic inflammation and 

bronchial hyperresponsiveness, nociceptors activated by capsaicin release VIP and 

exacerbate inflammatory responses in the lungs (60). The release of VIP from pulmonary 

nociceptors can be directly activated by IL-5, produced by activated immune cells. VIP then 

acts on resident type 2 innate lymphoid cells and CD4+ T cells and stimulates cytokine 

production and inflammation (60). Selective blockade of these neurons by targeting sodium 

channels or genetic ablation of Nav1.8+ nociceptors suppresses immune cell infiltration and 

bronchial hyperresponsiveness in these mice (60). These findings identify lung nociceptors 

as important contributors to allergic airway inflammation (60). Elements of axon reflex 

regulation have also been highlighted during Staphylococcus aureus infection (42). The 

presence of this pathogen triggers local immune cell responses and activation of nociceptors 

innervating the mouse hind paw. Interestingly, genetic ablation of TLR2 and MyD88 or the 

absence of neutrophils, monocytes, natural killer (NK) cells, T cells, and B cells mediating 

innate and adaptive immune responses does not alter nociceptor activation during S. aureus 
infection. These observations indicate that immune nociceptor activation is not secondary to 

immune activation caused by the pathogen. This activation occurs directly, via the 

pathogen’s release of N-formyl peptides and the pore-forming toxin α-hemolysin, which 

induce calcium flux and action potentials (Figure 2). Nociceptor activation results in pain 

and the release of CGRP, galanin, and somatostatin, which act on neutrophils, monocytes, 

and macrophages and suppress S. aureus–triggered innate immune responses (42) (Figure 2). 

S. aureus–induced pain is abrogated and the local inflammatory responses, including TNF 

production and lymphadenopathy, are increased in mice with genetically ablated Nav1.8-

lineage neurons, including nociceptors (42). These findings indicate the role of sensory 

nociceptor neurons in the regulation of local inflammatory responses triggered by S. aureus, 

a bacterial pathogen with an important role in wound- and surgery-related infections. This 

neuronal immunoregulatory function may be of particular therapeutic interest. Recent 

findings also point to the role of neural control in antigen trafficking through the lymphatic 

system, an important process in the generation of lymphocyte antigen-specific responses 

(67). Direct activation of the neuronal network innervating the lymph nodes results in the 

retention of antigen within the lymph, whereas blocking the neural activity restores antigen 

flow in lymph nodes. The antigen restriction is related to nociceptors, because selective 
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ablation of Nav1.8+ sensory neurons significantly reduces antigen restriction in immunized 

mice (67). Furthermore, genetic deletion of FcγRI/FcεRI also reverses the antigen 

restriction (67).

Efferent Autonomic Neurons and Neural Reflexes in Immune Regulation

Efferent autonomic sympathetic and vagus nerve fibers have been actively studied in 

immune regulation. This research has provided evidence for the existence of neural reflex 

regulation of immunity and inflammation. Many diseases are characterized by peripheral 

immune dysregulation and excessive and chronic nonresolved inflammation, including 

sepsis, IBD, arthritis, obesity, and other diseases (21, 68, 69). Therefore, insight into the 

neural regulation of immunity and inflammation is of interest for developing new treatment 

options.

Catecholaminergic regulation of immune functions.—Catecholamines released 

from postganglionic fibers of sympathetic nerves and the adrenal medulla are important 

regulators of immune cell functions (13, 70–73). Norepinephrine and epinephrine interacting 

with adrenergic receptors expressed on neutrophils, monocytes, macrophages, T cells, and 

other immune cells regulate cytokine production and inflammation (Figure 3). This 

regulation is receptor dependent. Signaling through β-adrenergic receptors, and specifically 

β2-adrenergic receptors, is associated with anti-inflammatory effects (70). The intracellular 

cascade downstream of the receptor involves activation of cyclic AMP and protein kinase A 

and leads to suppression of NF-κB nuclear translocation and inhibition of production of 

TNF and other proinflammatory cytokines (41, 70) (Figure 3). Catecholamines acting via 

β2-adrenergic receptors also trigger intracellular signaling, leading to increased production 

of anti-inflammatory molecules, including IL-10 and TGF-β (13). However, signaling 

through α-adrenergic receptors on monocytes and macrophages can result in increased 

production of TNF and other cytokines (70, 74, 75).

Recent research has contributed to extending and deepening our knowledge of 

catecholaminergic regulation of immunity and inflammation. Catecholaminergic signaling 

via the β2-adrenergic receptor mechanism is implicated in the regulation of hematopoietic 

stem cell mobilization from bone marrow (76). Catecholaminergic signals originating from 

postganglionic fibers innervating lymphoid organs play an important role in the regulation of 

lymphocyte trafficking. Activation of β2-adrenergic receptors expressed on lymphocytes 

results in their retention in the lymph nodes (77). This regulation is associated with 

enhanced lymphocyte CXCR4 and CCR7 chemokine receptor responsiveness (77). In mice 

with T cell-mediated inflammatory conditions, activation of β2-adrenergic receptor-

mediated signaling suppresses the egress of antigen-primed T cells from the lymph nodes 

and their migration to inflamed tissues (77). These specific catecholaminergic regulatory 

effects may be essential to controlling inflammatory responses (77, 78). Another recent 

study in mice provided important information about the functional inflammatory 

programming of macrophages in the gut wall and its neural catecholaminergic control (79). 

Macrophages localized in the lamina propria, underlying the epithelium, have a 

proinflammatory programming that is related to their active role in responding to damage in 

the epithelium (79). In contrast, muscularis macrophages deeper in the gut wall have a 
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predominantly anti-inflammatory profile that is enhanced by the presence of pathogen 

(Salmonella) in the bowel (79). Catecholaminergic neurons are a major source of regulatory 

signals for this enhancement, via β2-adrenergic receptors expressed on muscularis 

macrophages (79). This augmentation of macrophage anti-inflammatory function in the 

intestinal muscularis balances protective responses against pathogens and other luminal 

damaging factors (79, 80). The role of neural catecholaminergic signaling in the liver was 

also evaluated in the context of stroke (81). Following cerebral infarction in mice, the 

hepatic invariant NK T cells undergo a transition from a proinflammatory T helper 1 (Th1)-

type phenotype to an anti-inflammatory Th2-type phenotype, including increased IL-10 

production. This is directly implicated in immunosuppression and increased susceptibility to 

bacterial infection following stroke mediated by catecholaminergic output from hepatic 

sympathetic innervations (81). Chemical ablation of hepatic catecholaminergic signals 

alleviates bacterial infection in this stroke mouse model (81). Catecholaminergic signaling 

also causes significant loss of splenic marginal zone B cells, which results in impaired IgM 

production and spontaneous bacterial infection in mice with stroke (82). Selective blocking 

of the β-adrenergic receptor signaling reverses the loss of the marginal zone B cells and 

suppression of circulating IgM levels, and significantly lowers bacterial burden (82). These 

findings have major implications for understanding the neural mechanisms of post-stroke 

immune dysregulation and increased susceptibility to bacterial infection (83–85).

Vagus nerve regulation of cytokine responses and inflammation and the 
inflammatory reflex.—The discovery of vagus nerve control of immunity occurred during 

the course of investigating the effects of injecting a cytokine-blocking molecule, CNI 1493, 

into the brains of rats and mice (86). The expected result was that this molecule would block 

the production of TNF and other cytokines in the brain; unexpectedly, cytokine production 

was also blocked in the heart, liver, spleen, and other organs. Cutting the vagus nerve, as 

Harvey Cushing had done years earlier, enabled isolation of the signals from the brain to the 

peripheral organs, the result being that cytokine production was not inhibited in the absence 

of an intact vagus nerve (86). This provided direct evidence that vagus nerve signals inhibit 

TNF production in the spleen and other organs. If the vagus nerve were transmitting an 

inhibitory signal to the immune system in the reticuloendothelial system, it would then be 

possible to utilize specific neural electrode stimulation parameters to drive action potentials 

in the vagus nerve and inhibit the activity of innate immune responses to endotoxin and 

other stimuli in the periphery (87).

Vagus nerve stimulation significantly suppresses serum and hepatic TNF levels in murine 

endotoxemia, and this effect is abrogated in animals with surgical transection of the vagus 

nerve (vagotomy) (87). Animals with vagotomy also have higher TNF levels (as compared 

to those who have undergone a sham operation), which is indicative of a tonic anti-

inflammatory role of the vagus nerve (87). Stimulation of the nerve below the vagotomy 

level also results in anti-inflammatory effects (87). Acetylcholine, a major neurotransmitter 

utilized by vagus nerve efferent fibers, significantly inhibits LPS-stimulated macrophage 

production of TNF and other proinflammatory cytokines (87). These studies indicated that 

cholinergic signaling along the efferent vagus nerve has anti-inflammatory functions. Vagus 

nerve anti-inflammatory and disease-alleviating functions have been shown in endotoxemia 
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(88–90), sepsis (88, 91), arthritis (92), IBD (93–95), hemorrhagic shock (96), postoperative 

ileus (97), renal ischemia and reperfusion injury (98), and other models of inflammatory and 

autoimmune conditions (69, 99, 100). The role of vagus nerve cholinergic signaling in 

endothelial cell activation and leukocyte trafficking has also been demonstrated (101, 102). 

The α7 nicotinic acetylcholine receptor (α7nAChR), expressed on macrophages and other 

immune cells, was identified as a main mediator of vagus nerve cholinergic anti-

inflammatory output (103, 104). Intracellular mechanisms including suppression of NF-κB 

nuclear translocation, activation of a JAK2/STAT3 cascade mechanism, and signaling via the 

inflammasome mediate cholinergic signals through the α7nAChR that suppress production 

of TNF, IL-1β, and other proinflammatory cytokines (97, 105, 106) (Figure 3).

The resolution of inflammation is an active process of limiting and terminating 

inflammatory responses in restoring immune homeostasis mediated through the 

synchronized action of proresolving mediators, including resolvins, protectins, lipoxins, and 

maresins, and increased neutrophil and macrophage phagocytic activity (107, 108). 

Experiments utilizing vagotomy in a mouse model of zymosan-induced peritonitis indicated 

that vagus nerve cholinergic signaling promotes resolution processes in the lungs and 

abdominal tissues, mediated by netrin-1, an axonal guidance molecule and newly identified 

proresolving molecule (109). Vagus nerve cholinergic signaling was also implicated in 

enhancing inflammation resolution in response to bacterial infection (110). This neural 

control affects peritoneal group 3 innate lymphoid cells and the release of the protective 

resolvent molecule PCTR1 (110). These findings highlighting a role of the efferent vagus 

nerve in inflammation resolution in addition to its anti-inflammatory control suggest that the 

vagus nerve may function as an integrator of inflammatory stages.

Studies on the vagus nerve revealed reflex elements in the neural regulation of immunity. 

Early observations demonstrated that in addition to stimulating afferent vagus nerve activity, 

peripheral administration of IL-1β in rats also activates efferent vagus nerve and splenic 

nerve activity (58). Elucidating the regulatory role of the efferent vagus nerve in 

inflammation complemented this and other studies on the role of the afferent vagus nerve in 

communicating peripheral inflammatory signals to the brainstem. The combined sensory arc 

responding to cytokines and motor arc traveling in the vagus nerve that inhibits cytokines 

was termed the inflammatory reflex (111). In this reflex, vagal sensory neurons, activated by 

cytokines, including IL-1β and other inflammatory molecules, send messages to the 

brainstem NTS that are functionally integrated with efferent vagus nerve anti-inflammatory 

output originating from the DMN (111). Experimental evidence indicates a functional 

cooperation between the efferent vagus nerve and the splenic nerve in the inflammatory 

reflex (40, 88, 112, 113). Vagus nerve fibers from the DMN innervate celiac ganglia and the 

superior mesenteric ganglion (114, 115), which are a major source of splenic nerve 

catecholaminergic neurons (116–118). These ganglia provide an anatomical substrate for an 

interaction between the vagus nerve and the splenic nerve. Activation of the efferent arm of 

the inflammatory reflex by vagus nerve stimulation results in increased splenic acetylcholine 

levels (40). Catecholaminergic axonal terminals in the spleen are in proximity to T cells 

expressing choline acetyltransferase (ChAT), an enzyme responsible for acetylcholine 

synthesis, and β-adrenergic receptors (40, 119). Under vagus nerve control, splenic nerve 

catecholaminergic output through β-adrenergic receptor signaling activates the release of 
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acetylcholine from these ChAT-expressing T cells (40). Acetylcholine further interacts with 

the α7nAChR expressed on macrophages and other immune cells and suppresses release of 

TNF and other proinflammatory cytokines (40) (Figure 3). ChAT-expressing T cells have a 

key role in the circuit, because vagus nerve stimulation does not suppress TNF levels in nude 

mice (lacking T cells) during endotoxemia, and adoptive transfer of ChAT-expressing T cells 

into nude mice restores the effect (40).

Historically, some have simplified the complex interactions between the parasympathetic 

and sympathetic divisions of the autonomic nervous system, suggesting that they always 

work in opposition in the regulation of physiological processes. Advances in neuroimmune 

communication have challenged this view as imprecise. Studies on the inflammatory reflex 

highlighted a noncanonical functional cooperation between vagus nerve (parasympathetic) 

and sympathetic neural signals to achieve regulation of innate immune responses and 

inflammation (40, 120). This realization is substantiated by studies demonstrating that vagus 

nerve stimulation suppresses circulating TNF levels and alleviates the severity of renal 

ischemia and perfusion injury in mice through α7nAChR-mediated signaling in the spleen 

(98). Interestingly, stimulation of afferent vagus nerve fibers also has protective effects in 

this model, which suggests other brain-mediated mechanisms (98). Functional integration of 

the vagus nerve and splenic nerve is also implicated in the regulation of adaptive immune 

responses and B cell antibody production in the spleen during Streptococcus pneumonia 

(121) and in controlling T cell activation and egress from the spleen in experimental 

hypertension (122). Further molecular mapping of these circuits using genetic approaches 

(120) will advance understanding of their functional organization and indicate new 

therapeutic approaches.

Broadening the view of reflex regulation in immunity.—Other neuronal reflexes in 

immune regulation have also been identified, and new interactive relationships and circuits 

have been evaluated (69, 120, 123). The involvement of somatosensory and somatic neural 

components in this regulation has been indicated.

Stimulation of somatosensory signaling to the CNS by acupuncture activates a brain 

muscarinic acetylcholine receptor (mAChR) mechanism that is linked with efferent vagus 

nerve activity and catecholaminergic regulation that suppresses serum TNF, IL-1β, and IL-6 

levels in murine endotoxemia (124). Activation of the sciatic nerve by electroacupuncture 

via unknown mechanisms triggers stimulation of efferent vagus nerve signaling to the 

adrenal medulla that results in increased dopamine release (125). This is associated with 

anti-inflammatory effects mediated through D1 receptors and improved survival in mice 

with sepsis (125).

A neural gateway reflex has been identified in the regulation of the access of autoreactive T 

cells to the CNS in an animal model of multiple sclerosis (126, 127). In this circuit, soleus 

muscle contractions detected by somatosensory neurons result in neural communication with 

the release of catecholamines in the L5 dorsal blood vessels (126). This signaling stimulates 

an IL-6-amplifying mechanism of enhanced chemokine CCL20 expression that results in 

increased T cell entry into the CNS (126). Further elucidation of this reflex may suggest new 

approaches based on neural modulation to target the entry of autoreactive pathogenic T cells 
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into the CNS for therapeutic benefit (127). Maladaptive, pathogenic spinal reflexes have 

been elicited in spinal cord injury at the cervical or upper thoracic level in which the control 

of the brain over spinal autonomic function was lost (30). These reflexes are triggered by 

activation of afferent neurons due to constriction of splanchnic vasculature (30). These 

neurons interact with spinal interneurons, resulting in stimulation of sympathetic signaling 

that causes hypertension and immunosuppression (30, 31, 128). Intervening in these 

circuitries may provide a new approach for treating post-spinal cord injury visceral 

complications and immunosuppression (31, 87).

THE ROLE OF THE CENTRAL NERVOUS SYSTEM

Brain regions and neuronal networks integrate and regulate neuro-immune communication. 

In this section we elaborate on this regulation from the perspective of the immunological 

homunculus (100). This model proposes identifying brain regions that receive and process 

afferent information about specific changes in immune homeostasis and orchestrate brain-

derived immunoregulatory output (Figure 4). We also summarize evidence for alterations in 

brain function during disorders characterized by unbalanced peripheral immune responses.

The Immunological Homunculus

The classical concept of homunculus proposes a somatotopic brain organization in which 

specific cortex areas are associated with processing of sensory information from certain 

parts of the body and other cortex areas are related to motor output and control of peripheral 

body parts. In this model of “the little man in the brain,” the somatic sensory and motor 

representation of body parts in the brain cortex is quite disproportional.

The concept of brain sensory and motor representations of immunity, or the immunological 

homunculus, was proposed in 2007 (100). The brain receives a substantial amount of 

sensory information for alterations in immune homeostasis via spinal and vagal visceral 

afferent nerves and spinal somatosensory neurons innervating the skin, as described in a 

previous section. This sensory information flow arrives in the spinal cord and the brainstem 

and then, via multisynaptic pathways, reaches forebrain regions and cortex areas (17, 20, 

129, 130). Sensory input through spinal afferents is communicated to the thalamus with 

collateral projections to the rostroventrolateral medulla (RVLM), the locus coeruleus (LC), 

and other regions (129). These ascending signals are processed and integrated with cognitive 

functions and behavioral responses via neural projections to the amygdala, the anterior 

cingulate, and the somatosensory cortex (17, 129, 131). Afferent information via vagal 

sensory fibers is signaled to the brainstem NTS and then, through direct or multisynaptic 

projections, is transmitted to the hypothalamus, the cortex, and other forebrain areas (20, 57, 

132).

Pathogens and cytokines, such as IL-1β, can directly activate sensory neurons (3, 50). An 

intriguing and important question is whether sensory neuron activation by pathogens and 

immune molecules engages specific neuronal populations within a sensory nerve. Another 

related question is whether these specific peripheral signals have specific brain 

representations. Identifying selective patterns of afferent vagus nerve activity (neurograms) 

in response to different cytokines, including IL-1β and TNF, is an important first step toward 
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addressing these questions (37). This line of research may further benefit from molecular 

tools recently used to perform genetic molecular profiling of vagal afferents with a role in 

pulmonary and gastrointestinal regulation (133, 134). Brain neuronal activation (c-Fos) 

following intestinal infection with C. jejuni has been detected in the NTS, the area postrema, 

the ventrolateral medulla, the LC, the thalamus, different hypothalamic nuclei, the 

amygdala, and the insular cortex (54). However, it is an open question whether other 

pathogens generate different brain representations and whether those would be different 

from stimuli that act through the same nerves but are not directly related to immune 

homeostasis, e.g., metabolic molecules. The use of neural decoding technology to further 

decipher pathogen and immune molecule signals via peripheral nerves and in the CNS will 

be useful in gaining more specific insight (135). Elucidating brain representations of 

peripheral immune functions and highlighting the specific contribution of sensory immune 

signaling will enable a broader view of the immunological homunculus. Identifying brain 

centers with a role in the regulation of the myriad of innate and adaptive immune functions 

in different peripheral organs will be a challenging task. We should envision cortex and other 

brain representations of the skin, spleen, thymus, lymphatics, bone marrow, liver, lungs, and 

other organs and tissues from the perspective of their involvement in immune responses that 

are communicated to and regulated by the CNS. Thus, a very basic understanding of the 

immunological homunculus will emerge (Figure 4). This will be a dynamic model that will 

change, sometimes in a dramatic way, in cases of major homeostatic disruption of a certain 

immune function or its neural or other forms of communication to the CNS.

CNS control of peripheral immune responses is provided through spinal sympathetic and 

brainstem vagus nerve efferent signaling. Within the framework of the immunological 

homunculus, studying the role of brain regions in motor control of peripheral immune 

function will benefit from current knowledge. Descending projections from the cortex and 

other forebrain areas including the thalamus through collaterals to the RVLM and LC 

control spinal sympathetic neural signaling (129). Descending neural projections from the 

cortex and hypothalamus to the DMC, including the DMN, provide a regulatory control of 

efferent vagus nerve activity (Figure 4). Of note, ascending and descending pathways are 

integrated in the brain within reflexes regulating peripheral physiological processes. Many of 

these reflexes are integrated at the level of the brainstem. The NTS and DMN within the 

DVC integrate afferent and efferent vagus nerve activity (20, 57). The DVC is anatomically 

connected with the RVLM and LC, associated with sympathetic regulation and with 

hypothalamic nuclei (136). One of them, the paraventricular nucleus, plays a major role in 

the HPA axis (12, 137). These key regions in autonomic regulation receive input from the 

cortex and other higher forebrain regulatory centers coordinating autonomic visceral reflexes 

with behavioral responses (27, 29, 138, 139). In the model of the immunological 

homunculus we need to account for the CNS integration of reflexes controlling immunity 

and their coordination with cardiometabolic regulation and behavioral responses.

A great deal of experimental evidence has implicated various brain regions, including the 

brainstem, the limbic system, and the cortex, in the regulation of a myriad of peripheral 

immune functions (140, 141). We can now begin to organize this abundant but 

heterogeneous pool of data from the perspective of the immunological homunculus. 

Understanding can be deepened by providing insight into the role of specific CNS 
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neurotransmitter and neuromodulatory systems in the regulation of immunity. Brain 

cholinergic mAChR signaling has been implicated in controlling peripheral inflammatory 

responses through the inflammatory reflex. Central, intracerebroventricular administration of 

mAChR ligands significantly suppresses serum TNF levels in murine endotoxemia and 

stimulates efferent vagus nerve activity (89). Centrally acting drugs, including galantamine 

and other acetylcholinesterase inhibitors, and M1 mAChR agonists suppress peripheral 

proinflammatory cytokines and improve survival in murine endotoxemia and sepsis and 

alleviate the severity of IBD in mice (142–144). These effects are mediated through central 

mAChRs and the vagus nerve. A recent study highlighted the involvement of dopaminergic 

signaling in the regulation of peripheral immune function (145). Selective chemogenetic 

stimulation of dopaminergic receptors in the ventral tegmental area results in augmented 

macrophage and dendritic cell phagocytic activity, macrophage and monocyte bactericidal 

activation, and suppressed bacterial accumulation in the liver (145). These effects are 

abrogated in animals with disrupted sympathetic catecholaminergic neurons, pointing to 

their mediating role in enhancing antibacterial immune activation (145).

These recent studies, demonstrating stimulation of cholinergic and dopaminergic neurons in 

the brain, began to paint a broader picture of brain immunoregulatory output. These CNS 

modulations are associated with seemingly different regulatory effects; however, they all 

center around improving immune homeostasis. Further mapping of brain neural networks 

that are engaged in these regulatory functions will be an important and challenging task. 

Knowledge of the anatomical localizations of neurotransmitter and neuromodulatory 

systems in the brain can be useful in these studies. For instance, basal forebrain cholinergic 

neurons projecting to cortex areas and the hippocampus were recently shown to play a role 

in the regulation of peripheral innate immune responses. Optogenetic stimulation targeting 

these neurons suppresses serum TNF during murine endotoxemia, an effect that is 

functionally linked to brain regulation of the inflammatory reflex (146). Brainstem C1 

neurons were implicated in the regulation of murine kidney ischemia and reperfusion injury, 

a condition associated with aberrant inflammation (147). Selective optogenetic stimulation 

of tyrosine hydroxylase–expressing catecholaminergic C1 neurons in the left RVLM confers 

significant protection against kidney damage (147). This effect is linked to stimulation of 

both sympathetic and vagus nerve activity to spleen (147).

The brain cholinergic and dopaminergic systems interact with each other and with other 

brain neurotransmitter systems. Studying these interactions from the perspective of the 

brain’s control of immunity raises new intriguing questions. We need to consider that brain 

cholinergic signaling is associated with memory and learning (148) and dopaminergic 

signaling with reward and control of motor behavior (149), just to mention a few regulatory 

functions. The biological importance of overlapping regions and networks associated with 

these functions and with control of peripheral immune responses remains to be uncovered. 

We also need to account for the possibility of a broader scope of effects while altering these 

systems for therapeutic benefit.

Further mapping of brain regions and networks with a role in immune regulation is 

necessary for a more complete understanding of the immunological homunculus. This 

research will be facilitated by the use of genetic molecular tools, which are currently 
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advancing neuroscience but have yet to be utilized in bridging neuroscience with 

immunology. These approaches include “barcoding of individual neuronal connections” that 

provides a selectivity at the level of single-neuron resolution in neuronal circuit mapping 

(150) and tracing neural connectivity of genetically defined neuronal types by using Cre-

dependent viral constructs (151, 152). Specific insight into brain regions and networks in the 

model of the immunological homunculus will facilitate development of bioelectronics and 

other selective therapeutic approaches. Current technology, including deep brain stimulation, 

transcranial magnetic stimulation, and transcranial direct current stimulation (153, 154), may 

one day be redirected to treating inflammatory and autoimmune conditions. The rapidly 

growing field of bioelectronic medicine generates breakthrough technological advances in 

treating paralysis and other diseases by utilizing closed-loop devices (135, 155, 156). It is 

exciting to envision the future use of closed-loop devices in deciphering and regulating 

neuro-immune communication. These devices would enable the monitoring of peripheral 

nerve and brain representations of immunity and their alterations, and generating corrective 

signaling to treat aberrant fluctuations. These perspectives present exciting and challenging 

avenues for future research.

Functional Alterations in Brain During Peripheral Inflammation and Autoimmunity

Peripheral inflammation and autoimmune derangements have an impact on brain function. 

There is evidence that chronic peripheral immune activation and inflammation exacerbate 

neuroinflammation in neurodegenerative diseases, including Alzheimer disease (157) and 

schizophrenia (158, 159). Peripheral inflammatory stimuli, including LPS and live bacteria, 

can also cause proinflammatory signaling in the brain (160, 161). This proinflammatory 

signaling plays a role in mediating sickness behavior, associated with fever, reduced 

mobility, social withdrawal, and other symptoms, as demonstrated by peripheral 

administration of LPS, live bacteria, and cytokines, including TNF and IL-1β (44, 57, 161). 

Sickness behavior is an important adaptive and protective phenomenon, when it is transient. 

However, in diseases characterized by excessive or chronic peripheral inflammation and 

autoimmune derangements, sickness behavior alongside other alterations can be transitioned 

in brain functional deterioration with debilitating and life-threatening consequences.

Sepsis is such a disease—the number one killer in intensive care units (162, 163). Sepsis 

develops as a result of a dysregulated host response to infection (162). Innate and adaptive 

immune dysregulation alongside metabolic and cardiovascular complications are important 

contributors to sepsis pathology (164, 165). Brain functional impairment in sepsis is known 

as sepsis-associated encephalopathy (SAE), which is an important constituent of sepsis 

pathology (166). SAE, defined as brain dysfunction, secondary to infection in the body, and 

no CNS infection, is relatively frequent and is an independent predictor of mortality (166). 

An essential component of SAE is delirium (166). This neurobehavioral syndrome is caused 

by dysregulation of neuronal activity secondary to a broad spectrum of systemic 

disturbances, including increased release of proinflammatory cytokines and systemic 

inflammation (166, 167). Brain neurotransmission dysregulation, microglial activation and 

proinflammatory signaling, endothelial dysfunction, and cerebral blood flow dysregulation 

have been implicated in SAE (166, 168, 169). Brain cholinergic hypofunction and 

imbalances in dopaminergic and other neurotransmitter systems have been indicated as a 
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central event in delirium (170, 171). Dysregulation in brain neurotransmission, including 

cholinergic and orexinergic signaling, has been reported in murine models of sepsis (172, 

173). Sepsis has long-term consequences manifested by profound functional disabilities and 

increased mortality of sepsis survivors after their discharge from the hospital (174, 175). 

Brain dysfunction and persistent cognitive impairment are also profound manifestations of 

debilitating long-term sepsis sequelae (174). Despite their substantial clinical importance, 

events and mechanisms underlying this sepsis chronic illness and cognitive impairment are 

poorly understood. A key insight with potential therapeutic importance was provided by 

showing an important role for the peripherally released proinflammatory cytokine HMGB1 

in mediating pathogenesis and cognitive deterioration in sepsis survivors in a mouse model 

(176, 177).

Postoperative conditions and acute and chronic liver diseases are among other disorders in 

which unbalanced peripheral immune responses and inflammation have been linked to brain 

functional impairment and cognitive decline (178–180). Postoperative cognitive decline has 

been related to poor prognoses and higher mortality (181). Systemic inflammation and the 

peripheral release of IL-1β and TNF have been shown to play a causative role in generating 

brain neuroinflammation in the hippocampus and cognitive impairment in postorthopedic 

surgery conditions in mice (178, 182). Acute and chronic liver failure in cirrhosis are 

associated with hepatic encephalopathy, mediated by increased ammonia levels, astrocyte 

enlargement and dysfunction in the brain, microglia activation, oxidative stress, and 

increased proinflammatory cytokine levels (179, 180). Brain cholinergic dysregulation has 

also been reported in patients with cirrhosis and in models of liver failure (183). 

Interestingly, alterations in brain cholinergic signaling parallel with lower vagal tone in 

patients with cirrhosis (184, 185).

Autoimmune diseases, including systemic lupus erythematosus, have an impact on brain 

function and are associated with neurological complications, including cognitive 

deterioration and fatigue (186, 187). Peripheral antibodies, released during the disease and 

targeting the brain glutamatergic system, have been directly implicated in brain 

derangements (188–191). This insight suggests new therapeutic possibilities. An interesting 

approach is antibody neutralization by using a decoy antigen to prevent antibody interactions 

with target tissues (192). A related question is whether cytokine-based or antibody-based 

therapies can be used in neuroprotective strategies (193) or for improving brain function 

(187). As recently suggested, antibodies with a role in brain pathology in autoimmune 

conditions could potentially have beneficial effects in individuals with underlying brain 

glutamatergic or dopaminergic hypofunction (187).

All of these studies speak to the notion that the brain, severely affected in inflammatory 

conditions, may lose its regulatory efficiency. The brain’s capabilities to regulate immune 

function, and other physiological functions, including cardiovascular control and regulation 

of metabolic homeostasis, may become compromised. Therefore, further insight into the 

immunological homunculus (Figure 4) and the deviations of the model will be necessary for 

developing efficient therapeutic approaches, including closed-loop devices.

Pavlov et al. Page 16

Annu Rev Immunol. Author manuscript; available in PMC 2018 July 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



CLINICAL TRANSLATION OF NEUROSCIENCE IN INFLAMMATORY 

DISEASE

Ongoing research provides important insight into neuro-immune communication with 

translational relevance (18, 113). In this section we briefly outline current clinical studies 

stemming from this research and exploring relevant pharmacological modalities and 

bioelectronic neuromodulation as novel therapeutics for inflammatory and autoimmune 

conditions.

Pharmacological Modalities

The discovery of the role of α7nAChR in mediating cholinergic regulation of cytokine 

production and inflammation (103) generated great interest in α7nAChR agonists in 

inflammatory settings. Anti-inflammatory and disease-ameliorating effects of GTS-21, 

choline, and other α7nAChR agonists have been shown in murine endotoxemia, sepsis, 

postoperative brain inflammation, ischemia and reperfusion injury, and many other models 

of inflammatory conditions (194–198). Galantamine and other centrally acting 

acetylcholinesterase inhibitors have also been evaluated as anti-inflammatory agents in 

endotoxemia, IBD, arthritis, and other disorders (142, 143, 198, 199). Galantamine also 

exerts anti-inflammatory effects and alleviates insulin resistance and other metabolic 

derangements in mice with obesity and metabolic syndrome (200).

These preclinical findings and the fact that galantamine is a clinically approved drug for the 

symptomatic treatment of Alzheimer disease led to studying galantamine in patients with 

metabolic syndrome. Metabolic syndrome is a constellation of risk factors including obesity, 

dyslipidemia, and high blood pressure and glucose levels, which together significantly 

increase the risk of developing type 2 diabetes and cardiovascular disease (201). Metabolic 

syndrome has become a pandemic, and no efficient treatments for this cluster of risk factors 

as a whole are available (201). The pathogenesis of this condition is not well understood, but 

chronic inflammation and interrelated insulin resistance are thought to be essential (201). A 

recent randomized, double-blind, placebo-controlled trial with 30 patients (15 males and 15 

females) per group demonstrated the efficacy of galantamine in alleviating the inflammatory 

state and insulin resistance in metabolic syndrome (202). A relatively low dosage of 

galantamine (gradually escalated to 16 mg daily) for 12 weeks suppresses plasma levels of 

the proinflammatory cytokine TNF and adipokine leptin and increases levels of the anti-

inflammatory cytokine IL-10 and adipokine adiponectin (202). Galantamine also 

significantly suppresses insulin levels and modulates heart rate variability in these patients 

(202). These findings are of interest for further studying galantamine and other cholinergic 

modalities in the treatment of metabolic syndrome and other related diseases, including type 

2 diabetes.

The New Field of Bioelectronic Medicine

The understanding that electrical vagus nerve stimulation can be therapeutically exploited in 

preclinical models of arthritis, IBD, and many other inflammatory and autoimmune 

conditions (69, 92, 93, 100) was pivotal for developing a new field. Bioelectronic medicine 

seeks to identify molecular mechanisms of disease that can be therapeutically targeted by 
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neural signals using bioelectronic devices. First results from studying the effects of 

implanted device vagus nerve stimulation in patients with Crohn’s disease and rheumatoid 

arthritis were recently reported (4, 5).

Crohn’s disease is a form of relapsing IBD that affects children and adults. It has a 

detrimental impact on quality of life, and treatment with biologics, including anti-TNF 

antibodies, is expensive and associated with significant adverse effects. A study reported 

significant clinical remission in five of seven patients with Crohn’s disease subjected to six 

months of treatment with implanted device vagus nerve stimulation (4). This disease-

alleviating effect is accompanied by improved C-reactive protein, fecal calprotectin levels, 

and vagal tone (determined by analyzing heart rate variability).

Rheumatoid arthritis is a debilitating disease with inflammatory and autoimmune 

components. The disease has a relatively high prevalence—in 2014 it affected about 1.3 

million adults in the United States alone (203)—and is expensive to treat. Currently 

available treatments, including methotrexate and biologics such as anti-TNF, anti-IL-6 

receptor, anti-CD20 antibodies, and T cell costimulation inhibitor, are associated with 

toxicity and adverse effects. Moreover, some patients do not respond to these treatments. 

Implanted bioelectronic device vagus nerve stimulation of up to 84 days significantly 

alleviated the disease in two groups of 17 patients: The first group was in the early stage of 

disease and was not responding to methotrexate; the second had failed methotrexate 

treatment or a therapy with two or more biologics (5). This bioelectronic neuromodulation 

also suppresses TNF production (5). Retraction of the stimulation results in worsening of the 

disease and reactivation of the stimulation restores the therapeutic benefit (5). Ongoing trials 

are exploring the effects of bioelectronic vagus nerve stimulation in patients with IBD and 

rheumatoid arthritis in large-scale multicenter clinical trials.

Preclinical research on neuro-immune communication continues to provide mechanistic 

insight and to point to new therapeutic targets and approaches that are further explored in 

clinical settings. This symbiotic relationship has been integral to the development of 

bioelectronic medicine, in which advances in neurobiology are transformed into novel 

treatments of inflammatory diseases and a broad spectrum of other diseases with limited 

treatment options (135, 155, 156).

SUMMARY AND CONCLUSIONS

The nervous system and the immune system provide regulation and defense mechanisms. 

Here we have reviewed experimental evidence revealing that these two systems 

communicate with each other in coordinated mechanisms triggered by pathogen invasion, 

inflammation and autoimmune derangements. Sensory neurons, sending signals to the CNS, 

are anatomically positioned and equipped with molecular sensors to detect the presence of 

pathogens and alterations in the state of the immune system, including increased cytokine 

production. CNS-derived efferent autonomic neurons interact with immune cells through the 

release of catecholamines and acetylcholine and provide a vital control of cytokine 

production and many other immune cell functions. Reflexes, including an axon-like reflex 

within sensory neurons, and CNS-integrated reflex circuits comprising afferent and efferent 
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neurons are integral to the functional organization of neural regulation of immune function. 

The vagus nerve plays an important role in a physiological mechanism, the inflammatory 

reflex controlling proinflammatory cytokine production and inflammation. This reflex is an 

example of a noncanonical cooperation between signals along the vagus nerve, the splenic 

nerve and a subset of acetylcholine-synthesizing T cells in the spleen. The CNS and the 

brain integrate and regulate sensory (afferent) and efferent neural signals associated with 

specific immunoregulatory function. These specific brain representations of immune 

functions are a foundation principle of the model of the immunological homunculus, which 

we have also described. Peripheral immune dysregulation and inflammation alter brain 

function and can be manifested by severe neurological complications in sepsis, systemic 

lupus erythematosus, and other disorders.

Currently, advances in neuroscience and immunology continue to revolutionize our thinking 

and understanding of the molecular mechanisms of immune regulation. Gaining mechanistic 

insight into neuro-immune communication has gone hand in hand with evaluating new 

therapeutic approaches, including pharmacological cholinergic modalities and electrical 

vagus nerve stimulation in preclinical settings of sepsis, IBD, arthritis, and many other 

inflammatory and autoimmune diseases. This research has recently led to successful clinical 

exploration of a cholinergic drug in metabolic syndrome and bioelectronic neuromodulation 

in Crohn’s disease and rheumatoid arthritis. The next several years should witness major 

progress in bioelectronic medicine, a field that links and translates insight about molecular 

mechanisms of neural regulation and disease pathogenesis into novel treatments of human 

disease based on neuromodulation of discrete neurocircuitries.
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Figure 1. 
Communication between the nervous system and the immune system. The nervous system 

and the immune system communicate in response to pathogen invasion, tissue injury, and 

other homeostatic threats. Macrophages, neutrophils, monocytes, T lymphocytes, and other 

immune cells detect the presence of pathogen fragments and tissue injury molecules and 

release cytokines and other signaling molecules. These alterations in peripheral immune 

homeostasis are detected by sensory neurons residing in the dorsal root ganglia (DRG) and 

vagus nerve afferent neurons, which signal the spinal cord and the brain. Pathogens also 

directly activate afferent neurons. These signals are integrated in the central nervous system 

with descending signaling via sympathetic and efferent vagus nerve fibers with the release of 

catecholamines and acetylcholine, respectively. These neurotransmitters interact with 

immune cells and control immune cell function and responses. Other neurotransmitters 

released from neurons also play a role in immune control. The hypothalamic-pituitary-

adrenal (HPA) axis with the release of corticosteroids also provides a conduit of brain–

immune regulation.
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Figure 2. 
Functional neuroanatomy and molecular mechanisms of sensing pathogens and immune 

mediators. Sensory neurons originating from the dorsal root ganglia (DRG) are 

somatosensory, innervating the skin, joints, and muscles, and visceral, innervating the liver, 

lungs, gastrointestinal tract, pancreas, heart, and other organs. These neurons enter the spinal 

cord via the dorsal horn and make synaptic contacts with interneurons and relay neurons 

(not shown) that signal to the brain, including the thalamus. Sensory vagus nerve fibers 

originating in the nodose ganglia innervate visceral organs and transmit signals to the 

nucleus tractus solitarius (NTS), with projections to other brainstem and forebrain areas (not 

shown). Inflammatory mediators, such as cytokines, are released by immune cells in 
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response to tissue injury or pathogens and activate sensory neurons in the local area. 

Inflammatory mediators interact with sensory neurons through cognate receptors, expressed 

on these neurons. Neuronal activation results in a signaling cascade leading to action 

potential generation and may also decrease the activation threshold for nociceptive receptors 

[e.g., transient receptor potential cation channel subfamily members (TRPV1, TRPA1)] as 

well as the voltage-gated sodium channel Nav receptors (Nav1.7, Nav1.8 and Nav1.9) by 

noxious stimuli. Pathogen fragments can also activate sensory neurons directly by binding to 

the pattern recognition receptors (PRRs) (such as TLR4) on neurons. In addition, pathogens 

such as Staphylococcus aureus activate nociceptors by releasing N-formyl peptide and α-

hemolysin, which bind to formyl peptide receptor 1 (FPR1) or ion channels. The release of 

neuropeptides, including calcitonin gene-related peptide (CGRP), galanin, somatostatin, 

substance P, and vasoactive intestinal peptide (VIP) in an axon-reflex fashion regulates 

immune responses. Some components of this figure are adapted from Reference 18.
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Figure 3. 
Functional neuroanatomy and molecular mechanisms of regulating immune responses. (a) 

Sympathetic preganglionic fibers originating in the spinal cord terminate into paravertebral 

(not shown) and perivertebral ganglia releasing acetylcholine (ACh; not shown). 

Postganglionic catecholaminergic fibers innervate visceral organs and release 

norepinephrine (NE). Efferent sympathetic output to the adrenal medulla induces the 

secretion of epinephrine (EP) from chromaffin cells. The dorsal motor nucleus of the vagus 

(DMN) and nucleus ambiguus (not shown) in the brainstem medulla oblongata are major 

sources of efferent vagus nerve fibers. Cholinergic preganglionic vagus efferent fibers 

innervate visceral organs, where they interact with postganglionic fibers that release 
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acetylcholine as a principal neurotransmitter. Preganglionic efferent vagus fibers also 

terminate in the celiac ganglia and the superior mesenteric ganglion, where the splenic nerve 

originates. The splenic nerve releases norepinephrine, which in turn activates the release of 

acetylcholine from the choline acetyl transferase (ChAT)-positive CD4+ T cells. (b) 

Acetylcholine and NE regulate cytokine release by immune cells activated in response to 

tissue injury or pathogen invasion. Acetylcholine binds to the α7 nicotinic acetylcholine 

receptor (α7nAChR) expressed on macrophages and other immune cells. This interaction 

activates intracellular signaling, involving suppression of NF-κB activity and activation of 

the JAK2/STAT3 pathway, which results in suppression of proinflammatory cytokine 

production. In addition, acetylcholine binds to the α7nAChR expressed on mitochondria and 

suppresses mitochondrial DNA release, which in turn inhibits inflammasome activation. 

Norepinephrine and epinephrine bind to the β2-adrenergic receptors on macrophages and 

other immune cells and induce intracellular signaling, involving cyclic AMP and protein 

kinase A (PKA), which results in suppression of NF-κB activity and proinflammatory 

cytokine release. Some components of this figure are adapted from Reference 18. Other 

abbreviations: cAMP, cyclic adenosine monophosphate; DMN, dorsal motor nucleus of the 

vagus; mt, mitochondrial; PRR, pattern recognition receptor.
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Figure 4. 
The model of the immunological homunculus. Alterations in immune homeostasis in 

visceral organs and the skin are communicated to the spinal cord and the brain via sensory 

neurons residing in the dorsal root ganglia and vagal afferent neurons. It is important to 

consider that in this communication, specific neuronal populations (shown in different 

colors) are engaged in processing signals for the presence of pathogens, antigens, cytokines, 

and other immune cell–signaling molecules. These are listed as 1, 2, 3, and 4, but 

theoretically the list could be extended. This sensory information arrives in the nucleus 

tractus solitaries (NTS), rostroventrolateral medulla (RVLM), locus coeruleus (LC), 

hypothalamus (HT), thalamus (Th), and different cortex regions. Brain areas including the 

cortex, Th, HT, LC, RVLM, and dorsal motor nucleus of the vagus (DMN) are 
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interconnected in orchestrating immunoregulatory (motor) output. Most of these brain 

regions participate in processing both sensory and motor immune-related information. It is 

possible that specific areas and nuclei in these regions (shown in different colors) are 

viscerotopically, somatotopically, and functionally organized in relation to peripheral 

immune information. The amygdala (Am), the hippocampus (HC), and other brain regions 

(question marks) may also be components of immune-related brain organization. Brain-

derived immunoregulatory (motor) output is communicated to the periphery via sympathetic 

and vagus nerve efferent fibers, releasing norepinephrine (NE) and epinephrine (EP), 

acetylcholine (ACh), and other neurotransmitters and regulates a myriad of innate and 

adaptive immune responses in visceral organs, including the lymphatics, and the skin. It is 

conceivable that peripheral organs with a role in immunity are viscerotopically and 

somatotopically represented in the cortex by analogy with the classical model of 

homunculus. This schematic representation aims to present basic principles of the model. 

Some aspects, including brain neurotransmitter networks with a role in immune regulation, 

are not presented. The model should be further developed based on molecular mapping of 

neural circuitries and precise characterization of the roles of these and other unknown brain 

regions in immune regulation.
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