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Recent advances in multivariate fMRI analysis stress the importance of information inherent to voxel patterns. Key
to interpreting these patterns is estimating the underlying dimensionality of neural representations. Dimensions
may correspond to psychological dimensions, such as length and orientation, or involve other coding schemes.
Unfortunately, the noise structure of fMRI data inflates dimensionality estimates and thus makes it difficult to
assess the true underlying dimensionality of a pattern. To address this challenge, we developed a novel approach
to identify brain regions that carry reliable task-modulated signal and to derive an estimate of the signal's
functional dimensionality. We combined singular value decomposition with cross-validation to find the best low-
dimensional projection of a pattern of voxel-responses at a single-subject level. Goodness of the low-dimensional
reconstruction is measured as Pearson correlation with a test set, which allows to test for significance of the low-
dimensional reconstruction across participants. Using hierarchical Bayesian modeling, we derive the best estimate
and associated uncertainty of underlying dimensionality across participants. We validated our method on simu-
lated data of varying underlying dimensionality, showing that recovered dimensionalities match closely true
dimensionalities. We then applied our method to three published fMRI data sets all involving processing of visual
stimuli. The results highlight three possible applications of estimating the functional dimensionality of neural
data. Firstly, it can aid evaluation of model-based analyses by revealing which areas express reliable, task-
modulated signal that could be missed by specific models. Secondly, it can reveal functional differences across
brain regions. Thirdly, knowing the functional dimensionality allows assessing task-related differences in the
complexity of neural patterns.
Introduction

A growing number of fMRI studies are investigating the representa-
tional geometry of voxel response patterns. For example, using repre-
sentational similarity analysis (RSA; Kriegeskorte and Kievit, 2013),
researchers have characterized visual object representations along the
ventral stream (Khaligh-Razavi and Kriegeskorte, 2014) and how these
representations vary across tasks (Bracci et al., 2017).

Interpreting representational geometry in neural responses can be
difficult. For example, RSA tests for a hypothesized representational
pattern, but an important and more fundamental question should be
addressed first, namely whether there is any dimensionality to the un-
derlying neural pattern and, if so, what that dimensionality is.

Knowing whether a pattern has dimensionality should be prerequisite
for RSA and other multivariate representational analyses because a
particular similarity structure can only be found when there is sufficient
dimensionality to represent the proposed relations. For example,
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searching for a flavor space with dimensions sweet, sour, bitter, salty and
umami would be a fool's errand in brain areas that contain little or no
dimensionality.

Although previous studies have made substantial progress in identi-
fying whether any dimensionality underlies an observed pattern (Nase-
laris et al., 2011; Diedrichsen et al., 2016; Walther et al., 2016; Allefeld
and Haynes, 2014), a straightforward, general, robust, open source, and
computationally efficient procedure for this challenge would be
welcomed. Moreover, progress would be welcomed on perhaps the more
challenging task of estimating the degree of dimensionality underlying a
pattern. Independent of the particular geometry, the dimensionality of a
neural pattern is informative of how many features of a task are repre-
sented in a brain region, which can inform our understanding of an area's
function.

There are many methods of dimensionality reduction and estimation,
most of which involve low-rank matrix approximation and aim to
maximize the correspondence between the original and the
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approximated matrix. For example, two common approaches to estimate
the dimensionality of an observed neural or behavioral pattern are
principal component analysis (PCA) or relatedly, multidimensional
scaling (MDS).

PCA, or the closely related factor analysis and singular value
decomposition (SVD) (Hastie et al., 2009), is widely used in the study of
individual differences and aids estimating how many latent components,
or “factors”, underlie a pattern of (item) responses within or across
participants, as for instance in the context of intelligence (Spearman,
1904) or personality tests (Cattell, 1947). In the context of neuroimaging,
PCA has been used to identify brain networks (Huth et al., 2012; Friston
et al., 1993). PCA derives how much variance of the observed pattern is
explained by each underlying component.

Similarly, MDS finds the best representation of original distances in a
low-dimensional space (Kriegeskorte and Kievit, 2013). For example, two
stimuli like a chair and table that are very close to each other in the
high-dimensional space will be represented closely in the
low-dimensional projection achieved by MDS, whereas two stimuli that
were very distant from each other, for instance a chair and a bunny, will
be projected far apart. MDS has been successfully applied to behavioral as
well as neural data to reveal which stimulus features underly observed
representational geometries (Bracci and Op de Beeck, 2016; Kriegeskorte
and Kievit, 2013; Kriegeskorte et al., 2008), though it has been ques-
tioned to which extent results from MDS are interpretable (Goddard
et al., 2017). For reasons outlined below, we will focus on SVD to esti-
mate the dimensionality of neural representations, though other methods
could be paired with our general approach, including nonlinear ap-
proaches such as Nonlinear PCA (Kramer, 1991).

Estimating the dimensionality of neural data brings its own unique
challenges. In a noise-free scenario, dimensionality can be defined as the
number of linear orthogonal components (singular- or eigenvalues) un-
derlying a matrix that are larger than zero (Shlens, 2014), indicating that
the component fits some variance in the data. Unfortunately, actual re-
cordings of neural activity always contain noise, which inflates
non-signal components above zero (Fusi et al., 2016; Diedrichsen et al.,
2013). This noise makes it challenging to determine which areas contain
signal and, if so, what the dimensionality of the signal is.

One criterion, which we adopt in the work reported here, is to choose
the number of components that should maximize reconstruction accu-
racy (measured by correlation) on new data (i.e., test data). While even
for data with low or moderate true dimensionality more components will
always increase fit for existing data (i.e., training data), performance on
test data (i.e., generalization, prediction) will usually be best for a
moderate number of components because these components largely
reflect true signal as opposed to noise in the observed training sample.
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The problem of distinguishing between signal and noise in a neural
pattern is related to the bias-variance trade-off in supervised learning and
model-selection. Overly simple models (few components) are highly
biased, fitting training data poorly and not performing well on test data.
These overly simple models cannot pick-up on nuances in the signal.
Conversely, overly complex models (many components) are too sensitive
to the variance in the training data (i.e., overfit). Although they fit the
training data very well, overly complex models treat noise in the training
data as signal and, therefore, generalize poorly. Thus, the sweet spot for
test performance should be at somemoderate number of components that
largely reflect true signal (see Fig. 1 A). Thus, identifying the true number
of underlying components is analogous to deciding which model best
explains the data.

One naive way to navigate this trade-off between simple and complex
models is to use some arbitrary cut-off, such as including the number of
components that captures some amount of variance in the training data
or deciding based on visual inspection which components may carry
signal (known as scree plot, Cattell, 1966). In the case of fMRI, where the
signal-to-noise ratio depends on multiple factors like scanner settings,
experimental design, and physiological activity (Huettel et al., 2003),
estimating the underlying dimensionality based on an arbitrary cut-off
criterion for explained variance could be misleading. Likewise,
although identifying relevant components via visual inspection works for
small datasets, it is not applicable to large datasets as fMRI data, as it
would require a manual decision for each set of voxels. Furthermore, the
size of fMRI datasets (usually thousands of voxels) calls for a computa-
tionally efficient and automated approach, making estimating the
dimensionality for the whole brain feasible. Thus, for neuroimaging data,
there is a need for an efficient, systematic and objective approach that
can both identify areas with statistically significant dimensionality and
provide a useful estimate of the underlying dimensionality.

Previous efforts to estimate the dimensionality of neural response
patterns have applied linear classifiers to neural data to evaluate
dimensionality (Rigotti et al., 2013; Diedrichsen et al., 2013). Rigotti
et al. (2013) were able to show that dimensionality of single-cell re-
cordings in monkey PFC is linked to successful task-performance, indi-
cating that dimensionality of neural patterns is task-sensitive. In line with
this, Diedrichsen et al. (2013) showed that the dimensionality of motor
cortex representations differs depending on the task. Using a combina-
tion of PCA and linear Gaussian classifiers, the authors showed that
motor cortex representations of different force levels are low dimen-
sional, whereas usage of different fingers was associated with multidi-
mensional neural patterns (Diedrichsen et al., 2013). Notably, both
studies focused on estimating task-related changes in dimensionality in a
prescribed brain region, rather than estimating which areas across the
Fig. 1. Illustration of the concept of overfitting and
generalizability. A: As more components are added to a
low-dimensional reconstruction, the correlation be-
tween the training data and the reconstruction ap-
proaches the maximum of 1 for a full-dimensional
reconstruction (purple curve). Adding components is
equivalent to adding model parameters to improve fit,
which reduces the model's bias and increases its vari-
ance. For the correlation between the reconstructed
training and independent test data (red curve), adding
components initially improves performance but at some
point reduces performance due to overfit (see Parpart
et al., 2018, for a related illustration). B: Reconstruction
correlations achieved by all possible low-dimensional
reconstructions for a simulated ground-truth dimen-
sionality of 4. Reconstruction correlations rise as more
components are added up to the point where the true
dimensionality is reached, and decrease afterwards.
Results are averaged across 6 runs and 1000 simulated
voxel patterns.
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brain had significant dimensionality. Other methods test dimensionality
solutions against a noise distribution constructed by permuting the
original data (Lehky et al., 2014). However, such methods do not respect
the spatial and temporal correlation structure in fMRI data as our method
does. Although these methods highlight the potential to estimate the
dimensionality of a neural pattern in a prescribed region, they are
computationally demanding and require close inspection of the results,
which can be impractical in situations such as in a searchlight analysis.

In the present work, we expand on previous contributions by evalu-
ating a novel approach that, in a robust and computationally efficient
manner, tests which areas display statistically significant dimensionality,
estimates the dimensionality, and provides an indication of the uncer-
tainty of the estimate.

We combine singular value decomposition (SVD) and cross-validation
to identify areas across the brain with underlying dimensionality. We
derive which of all possible low-dimensional reconstructions of the fMRI
signal is the best dimensionality estimate of a held-out test run, and
quantify the goodness of the low-dimensional reconstruction via Pearson
correlation.

We use a cross-validation procedure to identify the appropriate
dimensionality, which retains the components that carry signal and are
therefore most likely to generalize to new data. By assessing the signif-
icance of the correlation, we can distinguish between areas that show
reliable signal with underlying dimensionality vs. areas that do not show
a reliable task-modulation. We will refer to this task-dependent dimen-
sionality as functional dimensionality. After establishing significant
functional dimensionality, we use Bayesian modeling to derive a popu-
lation estimate and associated uncertainty of the degree of
dimensionality.

We define functional dimensionality as reliable task-dependent
changes in a neural pattern that generalize across runs within a sub-
ject, though the representational geometry does not need to be common
across subjects. A prerequisite for functional dimensionality is that neural
patterns are reliable within subjects. As we show below (see also Fig. 1B),
our approach can find the low-dimensional projection of a neural pattern
that generalizes best across runs.

Through simulations and evaluation of three (published) fMRI data-
sets, we find that our method successfully identifies areas with significant
functional dimensionality and provides reasonable estimates of the un-
derlying dimensionality. In the first fMRI dataset, participants performed
a categorization task which required differential attention to various
stimulus features (Mack et al., 2013). The second study investigated
shape- and category specific neural responses to the presentation of
natural images (Bracci and Op de Beeck, 2016). The third study involved
categorization tasks that varied systematically in their attentional de-
mands (Mack et al., 2016), which we predict should affect functional
dimensionality.

Across all three studies, we were able to identify areas carrying
functional dimensionality in a manner that supported and extended the
original findings. Focusing on wholebrain effects in the first two studies,
we identified a consistent network of areas showing functional dimen-
sionality during visual stimulus processing. This network encompassed
areas that were reported by the original authors as being task-relevant,
identified through representational similarity analysis and cognitive
model fitting (Bracci and Op de Beeck, 2016; Mack et al., 2013).
Furthermore, functional dimensionality was revealed in additional areas,
highlighting the sensitivity of our method and suggesting that reliable
task-modulated signal was present that was not explained by the models
the original authors tested. In the last study, we combined a
region-of-interest approach and multilevel Bayesian modeling to show
that dimensionality varied depending on task-requirements, which fol-
lows from the original authors' claims but remained untested until now
(Mack et al., 2016). We outline how the notion and identification of
functional dimensionality can aid the analysis and understanding of
neuroimaging data in various ways.
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General methods

Neuroimaging data, such as fMRI, M/EEG, or single-cell recordings,
can be represented as a matrix of n voxels, neurons, or sensors � m
conditions. For example, BOLD response patterns in the fusiform face
area (FFA) to 3 different stimulus conditions can be expressed as a matrix
Y of the size n (number of voxels) � 3 (face, house, or tool stimulus
condition). The maximum possible dimensionality is determined by the
minimum of n and m, which in this example would be 3, assuming many
voxels in FFA were included in the analysis. As fully explained below, the
maximum possible dimensionality is m� 1 (in this example, 3� 1 ¼ 2)
because each voxel (i.e., matrix row) is mean-centered. In this toy
example, rest is implicitly included as a condition, that is, even if all
conditions showed the same activity pattern, the estimated dimension-
ality would be 1. Mean-centering the voxel patterns beforehand accounts
for this.

However, functional dimensionality could be lower. For example,
dimensionality would be lower if the region only responded to face
stimuli and showed the same lower response to house and tool stimuli.

The approach to dimensional estimation we present here is modular
and estimates a matrix's dimensionality by combining low-rank approx-
imation with cross-validation and significance testing. This modularity
allows to flexibly choose the dimensionality reduction technique which
best fits with ones requirements. Here, we used SVD (which is often used
to compute PCA solutions) because it is a well-understood, easy to
implement, and a computationally efficient low-rank matrix
approximation.

The choice of SVD, as well as how the data matrix is normalized is
informed by our understanding of the underlying neural signal. Because
voxels differ greatly from one another in their overall activity level and
activity levels can drift over runs, we mean-center each row (i.e., voxel)
of the data matrix by run. In contrast, we do not mean-center each col-
umn, as would typically be done with approaches that focus on the
covariance of the column vectors (e.g., PCA). The reason we do not
normalize by column (i.e., condition) is that we are open to the possi-
bility that different stimuli may be partially coded by overall activity
levels of a population of voxels. For example, imagine a brain area only
responds strongly to faces, but not to other stimuli. An SVD with
demeaned voxels (i.e., rows) would be sensitive to this dimension of
representation, whereas a procedure that effectively worked with
demeaned columns would not be sensitive to this task-driven difference
in neural activity (see Davis et al., 2014; Hebart and Baker, 2017; Die-
drichsen and Kriegeskorte, 2017, for a related discussion).

In the following section, we describe how a combination of SVD and
cross-validation can be used to test whether an observed neural pattern
can be successfully reconstructed using a low-rank approximation,
assessed as a significant Pearson correlation between a low-rank
approximation and a held out test set, and how this technique provides
an estimate of the pattern's underlying dimensionality (see Fig. 2 for an
overview of all steps). As all our examples are fMRI data sets, we will
describe the steps using fMRI terminology, though the procedure could
be applied to any type of neuroimaging data. We provide the code and
data to replicate the analyses presented here and for use on other datasets
at https://osf.io/tpq92/.

Pearson correlations between all possible low-dimensionality re-
constructions of the data and a held-out test set quantify the goodness of
each reconstruction for each run j (see Fig. 3 for details). Step 3: the
resulting j correlations are averaged for each participant and tested for
significance, for instance using t-tests, across all participants. Step 4: If
the reconstruction correlations are significant across participants, a hi-
erarchical Bayesian model can be used to derive the best estimate of the
degree of functional dimensionality (see Fig. 4 for details). For each
participant, the average estimated dimensionality and standard deviation
of this estimate is calculated and a population estimate and respective
standard deviation (uncertainty in the estimate) is derived across all
participants.

https://osf.io/tpq92/


Fig. 2. Step 1: Prior to dimensionality estimation, raw data are pre-processed with preferred settings and software and beta estimates derived from a GLM are obtained
for each condition of interest. The resulting jmatrices of size n (number of voxels) �m (number of conditions) are pre-whitened and mean-centered (by row, i.e., voxel)
to remove baseline differences across runs. Step 2: a combination of cross-validation and SVD is implemented to find the best dimensionality estimate k for each run j.
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Step 1: data pre-processing

We developed the presented method with application to fMRI data in
mind, though it can be easily adapted to fit requirements of single cell
recordings or M/EEG data. The method takes beta estimates resulting
from a GLM fit to the observed BOLD response as input. In all studies
presented here, standard pre-processing steps were performed using SPM
12 (Wellcome Department of Cognitive Neurology, London, United
Kingdom), but the precise nature of the preprocessing and implemented
GLM is not critical to our method. Functional data were motion cor-
rected, co-registered and spatially normalized to the Montreal Neuro-
logical Institute (MNI) space.
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To reduce the impact of the structured noise, which is correlated
across voxels, on the dimensionality estimation and to improve the
reliability of multivariate voxel response patterns (Walther et al., 2016),
we applied multivariate noise-normalization, that is, spatial
pre-whitening, before estimating the functional dimensionality. We used
the residual time-series from the fitted GLM to estimate the noise
covariance Σnoise and used regularization to shrink it towards the diagonal
(Ledoit and Wolf, 2004). Each n�mmatrix of beta estimates Y was then

multiplied by Σ�1
2

noise (Walther et al., 2016).
In fMRI data, the baseline activation can differ across functional runs.

This has important implications for our approach presented here, as it
can bias the correlation between neural patterns across runs. To account



Fig. 3. Illustration of the combination of SVD and cross-
validation, corresponding to step 2 in Fig. 2. For each
searchlight or ROI, j (number of runs) n (number of
voxels) � m (number of beta estimates) matrices are
used to estimate the functional dimensionality. For all
possible partitions of j runs into training, validation and
test data, we first average all training runs and build all
possible low-dimensional reconstructions of these aver-
aged data using SVD. All reconstructions are then
correlated with the validation run, resulting in j� 1
correlation coefficients and respective dimensionalities.
The dimensionality that results in the highest average
correlation across j� 1 runs is picked as dimensionality
estimate k for this fold and a k-dimensional reconstruc-
tion of the average of the training and validation runs is
correlated with a held-out test-run, resulting in a final
reconstruction correlation. In total, j reconstruction
correlations are returned that can be averaged and tested
for significance across participants using one-sample t-
tests or alike. To derive a better estimate of the under-
lying dimensionality, the j dimensionality estimates per
participant can be submitted to the hierarchical Bayesian
model (step 4 in Fig. 2).

Fig. 4. Illustration of the implemented multilevel model to estimate the degree
of functional dimensionality, corresponding to step 4 in Fig. 2. The observed
averaged dimensionality estimates per participant are assumed to be sampled
from an underlying subject-specific t-distribution with mean μi and standard
deviation σi. The standard deviation bσi of the participants' dimensionality esti-
mates is assumed to be sampled from a normal distribution with mean σi and a
standard deviation of 1. The subject-specific t-distributions of μi are assumed to
come from a population distribution with a normally distributed mean μ and
variance σ. Subject-specific standard deviations σi are assumed to come from a
uniform distribution, ranging from 0 to max(σi). At the top level, a uniform prior
is implemented. Mean and variance of the normal distribution of population
means μ are assumed to come from a uniform distribution ranging from 1 to m�
1 and 0 to σmax , respectively. Distributions were derived from https://github.
com/rasmusab/distribution_diagrams.
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for this, we demeaned the pre-whitened beta estimates across conditions,
resulting in an average estimate of zero for each voxel. This demeaning
reduces the possible maximum dimensionality of the data to kmax ¼ m�
1. Notably, demeaning of voxels is conceptually different from
demeaning conditions, which would have been implemented by PCA, as
55
it preserves differences between conditions, whereas PCA would remove
those.

Step 2: evaluating all possible SVD (dimensional) models

The dimensionality of a matrix is defined as its number of non-zero
singular values, identified via singular value decomposition (SVD). SVD
is the factorization of an observed n�m matrix M of the form UΣV⊺. U
and V are matrices of sizem�m and n� n, respectively, and Σ is an n�m
matrix, whose diagonal entries are referred to as the singular values ofM.
A k-dimensional reconstruction of the matrix M can be achieved by only
keeping the k largest singular values in Σ and replacing all others with
zero, resulting in ~Σ. This is known as Eckart-Yong theorem (Eckart and
Young, 1936), leading to equation (1):

~M ¼ U~ΣV⊺ (1)

To estimate the dimensionality of fMRI data, we applied SVD to
j(number of runs) matrices Y of n(number of voxel) � m(number of beta
estimates), with the restriction of n > m.

Critically, fMRI beta estimates are noisy estimates of the true signal.
In the presence of noise, all singular values of a matrix will be non-zero,
requiring the definition of a cut-off criterion to assess the number of
singular values reflecting signal. Removing noise-carrying components
from a matrix is beneficial, as it avoids overfitting to the noise and thus,
improves the generalizability of the low-dimensional reconstruction to
another sample (see Fig. 1 A for an illustration of the concept of over-
fitting). We aimed to avoid any subjective (arbitrary) criterion as per-
centage of explained variance or alike (Cattell, 1966). To that end, we
implemented a nested cross-validation procedure at the core of our
method to identify singular values that carry signal (see step 1 of the
general overview depicted in Figs. 2 and 3 for a detailed illustration of
the cross-validation approach). This allows us to reduce the inflation of
dimensionality of fMRI data due to noise and test which areas of the brain
carry signal with functional dimensionality.

Data are partitioned j� ðj� 1Þ times into training (Ytrain), validation
(Yval), and test (Ytest) data. The (de-meaned and pre-whitened) j� 2
training runs are averaged, and SVD is applied to the resulting n�m
matrix Ytrain. We then build all possible low-dimensional reconstructions
of the averaged training data, with dimensionality ranging from 1 to m�
1. Low-dimensional reconstructions are generated by keeping only the k
highest singular values and setting all others to zero. Each low-
dimensional reconstruction of matrix Ytrain is correlated with the held-
out Yval. This is repeated for each possible partitioning in training and

https://github.com/rasmusab/distribution_diagrams
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validation, resulting in j� 1 � m� 1 correlation coefficients. Correla-
tions are Fisher's z-transformed and averaged across the j� 1 partition-
ings. The dimensionality with the average highest correlation is picked as
best estimate k of the underlying dimensionality. As keeping components
that reflect noise rather than signal lowers the correlation with an in-
dependent data set, the highest correlation is not necessarily achieved by
keeping more components. This procedure thus avoids inflated dimen-
sionality estimates.

After identifying the best dimensionality estimate k for run j, the
training and validation runs from 1 to j� 1 are averaged together and
SVD is applied to the averaged data. We then generate a k-dimensional
reconstruction of the averaged data. The quality of this final low-
dimensional reconstruction is measured as Pearson correlation with
Ytest . We chose Pearson correlation instead of mean-square error (MSE)
because Pearson correlation is scale invariant.

Step 3: determining statistical significance

The approach results in j estimates of the underlying dimensionality
and j corresponding test correlations per participant. Under the null-
hypothesis of no dimensionality, and thus, only noise present in the
matrix, reconstruction correlations averaged across runs are distributed
around zero. Thus, across-participants significance of the averaged
reconstruction correlations can be assessed using one-sample t-tests or
non-parametric alternatives, as for instance permutation tests (Nichols
and Holmes, 2003), and established correction methods for multiple
comparisons, like threshold-free cluster enhancement (TFCE, see Smith
and Nichols, 2009).

Only when a significant, k-dimensional, reconstruction correlation is
found across participants, do we refer to an area as showing functional
dimensionality. It should be noted that a significant reconstruction cor-
relation only indicates that the underlying functional dimensionality is
one or bigger.

More evidence for a dimensionality of two or larger can be gathered
by removing not only the voxel-mean before estimating the dimension-
ality, but also the condition mean, which removes a potential source of
univariate differences between conditions. However, as discussed in
Davis et al. (2014) and Hebart and Baker (2017), this does not indubi-
tably mean that the dimensionality of the pattern is two or larger.

Step 4: estimating the degree of functional dimensionality

The previously described steps allow us to identify which areas carry
reliable signal with functional dimensionality, but do not provide a
precise estimate of the degree of the underlying dimensionality. The best
population estimate of a region's functional dimensionality should opti-
mally combine information across participants, giving more weight to
participants with more reliable estimates, and should furthermore reflect
how peaked the distribution of underlying population estimates is, ac-
counting for the fact that different participants could express a different
true dimensionality.

Given a significant reconstruction correlation across participant, j
estimates of the degree of dimensionality are obtained (for each voxel,
i.e. center of a searchlight, or ROI) for each participant. In a noise-free
scenario, all j estimates reflect the true dimensionality and thus, direct
inference could be made solely based on these estimates. Under noise,
these estimates could over- or underestimate the true dimensionality.
The less reliable the j dimensionality estimates, the higher the variance
across them. Mere averaging of the j estimates across participants would
discard this information, weighting all participants equally, irrespective
of their reliability. Down-weighting the influence of less reliable
dimensionality estimates on the population estimate leads to a better
population estimate (Kruschke, 2014).

To account for this, we implemented a multilevel Bayesian model
using the software package Stan (The Stan Development Team, 2017).
Given the mean and standard deviation of j dimensionality estimates per
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participant, the model derives the best estimate for the true degree of
dimensionality across all participants. Due to the nature of the multilevel
model, individual estimates are subject to shrinkage towards the esti-
mated population mean, and the degree of shrinkage is more pronounced
for estimates with higher variance and stronger deviation from the esti-
mated population mean (Kruschke, 2014).

Additionally to the estimate of the population dimensionality, the
model returns estimates for the population dimensionality's variance,
reflecting the uncertainty of the dimensionality estimate.

For each individual participant, the model estimates the participant's
true underlying dimensionality and returns the uncertainty of this esti-
mate. Though not our focus here, individual differences in dimension-
ality estimates could be linked to other measures, such as task
performance.

Model parametrization
As can be seen in Fig. 4, the Bayesian model has four levels: the prior

distributions, the population distributions, the individual distributions,
and the observed estimates. Apart from the bottom level, that is, the
observed estimates, distributional assumptions must be made. For each
individual participant, j dimensionality estimates are observed. Those
reflect noisy estimates of a participant's true underlying dimensionality.
We chose a truncated t-distribution as parametrization of the level of the
true individual dimensionalities. The parameters of this distribution were
the participant's estimate of the true underlying dimensionality μi, sub-
ject to shrinkage due to other participants' estimates and the individual's
standard deviation of dimensionality estimates. The truncated t-distri-
bution can account for the limited range of possible data points, as there
is a natural maximum and minimum dimensionality that could be
observed. It furthermore reflects the assumption that under noise, the
true dimensionality of an observed pattern, that is, the mean of the t-
distribution, would still have the highest probability of estimation, with
the dispersion of the distribution depending on the number of observa-
tions made (here, runs). On the population level, we chose a truncated
normal distribution with mean of μ and a standard deviation of σ, limited
to the range of the possible dimensionality estimates. This was chosen to
reflect the assumption that participants from the same population should
have similar, though not necessarily identical functional di-
mensionalities. The combination of a normal distribution on the popu-
lation level and a truncated t-distribution on the single subject level
ensured that participants with largely dividing dimensionality estimates
are shrunk towards the mean of the overall sample in an optimal way.

As we did not have strong priors regarding the dimensionality of the
neural patterns, we implemented a uniform prior over the population
dimensionality estimates, reflecting that the dimensionality could be
anything from 1 to m� 1.

Notably, this does not imply that all participants need to show an
estimated functional dimensionality larger than zero, but rather reflects
the assumption that a significant second-level functional dimensionality
suggests a non-zero functional dimensionality in the population.

The prior distribution can be adapted to be informative for studies
estimating the functional dimensionality of neural patterns with stronger
priors (see Supplemental Materials for an illustration of the effect of
different prior assumptions). Fig. 4 shows an illustration of the model.

The model is formally expressed in Equation (2).

xi � Tðj� 1; μi; σiÞ; 1 � xi � m� 1;withbσi � Nðσi; 1Þ; 0 � bσi � maxðσiÞ;
μi � Nðμ; σÞ; 1 � μi � m� 1;
σi � Uð0;maxðσiÞ Þ;
μ � Uð1;maxðm� 1ÞÞ; and
σ � Uð0;maxðσÞ Þ

(2)

The maximum population variance was defined as the expected
variance of this uniform distribution 1

12ðm� 2Þ2, reflecting the prior that
each participant could express a different, true dimensionality. On the
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subject-level, the maximum variance was defined as

max
�
σ2
i

� ¼ j
j� 1

*
�
m� 1� m

2

�2
(3)

which corresponds to the maximum possible variance across j dimen-
sionality estimates.

The j estimates of a participant's dimensionality were not indepen-
dent, since the training data overlapped. Thus, the standard deviation of
the estimates will be underestimated. The degree of this underestimation
will be the same for all participants though, which allows us to rely on the
observed standard deviation as a proxy for the estimation noise without
correcting.

Simulations

Before applying our method to real fMRI data, we tested the validity
of our method through dimensionality-recovery studies on simulated
fMRI data. Estimating the dimensionality for simulated cases where the
true underlying dimensionality is known allowed us to assess whether
our procedure results in a reliable dimensionality estimate.
Methods

Simulated data were created using the RSA toolbox (Nili et al., 2014)
and custom Matlab code. Parameters of the simulation were picked in
accordance with the study byMack et al. (2013). We simulated fMRI data
of presentation of 16 different stimuli, presented for 3 s, three repetitions
per run, and six runs, closely matching the specifications of the original
study. To mimic a searchlight-approach, we defined the size of the cubic
sphere 4� 4� 4 voxels, resulting in a simulated pattern of 64 voxels.

We simulated data with a dimensionality of 4, 8, and 12 and ten steps
of exponentially increasing noise levels to investigate how noise affects
dimensionality estimates, and how this effect interacts with the ground-
truth dimensionality. The lowest noise level was set as to match the
reliability we observed in the original study byMack et al. (2013) in early
visual cortex. In order to apply hierarchical Bayesian model, we created
simulated data for 20 ’participants'. For each simulated participant, the
noise level was drawn from a normal distribution (truncated at 0.5 and 2
times the average noise level).

To generate data with varying ground-truth dimensionality k, we first
generated true, i.e. noise-free, n(voxel) � m(conditions) matrices with
underlying pre-defined dimensionality. This was achieved by applying
PCA to a random 16 � 16 matrix and building a k-dimensional recon-
struction of it. All eigenvalues of this initial k-dimensional matrix had the
same value. Rows of this matrix were added to an n� 16matrix. For each
row, i.e. voxel, a specific amplitude was drawn from a normal distribu-
tion and added.

In the next step, we calculated the dot-product of the generated beta
matrices and generated design matrices, which were HRF convolved.
This resulted in noise-free fMRI time series.

A noise matrix was generated by randomly sampling from a Gaussian
distribution. The n(voxel) � t(timesteps) matrix was then spatially
smoothed and temporally smoothed with a Gaussian kernel of 4 FWHM.
Finally, this temporally and spatially smoothed noise matrix was added
to the noise-free time-series and the design matrix was fit to the resulting
data using a GLM. This resulted in a (noisy) voxel � conditions beta
matrix for each simulated run. The generated beta matrices were then
passed on to the dimensionality estimation.

To gather a reliable estimate of the performance of our procedure, we
ran a total of 100 of these simulations for each combination of ground-
truth dimensionality and noise-level.

We then estimated the dimensionality for each simulated participant
as described above and passed each participant's average estimated
dimensionality and the standard deviation of this estimate to the
described hierarchical Bayesian model. To assess the goodness of the
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estimated dimensionalities, we combined all posterior estimates of the
single simulated participants' dimensionalities (parameter μi) across all
simulated voxels. The width of the distributions of these posteriors re-
flects the uncertainty of the estimated population dimensionality, and the
distributions' means reflect the estimated population dimensionality.

Results and discussion

Across 100 simulations of data with a ground-truth dimensionality of
4, 8, or 12 and ten different noise levels, we assessed how estimated
dimensionalities are affected by noise and how this effect interacts with
the ground-truth dimensionality.

Ideally, our method would exhibit these properties: 1) The posterior
estimate of the degree of underlying dimensionality should be close to
the ground-truth dimensionality when the signal-to-noise ratio is high. 2)
The uncertainty of the posterior estimate should increase with increasing
noise-levels. 3) Estimates should gracefully degrade such that as noise
increases the relative order of ground-truth dimensionalities should still
be reflected in the estimated dimensionalities and the posteriors still
contain the ground-truth values. 4) With increasing noise, the relative
importance of the prior should increase and in the limit all ground-truth
dimensionalities should converge to the mean of the prior.

As can be seen in Fig. 5A, the results from the simulation show that
our method meets all four criteria. For a low noise level, the estimated
dimensionalities largely overlap with the ground-truth and are very
consistent across simulated participants. With increasing noise, esti-
mated dimensionalities deviate more strongly from the underlying
ground-truth and move towards the mean of the uniform prior.
Furthermore, the uncertainty in the dimensionality estimates increases,
reflected in the width of the distributions.

Fig. 5B shows the average reconstruction correlations with the held
out test data for the different ground-truth dimensionalities and the
different noise levels, which are highly overlapping.

An additional observation from the simulation results is that moder-
ate levels of noise can lead to a small inflation of estimated di-
mensionalities for higher ground-truth dimensionality levels, as seen
here for the case of a dimensionality of 8. This effect is due to the
correlational structure of noise in fMRI data. The SVD is sensitive to this
correlational structure and as a result, singular values that reflect noise
could surpass singular values that reflect signal. This would then cause an
overestimation of the underlying dimensionality, since keeping a noise-
carrying singular component would not improve the correlation with
the held-out validation data, but adding the next, signal-carrying singular
value to the reconstruction would. However, this inflation is only minor.
It does not violate the rank order of the posterior dimensionality esti-
mates and the distribution of the posterior dimensionality estimates re-
flects the increased uncertainty in the estimate.

Together, these simulations show that our procedure is suitable to
provide an accurate estimate of the degree of underlying functional
dimensionality for good signal-to-noise ratios. Moreover, the access to
the whole distribution of dimensionality estimates allows to draw valid
inferences on the relative degree of functional dimensionality even under
high noise, and the width of the distribution of these estimates reflects
the uncertainty of these estimates. Thus, the combination of cross-
validated SVD and hierarchical Bayesian modeling can provide a
robust and interpretable estimated distribution of the degree of under-
lying functional dimensionality, which reflects the certainty in the
estimate.

Data sets

Following the successful tests of our procedure with simulated data,
we applied our method to three different, previously published fMRI
datasets, all employing visual stimuli and testing healthy populations. We
tested three core aims of our method: 1) Identifying areas carrying
functional dimensionality, 2) Using functional dimensionality to assess



Fig. 5. Results from the simulation. A: Dis-
tributions of single-subject posterior dimen-
sionality estimates for a ground-truth
dimensionality of 4, 8, or 12 and increasing
noise levels. As noise increases, the estimates
become less accurate and less certain, as
indicated by the width of the distributions.
For the highest noise level, the posterior
distributions for all ground-truth di-
mensionalities overlap largely. B: Average
reconstruction correlations for the different
ground-truth dimensionalities and increasing
noise levels. As the noise level increases,
reconstruction correlations drop, and this ef-
fect is the same across the three different
ground-truth dimensionalities.

Fig. 6. Areas that showed significant functional dimensionality (green), sig-
nificant fit with the RSA comparing neural representational similarity with
model-based predictions of stimulus similarity (orange), or both (yellow). FWE-
corrected using a TFCE threshold of p < :05. Notably, our method identifies
large clusters of functional dimensionality in prefrontal cortex, indicating that
areas here were consistently engaged by the task, though their patterns did not
fit with the implemented cognitive model.
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sensitivity to stimulus features, and 3) Measuring task-dependent dif-
ferences in dimensionality.

Identifying areas carrying functional dimensionality

Using data from a category learning study by Mack et al. (2013), we
aimed to identify areas carrying functional dimensionality and compare
them with the areas found by the original authors' model-based analysis.
Model-based analyses test specific assumptions about representational
geometry that our approach does not. Furthermore, these analyses
require some underlying dimensionality to identify an area. Therefore,
we expected our method to reveal significant functional dimensionality
in all areas that were reported in the original study, as well as additional
areas that were reliably modulated by the task in a way that was not
captured by the model tested in the original publication.

Methods
Participants were trained on categorizing nine objects that differed on

four binary dimensions: shape (circle/triangle), color (red/green), size
(large/small), and position (left/right). During the fMRI session, partic-
ipants were presented with the set of all 16 possible stimuli and had to
perform the same categorization task. Out of 23 participants, 20 were
included in the final analysis presented here, with 19 participants
completing 6 runs composed of 48 trials and one participant completing
5 runs.

Standard pre-processing steps were carried out using SPM12 (Penny
et al., 2006) and beta estimates were derived from a GLM containing one
regressor per stimulus (16 in total, see Supplemental Materials for de-
tails). The dataset was retrieved from osf.io/62rgs.

We ran a whole-brain searchlight with a 7mm radius sphere and a
voxel size of 3� 3� 3mm to estimate which brain areas carry signal with
functional dimensionality, that is, signal that could be reliably predicted
across runs based on a low-dimensional reconstruction. For each
searchlight, data were pre-whitened and mean-centered as described
above. Dimensionality estimation was performed as previously described
and the resulting j correlations and dimensionality estimates were
ascribed to the center of the searchlight. The code for the searchlight was
based on the RSA toolbox (Nili et al., 2014).

For each voxel, the j correlation coefficients were averaged and their
significance was assessed via non-parametric one-sample t-tests across
subjects using FSL's randomise function (Winkler et al., 2014). Results
were family-wise error (FWE) corrected using a TFCE threshold of
p < :05.

In their original analysis, the authors fit a cognitive model to partic-
ipants classification behavior to estimate attention-weights to the single
stimulus features. Based on these attention weights, they derived model-
based similarities between stimuli and used RSA to examine which brain
regions show a representational geometry that matches with these pre-
dictions. We replicated this analysis using the same beta estimates that
were passed on to the dimensionality estimation in order to maximize
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comparability of the two approaches. As for estimating the dimension-
ality, we ran a whole-brain searchlight with a 7mm radius sphere (based
on the RSA toolbox, Nili et al., 2014). We averaged voxel response pat-
terns across runs and calculated the representational distance matrices
(RDM) as all pairwise 1� Pearson correlation distance. We assessed
correspondence of these RDMs with the model-based distance matrices
via Spearman correlation. The resulting Spearman correlation for each
participant was assigned to the center of the searchlight and their sig-
nificance was assessed via non-parametric one-sample t-tests across
subjects using FSL's randomise function (Winkler et al., 2014). Results
were family-wise error (FWE) corrected using a TFCE threshold of
p < :05.

Results
We aimed to identify areas that show functional dimensionality and

examine how those overlap with the authors' original findings imple-
menting a model-based analysis. We found significant dimensionality
(i.e., reconstruction correlations) in an extended network of occipital,
parietal and prefrontal areas (see Fig. 6). In these areas, signal was reli-
able across runs and showed functional dimensionality.

As can be seen in Fig. 6, our method successfully identified all areas
that were found in the original model-based analysis, which bolsters the
authors original interpretation of their results. Notably, we were able to
identify further areas that did not show a fit with the implemented
attention-based model, suggesting that signal changes in those areas
reflect a different aspect of the task space than captured by the cognitive
model.

Discussion
Within the first dataset, we showed that by identifying areas with



Fig. 7. Areas showing significant functional dimensionality for the shape GLM
(green), the category GLM (orange), or both (yellow). Results are FWE-corrected
using an TFCE threshold of p < :05. Across both GLMs, posterior and parietal
regions show functional dimensionality. Prefrontal regions show more pro-
nounced functional dimensionality for the category GLM, in line with the
original findings.
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significant functional dimensionality, it is possible to reveal areas that
can plausibly be tested for correspondence with a hypothesized repre-
sentational similarity structure, as for instance derived from a cognitive
model. More specifically, we were able to identify all areas that have
been reported in the original analysis by Mack et al. (2013) to show a
representational similarity as predicted by a cognitive model. Addition-
ally, we found further areas that had not been revealed in the original
analysis to show functional dimensionality. This indicates that those
areas have a reliable functional dimensionality but reflect cognitive
processes or task-aspects that are not captured by the cognitive model.
For instance, activation in the medial BA 8 has been found to correlate
with uncertainty and task-difficulty (Volz et al., 2005; Huettel, 2005;
Crittenden and Duncan, 2014), suggesting that the neural patterns in this
region in the current task might reflect processes related to the difficulty
or category uncertainty of the categorization decision for each stimulus.
Given that our method identifies more areas than model-based RSA, one
might be tempted to view it as a more powerful and statistical sensitive
version of RSA, but such an interpretation would be incorrect. Whereas
RSA evaluates specific assumptions regarding representational geometry,
tests of functional dimensionality depend solely on reliability of patterns
(assessed across runs). Together, the findings highlight the potential of
our procedure to aid evaluation of model performance and identify areas
ahead of model-fitting.

Using functional dimensionality to assess sensitivity to stimulus features

Using data from a study with real-world categories and photographic
stimuli by Bracci and Op de Beeck (2016), we tested whether different
brain regions show functional dimensionality in response to different
stimulus groupings (i.e., depending on how the stimulus-space is sum-
marized). For example, the columns in the data matrix may be organized
along either visual categories or shape. In this fashion, our technique
could be useful in evaluating general hypotheses regarding the nature
and basis of the functional dimensionality in brain regions.

Methods
During the experiment, participants were presented repeatedly with

54 different natural images that were of nine different shapes and
belonged to six different categories (minerals, animals, fruit/vegetables,
music instruments, sport instruments, tools), allowing the authors to
dissociate between neural responses reflecting shape or category
information.

Standard pre-processing of the data was carried out using SPM12 (see
Supplemental Material for details). In line with the authors original
analysis, we tested for differences depending on whether the stimuli were
averaged to emphasize their category or shape information. To that end,
we constructed two separate GLMs. The first GLM (catGLM) was
composed of one regressor per category (six in total), thus averaging
across objects shapes. The second GLM (shapeGLM) consisted of nine
different regressors, one for each shape, averaging neural responses
across object categories. In both GLMs, regressors were convolved with
the HRF and six motion-regressors as covariates of no interest were
included.

Dimensionality was estimated separately for both GLMs. We ran a
wholebrain searchlight with a 7mm sphere (voxel size of 3� 3� 3mm)
on the beta estimates of the respective GLM, again pre-whitening and
mean-centering voxel patterns within each searchlight before estimating
the dimensionality. Reconstruction correlations were averaged across
runs for each participant and tested for significance across participants
using FSL's randomise function (Winkler et al., 2014). Results were FWE
corrected using a TFCE threshold of p < :05.

Results
When testing for functional dimensionality for the shape-sensitive

GLM, we found significant reconstruction correlations in bilateral pos-
terior occipito-temporal and parietal regions, indicating functional
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dimensionality in these areas. Additionally, a significant cluster was
revealed in the left lateral prefrontal cortex (see Fig. 7). Testing for
functional dimensionality for the category-sensitive GLM also revealed
strong significant correlations in occipital and posterior-temporal re-
gions, but notably showed more pronounced correlations in bilateral
lateral and medial prefrontal areas as well. This is in line with the authors
original findings that showed that neural patterns in parietal and pre-
frontal ROIs correlated more strongly with a model reflecting category
similarities, whereas shape similarities were largely restricted to occipital
and posterior temporal ROIs.

Discussion
With the second dataset, we tested whether different areas are iden-

tified to express significant functional dimensionality depending on how
the underlying task-space is summarized. In line with the original au-
thors' findings (Bracci and Op de Beeck, 2016), we found more pro-
nounced functional dimensionality in prefrontal regions for the GLM
emphasizing the category-information across stimuli, compared to the
one focusing on shape-information. Likewise, functional dimensionality
in occipital regions was more pronounced for the shape-based GLM.

However, compared to the authors' original findings, we did not find a
sharp dissociation between shape and category. For example, we find
both shape and category dimensionality present in early visual regions
and shape dimensionality extending into frontal areas.

As discussed in the previous section, our method provides a general
test of dimensionality whereas the original authors evaluate specific
representational accounts that make additional assumptions about shape
and category similarity structure. Comparing results suggest that to some
degree the dissociation found in Bracci and Op de Beeck (2016) rests on
these specific assumptions. A more general test of functional dimen-
sionality, for stimuli organized along shape or category, provides addi-
tional information to assist in interpreting the cognitive function of these
brain regions, which complements testing more specific representational
accounts.

Additional information could be gleaned by estimating differences in
dimensionality. In the case of the shape and category GLMs considered in
this section, interpretation would be somewhat complicated by the
different properties of these two GLMs, including differences in the
maximum possible number of dimensions. In the next section, we
consider a more straightforward case in which the same GLM is used to
compare task influences on functional dimensionality.
Measuring task-dependent differences in dimensionality

In this third dataset, we consider whether the underlying
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dimensionality of neural representations changes as a function of task. In
the study byMack et al. (2016), participants learned a categorization rule
over a common stimulus set that either depended on one or two stimulus
dimensions. We predicted that the estimated functional dimensionality,
as measured by our hierarchical Bayesian method, should be higher for
the more complex categorization problem, extending the original au-
thors' findings.

Methods
Participants learned to classify bug stimuli that varied on three binary

dimensions (mouth, antenna, legs) into two contrasting categories based
on trial-and-error learning. Over the course of the experiment, partici-
pants completed two learning problems (in counterbalanced order).
Correct classification in type I problem required attending to only one of
the bug's features, whereas classification in type II problem required
combining information of two features in an exclusive-or manner.

Previous research has shown that neural dimensionality appropriate
for the problem at hand is linked to successful task performance (Rigotti
et al., 2013). Thus, we hypothesized that dimensionality of the neural
response would be higher for type II compared to type I in areas known to
process visual features, as for instance lateral occipito-temporal cortex
(LOC; see e.g. Eger et al., 2008). We included data from 22 participants in
our analysis (one participant was excluded due to artifacts in the fMRI
data, please refer to the Supplemental Material for further details on the
experiment and data preprocessing). The dataset was retrieved from
osf.io/5byhb.

In order to infer the degree of functional dimensionality, we esti-
mated it across ROIs encompassing LOC in the left and right hemisphere
separately for the two categorization tasks. Because the relevant stimulus
dimensions were learned through trial-and-error learning, we excluded
the first functional run (early learning) of each problem and analyzed the
remaining three runs for each problem.

Prior to estimating the dimensionality, data were pre-whitened and
mean-centered. Dimensionality was estimated across all voxels for each
ROI and problem, resulting in 3 (runs) � 2 (ROIs) � 2 (problems) cor-
relation coefficients and dimensionality estimates. Correlation co-
efficients were averaged per participant, ROI and problem and tested for
significance using one-sample t-tests. To derive the best population es-
timate for the underlying dimensionality for each ROI and problem, we
implemented the above described hierarchical Bayesian model. To that
end, we calculated mean and standard deviation of each participant's
dimensionality estimate per ROI and problem and used those summary
statistics to estimate the degree of underlying dimensionality for each
ROI and problem.

Results
Estimating dimensionality across two different ROIs in LOC and two

different tasks allowed us to test whether the estimated dimensionality
differs across problems with different task-demands. As participants had
to pay attention to one stimulus feature in the type I problem and two
stimulus features in the type II problem, we hypothesized that dimen-
sionality of the neural response would be higher for type II compared to
type I in an LOC ROI.

Both ROIs showed significant reconstruction correlations across both
tasks (lLOC, type I: t21 ¼ 3:08; p ¼ :006; rLOC, type I: t21 ¼ 2:21; p ¼
:038; lLOC, type II: t21 ¼ 3:03; p ¼ :006; rLOC, type II: t21 ¼ 3:37; p ¼
:003). This shows that signal in the LOC showed reliable functional
dimensionality across runs for both problem types, which is a prerequi-
site for estimating the degree of functional dimensionality.

To estimate whether the dimensionality differed across problems, we
analyzed the data by implementing a multilevel Bayesian model using
Stan (The Stan Development Team, 2017), see Fig. 2 for an illustration of
the model. As hypothesized, the estimated underlying dimensionality
was higher for the type II problem compared to type I (type I: μleft ¼ 2:92
(CI 95% : 1:33; 4:33), μright ¼ 2:66 (CI 95% : 1:23; 4:14); type II: μleft ¼
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4:74 (CI 95% : 3:20;6:46), μright ¼ 4:69 (CI 95% : 3:56;6:06), see Fig. 8).

Discussion
Besides knowing which areas show neural patterns with functional

dimensionality, an important question concerns the degree of the un-
derlying dimensionality. Using data from a categorization task where
participants had to attend to either one or two features of a stimulus, we
demonstrate how our method can be used to test whether the degree of
underlying dimensionality of neural patterns varies with task demands. A
notable strength of the dataset for our research question is that the au-
thors used the same stimuli in a within-subject paradigm, counter-
balancing the order of the two categorization tasks across subjects. This
allowed us to investigate how the dimensionality of a neural pattern
changes with task, while controlling for possible effects due to differ-
ences in signal-to-noise ratios across participants or brain regions.

Our results show that, as expected, the degree of underlying func-
tional dimensionality is higher when the task required attending to two
stimulus features instead of only one. Notably, this assumption was im-
plicit to the conclusions drawn by the authors in the original publication
(Mack et al., 2016). The authors analyzed neural patterns in hippocam-
pus and implemented a cognitive model to show that stimulus-specific
neural patterns were stretched across relevant compared to irrelevant
dimensions. Thus, irrelevant dimensions were compressed and the
dimensionality of the neural pattern was reduced the less dimensions
were relevant to the categorization problem. Our approach allows to
directly assess this effect without the need of fitting a cognitive model.

General discussion

Multivariate and model-based analyses of fMRI data have deepened
our understanding of the human brain and its representational spaces
(Norman et al., 2006; Kriegeskorte and Kievit, 2013; Haxby et al., 2014;
Turner et al., 2017). However, before evaluating specific representa-
tional accounts, it is sensible to first ask the more basic question of
whether brain areas displays functional dimensionality more generally.
Here, we presented a novel approach to estimate an area's functional
dimensionality by a combined SVD and cross-validation procedure. Our
procedure identifies areas with significant functional dimensionality and
provides an estimate, reflecting uncertainty, of the degree of underlying
dimensionality. Across three different data sets, we confirmed and
extended the findings from the original contributions.

After verifying the operation of the method with a synthetic (simu-
lated) dataset in which the ground-truth dimensionalities were known,
we applied our method to three published fMRI datasets. In each case, the
procedure confirmed and extended the authors' original findings,
advancing our understanding of the function of the brain regions
considered. Each of three datasets highlighted a potential use of esti-
mating functional dimensionality.

In the first study, working with data from Mack et al. (2013), we
demonstrated that testing for functional dimensionality can complement
model-based fMRI analyses that evaluate more specific representational
hypotheses. First, one cannot find a rich relationship between model
representations and brain measures when there is no functional dimen-
sionality in regions of interest. Second, there might be additional areas
that display significant functional dimensionality that do not show cor-
respondence with the model.

These additional areas invite further analysis as they might imple-
ment processes and representations outside the scope of the testedmodel.
Functional dimensionality can indicate interesting unexplained signal.
For example, in the first dataset examined, functional dimensionality was
found in all the areas identified by Mack et al. (2013), plus medial BA 8,
which is a candidate region for task difficulty and response conflict (see
Alexander and Brown, 2011, for a model of medial prefrontal cortex
function), which was not the authors' original focus but maymerit further
study.



Fig. 8. Results of estimating functional dimensionality for two different categorization problems. A: Outline of the two ROIs in left and right LOC. B: Histograms of
posterior distributions of estimated dimensionalities in left and right LOC for the type I and II problems. Dimensionalities were estimated by implementing separate
multilevel models for each ROI and model using Stan. Across both ROIs, the peak of the posterior distributions of the estimated dimensionality for type II was higher
than for type I, mirroring the structure of the two problems.
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In the second study, working with data from Bracci and Op de Beeck
(2016), we demonstrated how stimuli could be grouped or organized in
different fashions to explore how dimensional organization varies across
the brain. In this case, the data matrix was either organized along shape
or category. We found neural patterns of shape and category selectivity
consistent with the authors' original results. However, we found the
selectivity to be more mixed in our analyses and identified additional
responsive regions, mirroring our results when we considered data from
Mack et al. (2013).

Our method may have been more sensitive to signal because it makes
fewer assumptions about the underlying representational structure and
allows for individual differences in the underlying dimensions. In this
sense, assessing functional complexity complements existing analysis
procedures. Indeed, our approach could be used to evaluate multiple
stimulus groupings to inform feature selection in encoding models
(Diedrichsen and Kriegeskorte, 2017; Naselaris et al., 2011).

In a third study, working with data from Mack et al. (2016), we
evaluated whether our method could identify changes in task-driven
dimensionality. By combining estimates of functional dimensionality
with a hierarchical Bayesian model, we found that the functional
dimensionality in LOC was higher when a category decision required
using two features rather than one. These results are consistent with the
original authors' theory but were hitherto untestable.

In summary, assessing functional dimensionality across these three
studies complemented the original analyses and revealed additional
nuances in the data. In each case, our understanding of the neural
function was further constrained. Moreover, comparing the results to
those from model-based and other multivariate approaches was infor-
mative in terms of understanding underlying assumptions and their
importance.

Of course, as touched upon in the Introduction, there are many
possible ways to assess dimensional structure in brain measures and
progress has been made on this challenge (Rigotti et al., 2013; Machens
et al., 2010; Rigotti and Fusi, 2016; Diedrichsen et al., 2013; Bhandari
et al., 2017; Lehky et al., 2014). Here, our aim was to specify a general,
computational efficient, robust, and relatively simple and interpretable
procedure that can easily be applied to whole brain data to first test for
statistical significant functional dimensionality and, if found, to provide
an estimate of its magnitude using Bayesian hierarchical modeling to
make clear the uncertainty in that estimate.

We hope our contribution is useful to researches interested in further
exploring their data, whether it be fMRI, MEG, EEG, or single-cell re-
cordings. Researchers may consider variants of our method. For example,
as mentioned in the Introduction, the SVD could be substituted with
another procedure depending on the needs and assumptions of the re-
searchers. There is no magic bullet to the difficult problems of estimating
the underlying dimensionality of noisy neural data, but we have made
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progress on this issue both theoretically and practically. In doing so, we
have also provided additional insights into the brain basis of visual
categorization. We hope that by demonstrating the merits of estimating
the functional dimensionality of neural data that we motivate others to
take advantage of this additional and complementary viewpoint on
neural function.

Data availability

A Matlab toolbox for estimating functional dimensionality of fMRI
data as well as data needed to replicate the analyses presented here will
be made available after publication. Nifti files and code for the analyses
presented here are available from the authors upon request.
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